
IN3020/4020 – Database Systems Spring
2021, Week 3.1-4.1

RELATIONAL ALGEBRA (Parts 1-3)
Calculating with relations

Egor V. Kostylev
Based upon slides by E. Thorstensen and M. Naci Akkøk

Relational Algebra
o Defines operations on relations (i.e., tables)
o Gives us a language to describe questions (queries) about

the contents of relations
o Is a (more) procedural language: We say how the answer

should be calculated. (The alternative is (more) declarative
query languages like SQL where we only say what the
answer will fulfill)

o It is the theoretical basis for SQL (mostly DDL, data
definition language)

Why We Study Relational Algebra?

o It is the most important intermediate step for
evaluating SQL queries:
o First SQL query is first translated to RA expression
o Then RA expression is compiled & optimized using

laws of RA operators (next weeks)
o Translation is straightforward: the counterparts of

RA operations exist in SQL (maybe with other
names)

Relational Algebra Variants

o There are several variants of Relational Algebra,
depending on
o formalization of relations it works with (named vs.

unnamed perspective, sets vs. bags)
o set of SQL constructs it covers (full SQL is Turing-

complete!)
o There is also Relational Calculus: mathematically

equivalent to RA (Codd’s theorem), closer to formal
logic

Materials to Read
o Section 8 of the Book (Elmasri & Navathe, «Fundementals of Database

Systems»)
o Part B of the Alice Book (Abiteboul, Hull & Vianu, «Foundation of

Databases», available at http://webdam.inria.fr/Alice/)
o Many other places, including Wikipedia
o NOTE: I do not follow any of them line by line

http://webdam.inria.fr/Alice/

Practical Counterparts
o We will use examples from w3resource

(https://www.w3resource.com/) or w3schools
(https://www.w3schools.com/sql/)

o w3resource has tutorials and examples for 2003 standard ANSI SQL
(use that primarily), as well as MySQL, PostgreSQL, Oracle etc., and for
NoSQL, GraphQL and others that you will need later in this course (and
in life)

o w3schools let you “Try it Yourself” that can help understand (the green
button)

o There are very many SQL help & tutorials, also on each DBMS´ own site

https://www.w3resource.com/
https://www.w3schools.com/sql/

Algebra (a.k.a. Algebraic Structure)
o Domain D: collection of values
o Operators: functions from Dk to D (k is arity of the function)
o Expressions:

o Atomic: elements of D
o Complex: operators applied to other expressions
o Evaluate to elements of D

o Infix notation is often used for binary operators
o for example, instead of +(a, b) we write a + b
o brackets or conventions used: (a + b) * c vs. a + b * c

Example: Integer Algebra

o Domain: Integers (..., -3, -2, -1, 0, 1, 2, 3, ...)
o Operators: +, −, ×, /

o Expression examples:
2 + 5

((2 − 4) × 5) + (8 / 2)

8 / 3 (?)

Example: Regular Expressions

o Domain: Sets of strings over some alphabet Σ of letters
o Operators: ∅ (empty set), ε (empty string),

all a in Σ (letters), ◦ (or nothing, concatenation),
| (alternation), * (Kleene star)

o Expression examples:
ab*
(a|b)*ab

o Expressible operators: +, ?

Relational Algebra Domain:
Relations (under named attributes perspective)
o Relation (or table) components:

o Relation name
o Relation schema: set of attribute names with associated datatypes
o Set(!) of Relation records: tuples of elements conforming the schema

o Example: ID site tutorial topic

1 w3schools SQL_2003STD Database

2 w3schools HTML_5 WebDev

3 w3schools CSS_3 WebDev

4 w3resource SQL_2003STD Database

5 w3resource MySQL Database

Tutorials

Core Relational Algebra
o Domain: Relations
o (Main) operators:

1. (Set) Union
2. (Set) Difference
3. Projection
4. Selection
5. Cartesian product (a.k.a., Cross Product and Cross Join)
6. Renaming

o Expressible operators:
1. (Set) Intersection
2. Other joins (natural, equi-, left, etc.)
3. Division
4. etc.

