
IN3020/4020 – Database Systems
Spring 2021, Week 2.2

INDEXING

Dr. Egor V. Kostylev, IFI, UiO
Based upon slides by E. Thorstensen and M. N. Akkøk

We´ll be looking at indices (indexes)

o Conventional indices
o B(+) trees
o Multidimensional indices
o Hash-like indices
o Bitmap indices

Index

o An index on an attribute A (of a table) is a data structure
that facilitates finding the elements with a certain value in A
(A is called the search key)

o The simplest type is probably the hash-index
o There are other (more advanced) indexing techniques based

upon binary search

Index
o An index on an a&ribute A is a data structure that facilitates finding the

elements with a certain values in A (A is called the search key)
o The index is organised (e.g., sorted) on the search key
o For each value of the search key, the index has a list of pointers to the

corresponding records
o More than one index in the same table (or file) means

o Faster search
o More complexity (changes will lead to updated indices as well)
o Increased storage requirement, larger files

Search keys are created to search for a single entry or a set of
entries in an index. Search keys may only be constructed for
the key columns in the index, and may contain one or more
column values.

Types of indices
o Dense vs. sparse indices
o Primary Index

o The data file is sorted (physically) on the search key
o Maximum one data entry for each search-key value

o Cluster index
o The data file is (still) sorted (physically) on the search key
o Allows more than one data entries with same search-key value

o Secondary index
The data file is NOT sorted (physically) on the related search key

Overview of index types

Data file Search key is a candidate
key

Search key is not a
candidate key

Sorted on search key Primary index dense or
sparse Clustering dense or sparse

Not sorted on search key Secondary index dense Secondary index dense

Quick overview:
h;ps://en.wikipedia.org/wiki/Database_index
Less quick but more detailed overview (for geeks):
h;ps://www.geeksforgeeks.org/indexing-in-databases-set-1/

A candidate key is a combination of attributes
that uniquely identify a database record without
referring to any other data. Each table may have
one or more candidate. One of these candidate
keys is the table’s primary key.

https://en.wikipedia.org/wiki/Database_index
https://www.geeksforgeeks.org/indexing-in-databases-set-1/

Primary index:
Dense vs. Sparse indices

A dense index has one
lookup for each value of the

search key

A sparse index has one
lookup for each data block

A simple comparison
o Without index:

o 76924/2 = 38462 average block access
o Takes 38462 * 5.6ms = 215,4s

o With dense index and binary search:
o [log2(1954)] + 1 = 11 + 1 = 12 block accesses (max)
o Takes 12 * 5.6ms = 67.2ms
o 3205 times faster than the one without indices!

o With sparse index and binary search:
o [log2(151)] + 1 = 8 + 1 = 9 block accesses (max)

Takes 9 * 5.6ms = 50.4ms
o 4272 times faster as compared to no index, and 1.33 times faster than dense index

• Assume that we have
• 1,000,000 entries of 300B, 4B search key, 4B pointers
• 4K block size, average 5.6ms for fetching a block
• 13.6 records per block, i.e., 76924 blocks with data
• 512 indices per block, i.e., 1954 blocks for a dense

index and 151 blocks for a sparse index

MulR-level indices
o An index can occupy several blocks
o A mulF-level index (i.e., an index on an

index) can improve performance
o ConFnuing the example:

o Needs only 1954 / 512 = 4 blocks for 2 level 7
o [log2(4)] + 1 + 1 = 2 + 1 + 1 = 4 block access,

takes 4 * 5.6ms = 22.4ms
o 2.25 faster than a simple sparse index,

3 Jmes faster than a dense index

o One can in principle have any number of
indices

Deletion with
sparse index
o Delete entry where a = 60

o No change necessary for the
index

o Delete entry with a = 40
o The first entry in the block

is updated, which means
that the index needs to be
updated

Deletion with
dense index
o Delete entry where a = 60
o Delete entry where a = 40

o One usually prefers to
compress the data in the
blocks

o One can also compress the
whole data set, but we may
like to keep free space for
future inserts

Insertion with
sparse index
o Insert entry with a = 60

o Lucky! Place available exactly
where we need it!

o Insert entry with a = 25
o Must move entry with a = 30 to

next block to make space for 25
o The first entry on block two is

changed, and the index must be
updated

o NOTE: We could have inserted a
new block or overflow block

InserRon with sparse
(and dense) index
o Insert entry with a = 95

o No space. Insert a new/overflow
block

o Overflow block: No need to do
much with the indices. Need only
a pointer to the main blocks

o New block: The index needs to be
updated too

o Insertion in the case of dense indices
is the same, except that the index
must be updated every time