Set Operations

o Union: R∪S
o Difference: R−S

o R and S must have same attributes
o Before performing the operation S are arranged so that the

attributes are in the same order as in R

Set Operations: UNION

o R ∪ S is a relation where
o All tuples in R or in S or in both R and S are in R ∪ S.
o If t is in both R and S, is t still only once in in R ∪ S

(because a relation is a set)
o No other tuples are in R ∪ S

o Example of regular set union:
{a, b, c} ∪ {a, c, d} = {a, b, c, d} R SR ∪ S

Set Operations: DIFFERENCE

o R – S is a relation where
o All tuples that are in R but not in S are in R – S
o No other tuples appear in R – S

o Example of regular set difference:
{a, b, c} – {a, c, d} = {b}

R S
R – S

Operators that remove parts of a relation

o Selection: 𝜎C(R)
o Projection: 𝜋L(R)

SELECTION (𝜎)
o 𝜎C(R) is the relation obtained from R by selecting the tuples in R that

satisfy the condition C
o C is any Boolean expression made up of atoms, for example of the form

op1 𝜑 op2, where
o The operator 𝜑 is one of =,≠ or domain specific (e.g., <, >, <=, LIKE)
o Operands op1 and op2 are

o either two attributes in R with same domain
o or one attribute in R and a constant from the attribute domain
o In (A LIKE e), e is a constant or a regular expression

SELECTION 𝜎C(R) Example

ID site tutorial topic

1 w3schools SQL_2003STD Database

4 w3resource SQL_2003STD Database

5 w3resource MySQL Database

𝜎topic = "Database" (Tutorials)

ID site tutorial topic

1 w3schools SQL_2003STD Database

2 w3schools HTML_5 WebDev

3 w3schools CSS_3 WebDev

4 w3resource SQL_2003STD Database

5 w3resource MySQL Database

Tutorials

PROJECTION (𝜋)

o 𝜋L(R), where R is a relation and L is a list of attributes in R, is
the relation obtained from R is by selecting the columns of
the attributes in L

o The relation has a schema with the attributes in L
o No tuples can occur more than once in 𝜋L(R)

PROJECTION 𝜋L(R) Example

𝜋site, topic(Tutorials)

ID site tutorial topic

1 w3schools SQL_2003STD Database

2 w3schools HTML_5 WebDev

3 w3schools CSS_3 WebDev

4 w3resource SQL_2003STD Database

5 w3resource MySQL Database

Tutorials

site topic

w3schools Database

w3schools WebDev

w3schools WebDev

w3resource Database

Note only one copy of (w3resource, Database) in the result

Cartesian (Cross) Product R×S

o R×S is the relation obtained from R and S by forming all possible
combinations of one tuple from R and one tuple from S

o We often say that one tuple t from R and one tuple u from S is
concatenated into a tuple v = tu in R×S

o In the resulting schema, any name similarity between attributes
in R and S is resolved by qualifying the names with the origin
relation: R.A, S.A

o R and S cannot be the same, for self-joining one of them must
first be renamed using renaming operation (see below)

Cartesian Product R×S Visual Example

(1, a)
(1, b)
(1, c)
(2, a)
(2, b)
(2, c)
(3, a)
(3, b)
(3, c)

R S
1

2

3

a

b

c

EACH by EACH,
ALL TUPLES

Cartesian Product Example

o In SQL, the cartesian product is a CROSS JOIN
o NOTE: the result is often huge in practice and makes little sense

ID site HQ

101 w3schools USA

102 Udemy UK

103 Folkeuniversitetet NO

ID topic

501 Database

503 Language

× S.ID site HQ C.ID topic

101 w3schools USA 501 Database

102 Udemy UK 501 Database

103 Folkeuniversitetet NO 501 Database

101 w3schools USA 503 Language

102 Udemy UK 503 Language

103 Folkeuniversitetet NO 503 Language

→
S C C × S

RENAMING (𝛒)

o 𝜌S(A1,A2,...,An)(R) renames R to a relation S with name S and
attributes A1, A2, ..., An

o Shortcut: 𝜌S(R) renames R to a relation with name S
Attribute names from R are kept as is

o In certain cases (operations on “self”), renaming the
relation (giving it another name) may be necessary to avoid
semantic misinterpretation

Self-join

o We want “names of all employees and each employee´s
manager” given Employee(Id, Name),
Manager(empId, mgrId).

o THIS IS WORNG:
SELECT e.Name, e.Name FROM Employee e

JOIN Manager ON empId=Id AND mgrId=Id;
o There is obviously something very wrong with this query.

We need TWO names!

Self-join continued

o Try again: “names of all employees and each employee´s
manager” given Employee(Id, Name),
Manager(empId, mgrId)

o We need an extra copy of Employee:
o This is correct:

SELECT e.Name, s.Name FROM Employee e
JOIN Manager ON empId=e.Id

JOIN Employee s ON s.Id = mgrId;

Self-join in Relational Algebra
SELECT e.Name, s.Name FROM Employee e
JOIN Manager ON empId=e.Id
JOIN Employee s ON s.Id = mgrId;

𝜋e.Name, s.Name (

𝜎empId=e.Id & s.Id=mgrId (

𝜌e(Employee) × Manager × 𝜌s(Employee)))

This query can be directly translated using national joins (see below)

The minimal set of operators
o Operators in the set {∪, –, 𝜎, 𝜋, ×, 𝜌} can not be expressed

using the other operators in the set
o They are a minimal independent set of operators in our core

relational algebra

o We still wish to keep the other operators (considered next)
because
o there are effective algorithms for them and
o it is often simpler to formulate queries using them

Set Operations: INTERSECTION
o R ∩ S is a relation where

o Only those tuples that are in both R and S are in R ∩ S
o No other tuples appear in R ∩ S

o Example of regular set intersection:
{a, b, c} ∩ {a, c, d} = {a, c}

o R∩S = R – (R – S)
o So we do not need ∩ in the core RA

R SR ∩ S

Operators that combine tuples

o Cartesian product (cross product, cross join): R×S

o Natural join: R ⋈ S
o Theta-join: R ⋈θ S
o …

Natural Join

o R⋈S is the relation obtained from R and S by forming all
possible mergers of one tuple from R with one from S where
the tuples are to match all attributes with matching names

o Common attributes occur only once in the merged
attributes

o The resulting schema has the attributes in R followed by
those attributes in S that do not also occur in R

o Natural join is an EQUI-JOIN: join on equality

Dangling Tuple

o A dangling tuple is a tuple in one of the relations that has
no matching tuple in the other relations

o Dangling tuples are not represented in the result relation
after a natural join

o To keep them, use outer join (see below)

Natural Join R ⋈ S
Practical Example

SELECT * FROM foods
NATURAL JOIN company;

NOTE that it is an “equi-join”
on COMPANY_ID

Dangling?

foods

company

Rewriting of Natural Join via Basic Operators

R ⋈ S is equivalent to 𝜋L (𝜌N (𝜎C (R × S))) where
o C is R.A1 = S.A1 AND … AND R.An = S.An for common

attributes A1, …, An
o N renames all attributes R.Ai to Ai
o L is the set of all attributes Ai (but not S.Aj)

Similarly, we can rewrite R × S via ⋈ and 𝜌

Theta Join (⋈θ)
o Generalization of a natural join
o The relation R⋈S where θ is a condition (Boolean expression) is

calculated as follows:
1. Calculate R⋈S
2. Pick the tuples that satisfy the condition θ

o The constituents (atoms) in θ have the form A 𝜑 B where A and B are
attributes in R and S, A and B respectively have the same domain,
and 𝜑 𝜖 { =,≠, <, >, <=, >= } + LIKE ´RegularExpression´ in practice!

o AGAIN, NOTE that a theta join links tables based on a relationship
other than «natural» equality, but the condition can use equality!