Cluster Index - Duplicate (or MulRple)
Search Keys
o If the file is sorted, a cluster

index can be used even if the
search key is not unique

o Example 1 – dense index:
o One index field per record
o Makes it easy to find entries

and how many there are of
each ☺

o Too many fields? More than
necessary? 🧐

Cluster Index – Sparse Index (a)

o Only one index field per
unique search key

o Less index – faster search
☺

o Finding subsequent
(intermediary) records is
more complex 🙃

Cluster Index – Sparse Index (b)

o Index fields point to the
first entry in each block

o Even fewer indices – faster
search ☺

o Finding records is more
complex 🙃

Unsorted Files and Secondary Indices

o One can use a secondary
index if the files is
unsorted (or sorted on
another attribute)
o Sorted on the search

key: fast search
o First level is always

dense, higher levels are
sparse

o Duplicates are allowed

Dense vs. Sparse Indices

DENSE SPARSE
Space required One index field per entry One index field per data block
Block access “Many” “Few”
Access to entry Direct access Must search in the data block

Exists queries Uses only the index Must always access the data
block

Usage All cases Not on unsorted elements

Updates/changes Always updated if entry
sequence is changed

Updated only if the first entry of
the data block is changed

Inverted Indices

o What if we want to search for items within an attribute?
o SELECT * from R where a like ´%cat%´
o Search for documents that contain certain keywords, e.g.,

search engines like Google, Altavista, Excite, Lycos,
AllTheWeb etc.

Inverted Indices
(called “inverted” because…)
o Direct Index: Entries of the form

(id1: document1), (id2: document2), ...
o Look up an ID, access the document

o Inverted index: Entries of
the form
(computer: [id1]),
(disk: [id2, id3]), ...
o Look up a keyword,

access all relevant
document IDs

Data Structures for Indices

o So, how do we represent an index?

o Obvious idea: Sorted list.
o BeVer ideas?

B+ Trees
o The nodes are blocks, all leaf nodes are at the same level, each node has n search keys and n + 1

pointers
o Inner node: all pointers are to sub-nodes
o Leaf node: n data-pointers and 1 next-pointer

o All nodes must contain a certain amount of
search keys / pointers
o Inner node: at least ⌈ (n + 1) / 2 ⌉ pointers to sub-nodes.
o Leaf node: at least ⌊ (n + 1) / 2 ⌋ data pointers.

B+ Trees: Efficiency
o B+ trees:
☹ A search must always start from the root to a leaf node, i.e., the number of block accesses is
equal to the height of the tree plus access to the records themselves in the data file.
☺ The number of levels is usually very low (typically 3)
☺ Interval search is fast
☺ For large n, it is rarely necessary to split / merge nodes
☺ Disk I / O can be reduced by keeping some of the index blocks in memory

o Example: 4B search keys, 8B pointers, 4KB blocks
o How many values can be stored in each node?

4𝑛 + 8 𝑛 + 1 ≤ 4096 → 𝑛 = 𝟑𝟒𝟎
o The nodes are on the average 75% full. How many records can a 3-level B+ tree contain?

340 × 75% 3 = 16679103,875 ≈ 16,6 million records!

Hash Tables
o Uses a hash function on the search key to an array

index with points to which bucket possibly contains
information about the current record

o Each bucket is a block (with support for overflow
blocks)
o Array size is usually a prime number
o Important for a hash-function!

o Fast
o A good distribution of the search keys to

buckets
o Example: Array size B = 5; h(key) = mod(key, B)

Hash Table: Efficiency

o Ideally, the array size is large enough so that all elements of
one hash value fit into one bucket block.

☺ Then we get significantly fewer disk operaXons than with
regular indices and B+ trees
☺ Fast search for specific search key
☹ MulXple entries can lead to more blocks per bucket
☹ Poor on interval search

Dynamic Hash Tables

o Difficult to keep all items for one hash value within a bucket
block if the number of records increases while the hash
table remains static

o Dynamic hash tables allow the array size to vary so that it is
sufficient with one block per bucket
o Extensible hashing
o Linear hashing

Sequential vs. Hash Indices

o SequenXal indices such as B+ trees are good at interval
search:

select * from R where a > 5

o Hash indices are good when searching for a specific key:

select * from R where a = 5

Indices in SQL

o Syntax (DBMS-dependent):
o create index name on relationName (attribute)
o create unique index name on relationName (attribute)
o drop index name

o NOTE: Not all DBMSs allow us to specify
o type of index, e.g., B-tree, hashing, etc.
o parameters such as load factor, hash size, etc.

Indices in PSQL

Default index in Postgres is B-tree

“B-trees can handle equality and range queries on data that
can be sorted into some ordering”

hVps://www.postgresql.org/docs/9.2/staXc/indices-
types.html

Works for =, <, <=, BETWEEN and IN.
Also for LIKE, but limited.

https://www.postgresql.org/docs/9.2/static/indexes-types.html

Indices in PSQL

o There is also something called GiST. This is a mechanism for
implementing indices for particular data types.

o Can be used in many cases. Some is included in Postgres by
default.