Theta Join (⋈θ)
Example

SELECT * FROM foods
NATURAL JOIN company
WHERE ITEM_ID < 3

Start with the Natural Join
as suggested

Dangling?

foods

company

Equi-join (special case of theta Join)

Special case of a theta-join ⋈θ where condition θ satisfies
following requirements:
1. θ contains no other Boolean operators than AND, i.e., θ has

the form θ1 AND θ2 AND ... AND θm

2. Where θk for 1 ≤ k ≤ m is in the form A = B there A is an
attribute in R and B is an attribute in S with A and B having
the same domain

(In other words: When theta join uses only “=“)

Another Theta Join (⋈θ, an equi-join) Example

name manufacturer

Efes Pilsen Anadolu Gurubu

Ringnes Pils Ringnes

Ringnes Lite Ringnes

SELECT * FROM Beers B JOIN
Likes L ON B.name = L.beer;

drinker beer

Ada Efes Pilsen

Naci Efes Pilsen

Bjørn Ringnes Lite

⋈

name manufacturer drinker

Efes Pilsen Anadolu Gurubu Ada

Ringnes Pils Ringnes Naci

Ringnes Lite Ringnes Bjørn

Division
o Let R(A,B) and S(B) be two relations, and A, B be disjoint sets of

attributes
o R div S is all tuples t from 𝜋𝐴(R) such that {t} × S is contained in R
o In other words: all t such that R contains a tuple tu for every u in S
o Division is the “inverse” of Cartesian product (R’ × S’) div S’ = R’
o NOTE that the opposite is not valid (R div S) × S ≠ R

o Queries with “all” often indicate division
o No division operator in SQL STD 2003! You need a technique.

You can derive division using projection,
Cartesian product, and difference

R(A,B) div S(B) is equivalent to
𝜋A(R) –
𝜋A((𝜋A(R) × S) – R)

Note:
(𝜋A(R) × S) – R are those that do NOT satisfy the condition

Typical steps for computation of R(A,B) div S(B):

o Find out all possible combinations of S(B) with R(A) by computing
R(A) × S(B); call it R1

o Subtract actual R(A,B) from R1; call it R2
o A in R2 are those that are not associated with any value in S(B);

therefore R(A)-R2(A) gives us the A that are associated with all values
in S

o Take a look at the examples here:
o https://www.geeksforgeeks.org/sql-division/
o https://www.studytonight.com/dbms/division-operator.php

https://www.geeksforgeeks.org/sql-division/
https://www.studytonight.com/dbms/division-operator.php

Division: Example of use
o Romutstyr (room equipment)

show the equipment that
exists

o Aktivitetskrav (for activity)
shows the kind of equipment
needed for a given activity

Room that covers all equipment needs
o Let R = Romutstyr (room equipment) and A = Aktivitetskrav (for

activity)
o Room that covers all equipment requirements for MUS1225-

hørelære (hearing training):
R div 𝜋utstyr(𝜎aktivitet = MUS1225-hørelære(A))

o Room that covers all equipment requirements for MUS1225,
i.e., both hørelære (hearing training) and musikkprosuksjon
(music production):

R div 𝜋utstyr(𝜎aktivitet LIKE ´MUS1225%´(A))

Result of the division

Outer Join
o Outer join is used when you want to preserve dangling tuples

from natural join (Not expressible via other operators!)
o R⋈OS, outer join:

o Start with R⋈S
o Add dangling tuples from R and S
o Missing attribute values are filled in with ⊥ (nil)

o R⋈OLS Left outer join: Only dangling tuples from R are added
o R⋈ORS Right outer join : Only dangling tuples from S are added

Outer Join Example
https://www.w3resource.com/sql/joins/perform-an-outer-join.php

SELECT company.company_name,
company.company_id,
foods.company_id,
foods.item_name,
foods.item_unit
FROM company, foods
WHERE company.company_id =
foods.company_id(+);

foodscompany

https://www.w3resource.com/sql/joins/perform-an-outer-join.php

Extended projection

o 𝜋L(R), extended: L is a list where each item can be
i. A simple attribute in R
ii. An expression A→ B, where A is an attribute in R and B

is an unused attribute name, renames A in R to B in the
result relation (Expressible in basic algebra)

iii. An expression E→ B, where E is an expression built up of
attributes in R, constants, arithmetic operators and
string operators, and B is an unused attribute name (Not
Expressible)

Extended projection – The result relation

The result relation 𝜋L(R) is obtained from R as follows:
o Consider each tuple in R separately
o Substitute the tuple´s values for the attribute names in L

and calculate the expressions in L
o The result relation is a set with as many attributes as items

in L, and with names as given in L

Bags
o Real-life DBMSs use Bag (multiset) and not Set as

the basic type for realizing relations
o Set (D):

Each element in D occurs at most once. The order of the elements does
not matter
{a, b, c} = {a, c, b} = {a, a, b, c} = {c, a, b, a}

o Bag (D):
Each element in D can occur more than once. The order of the
elements does not matter
{a, b, c} = {a, c, b} ≠ {a, a, b, c} = {c, a, b, a}

o Every set is a bag

Why Bag and not Set?

o Bag provides more efficient union and projection
calculations than Set

o In aggregation, we need Bag functionality

o But: Bag is more space consuming than Set

Relational operators on bags
o The definitions become slightly different

o Not all algebraic laws that hold for sets hold for bags
Example: (R ∪ S) – T = (R – T) ∪ (S – T) for sets but not for bags

o When we later in the lectures mention «bag relation», we mean a table as
before except that tuples may repeat (are a bag)

o We need another relational algebra for bags

o In fact, DBMSs usually allow only sets as stored tables, but bags as query
answers (we can ignore this for further exposition)

Bag Union

o Let R and S be bag relations

If t is a tuple that occurs n times in R and m times in S, then
t occurs n + m times in the bag relation R ∪ S

o Example of typical bag union:
{a, a, b, c, c} ∪ {a, c, c, c, d} = {a, a, a, b, c, c, c, c, c, d}

Bag Intersection

o Let R and S be bag relations

If t is a tuple that occurs n times in R and m times in S, then
t occurs min(n, m) times in the bag relation R∩S

o Example of typical Bag intersection:
{a, a, b, c, c} ∩ {a, c, c, c, d} = {a, c, c}

Bag Difference

o Let R and S be bag relations

If t is a tuple that occurs n times in R and m times in S, then
t occurs max (0, n-m) times in the bag relation R−S

o Example of typical Bag difference:
{a, a, b, c, c} – {a, c, c, c, d} = {a, b}

Bag Selection

o If R is a bag relation, then 𝜎𝜃(R) is a bag relation obtained
from R by applying 𝜃 to each tuple individually and selecting
the tuples in R that satisfy the condition 𝜃

Bag Projection

o If R is a bag relation and L is a (non-empty) list of attributes,
then 𝜋L(R) is the bag relation obtained from R by selecting
the columns of the attributes in L

o 𝜋L(R) has as many tuples as R

Cartesian Product of Bags
o R × S is the bag relation obtained from the bag relations R and S

by forming all possible concatenations of one tuple from R and
one tuple from S

o If R has n tuples and S has m tuples, there will be nm tuples in
R × S

o Contrary to some previous operations, this is a proper
generalization of set Cartesian product (applied to sets gives a
set)

Natural Join of Bags

o If R and S are bag relations, then R⋈S is the bag relation
obtained by merging matching tuples in R and S individually

o Expressible via other operators as before

Theta-Join of Bags

o Direct generalization of natural join, as before

o If R and S are bag relations, the bag relation R⋈θS where θ
is a condition is formed as follows:

1. Calculate R⋈S (natural join)
2. Select the tuples that satisfy the condition

Additional operators in bag relational
algebra
o As before and omitted:
o Outer Join
o Extended projection

o Duplicate elimination
o Aggregation (with grouping)

o Sorting (beyond bags)

Duplicate elimination

o 𝛿(R) removes multiple occurrences of tuples from the bag
relation R

o The result is a set

Aggregation operations

o Used on bags of atomic values for an attribute A
o Used in combination with the grouping operator

Standard aggregation operations #1
o COUNT (A):

o Counts the number of tuples in the relation with values in the
column of A

o Tuples where A is NULL are not counted

o MIN (A), MAX (A):
o Selects the smallest / largest value in the column of A

(The column must have at least one value)
o The domain of A must have an order relation
o For numeric values this is <
o Lexicographic arrangement is used for strings

Standard aggregation operations #2

o SUM(A):
o Sums all values in column A
o A´s domain must be numeric values

o AVG(A):
o Calculates the average of the values in column A
o Assumes that the column has at least one value
o A´s domain must be numeric values

Grouping (with aggregation)
o Used when we want to apply an aggregation operator to groups of values
o Form: 𝛾L(R), where L is a list of items with all the items in the list different. The

elements are in one of the following two forms:
o A

o A is an attribute in R
o A is called a grouping attribute

o AGG (A) → AggRes
o AGG is an aggregation operator
o AggRes is an unused attribute name
o A is called an aggregation attribute

The resulting relation after grouping
Given 𝛾L(R), the result relation is constructed as follows
1. Partition R in groups, one group for each collection of tuples

that are equal in all grouping attributes in L
2. For each group, produce a tuple consisting of

i. The values of the grouping attributes in the group
ii. For each aggregation attribute in L, the aggregation over all

the tuples in the group
The result relation gets as many attributes as there are elements in
L, and attribute names as specified by L. The result instance
contains one tuple per group.

Grouping and aggregation
use & example

SELECT MAX(mycount) FROM
(SELECT
agent_code, COUNT(agent_code) mycount
FROM orders
GROUP BY agent_code

);

𝛾MAX(mycount) -> mmc (𝛾agent_code, COUNT(agent_code) -> mycount (orders))

Sorting

o 𝜏L(R), where R is a relation and L a list of attributes
A1, A2, ..., Ak, results in a list of tuples sorted first by A1, then
by A2 internally in each batch of equal A1 values, etc.

o The attributes that are not included in the list are randomly
arranged

o Result is a list, so the operation is meaningful only as a last,
final operation on relations

o Beyond bag and set relational algebra!

Relations and rules of integrity

o We can express referential integrity, functional
dependencies and multi-value dependencies - and also
other classes of integrity rules - in relational algebra!

Examples of integrity rules in classical
relational algebra
o If E is an expression in relational algebra, then E=∅ is an integrity rule

that says that E does not have any tuples
o If E1 and E2 are expressions in relational algebra, then

E1 ⊆ E2 is an integrity rule that says that each tuple in E1 shall also be
in E2

o Note that E1 ⊆ E2 and E1 – E2= ∅ are equivalent.
Also E = ∅ and E ⊆ ∅. Thus, only one of the forms above is sufficient

o Strictly speaking, ∅ is not a relational algebra expression. We could
have written R – R instead (for an arbitrary relation R with same
schema as E)

Examples of integrity rules in classical
relational algebra
o Referential integrity: ”A is foreign key for S”, where B is primary key in S:
𝛿(𝜋A(R)) ⊆ 𝜋B(S)

o FDs: ”A1 A2 ... An→B1 B2 ... Bm” in R:
𝜎𝜃(𝜌R1(R)×𝜌R2(R))=∅

o where 𝜃 is the expression
R1.A1 = R2.A1 AND ... AND R1.An = R2.An AND

(R1.B1 ≠ R2.B1 OR ... OR R1.Bm ≠ R2.Bm)
o Domain constraints:
𝜎A≠’F’ AND A≠’M’(R) = ∅