Queries with several conditions

select ... from R where a = 30 and b < 5

o Strategy 1:
o Use an index, e.g., on a
o Find and fetch all records with a = 30
o Search through these records to find records with b < 5
☺ Simple strategy
☹ Risks reading many unnecessary records from disk (storage)

Several conditions: Strategy 2
select c from R where a = 30 and b = ´x´

o Use two dense indices: one for
a, one for b

o Find all pointers to records
with a = 30

o Find all pointers to entries with
b=‘x’

o Compare (intersect) pointers
and fetch the relevant records

o Pick the relevant afributes

MulRdimensional indices

o A multidimensional index combines multiple dimensions in
one index

o A simple tree-like approach:

Multidimensional indices:
Example (with dense indices)
select c from R where a = 30 and b = ´x´

o Search key = (30, x)
o Read the a dimension
o Look for 30, find the

related index for the b-
dimension

o Search for x, read relevant disk
block and fetch the record

o Pick out the relevant afributes

Multidimensional indices: For which queries is
this a good index to use?
😊 Find records with a = 10 and b = ´x´
😊 Find records with a = 10 and b >= ´x´
🤔 Find records with a = 10
☹ Find records with b = ´x´
🤔 Find records with a >= 10 and b = ´x´

o Risks searching through many indices in the next dimension
o Would have been beTer if the dimension order could be changed

o But there are many other alternaVves:
o Other mulVdimensional tree-like structures
o MulVdimensional hash-like structures
o Bitmap indices

Map View

o We can visualize a mulTdimensional
index with two dimensions as a map

o Search is then equivalent to a search
on the map for:
o Points: a1 and b1
o Lines: a2 and < b2, b3 >
o Areas: < a3, a4 > and < b4, b5 >

Tree structures
o There are many tree-like structures that correspond to searching for map

areas:
o k-d trees: a binary search tree in which every leaf node is a k-dimensional

point. Very useful for range and nearest neighbour searches, and for
multidimensional search keys

o Quad-trees: a tree data structure in which each internal node has exactly
four children. Often used to partition a two-dimensional space by
recursively subdividing it into four quadrants or regions (used in image
compression, also in spatial search, etc.)

o R-trees: tree data structures used for spatial access methods, i.e., for
indexing multi-dimensional information such as geographical coordinates,
rectangles or polygons

https://en.wikipedia.org/wiki/Spatial_index
https://en.wikipedia.org/wiki/Geographic_coordinate_system
https://en.wikipedia.org/wiki/Rectangle
https://en.wikipedia.org/wiki/Polygon

Tree structures: Characteristics

o All these tree structures must saXsfy at least one of the
following characterisXcs of B(+) trees:

o Balancing - all leaf nodes are at the same level
(a B+ tree is a self-balancing tree)

o Correspondence between tree nodes and disk blocks
o Good performance for update operaXons

R-trees
o The basic idea:

Group geometric objects that are close to each other

o Nodes are blocks. All leaf nodes are at the same level
o Inner node: The smallest rectangle that covers all the objects

in the subtree
o Leaf node: An object
o All inner nodes must contain a certain number of pointers

o Search (intersec[on, contained in, nearest neighbour) is easy

o Inser[on is challenging
o The tree should be completely balanced
o Rectangles should not contain too much space
o Rectangles on the same level should not overlap (may be

relaxed)
o May need to delete and re-insert objects for be;er

placement

Hash-like structures: Grid files
Grid files extend tradiJonal hash indices to
mulJple dimensions

o Hashes values for each abribute in a mulJ-
dimensional index

o Does not usually hash to individual values
but to regions: h(key) = <x, y>

o Grid lines parJJon areas into stripes

Example (2 dimensions):
Find record with (a, b) = (22, 31)

h1(22) = <ax, ay>
h2(31) = <bm, bn>

→ enter f

Grid files

o Grid files are good for finding records/entries with
o key1 = Vi and key2 =Xj
o key1 = Vi
o key2 = Vj
o key1 >= Vi and key2 < Xj

o Grid files:
☺ Are good for searches with mulXple keys
☹ Use too much space, and require some organizing

Bitmap indices: Example

Bitmap indices
o Starting point: Each record is assigned an unchanging, unambiguous

number
o Numbering from 1 to n
o The number can be considered a record ID and cannot be reused

even if the record is deleted
o Select the field F to be indexed

o For each value v used for F in one of the records, create a bit
vector bv of length n

o If record nr. i has F = v, let bv[i]=1
o If record nr. i has F ≠ v, let bv[i]=0

Bitmap index characterisRcs
o Space requirements:

o Total number of bits is #records * #values
o In the worst case, n2 bits is needed (but then each bit vector has only one 1-bit)
o Bit vectors can be compressed; there is never more than n 1-bits total in the bit

vectors
o EffecFve for:

o ParFal match queries (= state values for some fields, find all that have given
values)
o Calculate bit by bit and across the bitmap indices for the relevant aLributes

o Range queries (= enter intervals for some fields, find all that have values within
the ranges)
o Calculate bit by bit within the intervals

