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Relational Algebra
o Defines operations on relations (i.e., tables)
o Gives us a language to describe questions (queries) about 

the contents of relations
o Is a (more) procedural language: We say how the answer 

should be calculated. (The alternative is (more) declarative
query languages like SQL where we only say what the 
answer will fulfill)

o It is the theoretical basis for SQL (mostly DDL, data 
definition language) 



Why We Study Relational Algebra?

o It is the most important intermediate step for 
evaluating SQL queries:
o First SQL query is first translated to RA expression
o Then RA expression is compiled & optimized using 

laws of RA operators (next weeks)
o Translation is straightforward: the counterparts of 

RA operations exist in SQL (maybe with other 
names)



Relational Algebra Variants

o There are several variants of Relational Algebra, 
depending on
o formalization of relations it works with (named vs. 

unnamed perspective, sets vs. bags)
o set of SQL constructs it covers (full SQL is Turing-

complete!) 
o There is also Relational Calculus: mathematically 

equivalent to RA (Codd’s theorem), closer to formal 
logic



Materials to Read
o Section 8 of the Book (Elmasri & Navathe, «Fundementals of Database 

Systems»)
o Part B of the Alice Book (Abiteboul, Hull & Vianu, «Foundation of 

Databases», available at http://webdam.inria.fr/Alice/)
o Many other places, including Wikipedia
o NOTE: I do not follow any of them line by line

http://webdam.inria.fr/Alice/


Practical Counterparts
o We will use examples from w3resource 

(https://www.w3resource.com/) or w3schools 
(https://www.w3schools.com/sql/)

o w3resource has tutorials and examples for 2003 standard ANSI SQL
(use that primarily), as well as MySQL, PostgreSQL, Oracle etc., and for 
NoSQL, GraphQL and others that you will need later in this course (and 
in life)

o w3schools let you “Try it Yourself” that can help understand (the green 
button)

o There are very many SQL help & tutorials, also on each DBMS´ own site

https://www.w3resource.com/
https://www.w3schools.com/sql/


Algebra (a.k.a. Algebraic Structure)
o Domain D: collection of values 
o Operators: functions from Dk to D (k is arity of the function) 
o Expressions:  

o Atomic: elements of D
o Complex: operators applied to other expressions
o Evaluate to elements of D

o Infix notation is often used for binary operators 
o for example, instead of +(a, b) we write a + b
o brackets or conventions used:   (a + b) * c   vs.   a + b * c



Example: Integer Algebra

o Domain: Integers (..., -3, -2, -1, 0, 1, 2, 3, ...)
o Operators: +, −, ×, /

o Expression examples:
2 + 5 

((2 − 4) × 5) + (8 / 2)

8 / 3        (?)   



Example: Regular Expressions

o Domain: Sets of strings over some alphabet Σ of letters
o Operators:  ∅ (empty set), ε (empty string),                            

all a in Σ (letters), ◦ (or nothing, concatenation),                      
| (alternation),  * (Kleene star)

o Expression examples:
ab*
(a|b)*ab

o Expressible operators: +, ?



Relational Algebra Domain:
Relations (under named attributes perspective)
o Relation (or table) components:

o Relation name
o Relation schema: set of attribute names with associated datatypes
o Set(!) of Relation records: tuples of elements conforming the schema

o Example: ID site tutorial topic

1 w3schools SQL_2003STD Database

2 w3schools HTML_5 WebDev

3 w3schools CSS_3 WebDev

4 w3resource SQL_2003STD Database

5 w3resource MySQL Database

Tutorials



Core Relational Algebra
o Domain: Relations
o (Main) operators:

1. (Set) Union 
2. (Set) Difference
3. Projection
4. Selection
5. Cartesian product (a.k.a., Cross Product and Cross Join)
6. Renaming

o Expressible operators:
1. (Set) Intersection
2. Other joins (natural, equi-, left, etc.)
3. Division 
4. etc.



Set Operations

o Union: R∪S
o Difference: R−S 

o R and S must have same attributes
o Before performing the operation S are arranged so that the 

attributes are in the same order as in R



Set Operations: UNION

o R ∪ S is a relation where
o All tuples in R or in S or in both R and S are in R ∪ S.
o If t is in both R and S, is t still only once in in R ∪ S 

(because a relation is a set)
o No other tuples are in R ∪ S 

o Example of regular set union: 
{a, b, c} ∪ {a, c, d} = {a, b, c, d} R SR ∪ S



Set Operations: DIFFERENCE

o R – S is a relation where
o All tuples that are in R but not in S are in R – S
o No other tuples appear in R – S 

o Example of regular set difference:
{a, b, c} – {a, c, d} = {b} 

R S
R – S 



Operators that remove parts of a relation 

o Selection: 𝜎C(R)
o Projection: 𝜋L(R) 



SELECTION (𝜎)
o 𝜎C(R) is the relation obtained from R by selecting the tuples in R that 

satisfy the condition C
o C is any Boolean expression made up of atoms, for example of the form 

op1 𝜑 op2, where 
o The operator 𝜑 is one of =,≠ or domain specific (e.g., <, >, <=, LIKE) 
o Operands op1 and op2 are 

o either two attributes in R with same domain
o or one attribute in R and a constant from the attribute domain
o In (A LIKE e), e is a constant or a regular expression



SELECTION 𝜎C(R) Example

ID site tutorial topic

1 w3schools SQL_2003STD Database

4 w3resource SQL_2003STD Database

5 w3resource MySQL Database

𝜎topic = "Database" (Tutorials)

ID site tutorial topic

1 w3schools SQL_2003STD Database

2 w3schools HTML_5 WebDev

3 w3schools CSS_3 WebDev

4 w3resource SQL_2003STD Database

5 w3resource MySQL Database

Tutorials



PROJECTION (𝜋)

o 𝜋L(R), where R is a relation and L is a list of attributes in R, is 
the relation obtained from R is by selecting the columns of 
the attributes in L

o The relation has a schema with the attributes in L 
o No tuples can occur more than once in 𝜋L(R)



PROJECTION 𝜋L(R) Example

𝜋site, topic(Tutorials)

ID site tutorial topic

1 w3schools SQL_2003STD Database

2 w3schools HTML_5 WebDev

3 w3schools CSS_3 WebDev

4 w3resource SQL_2003STD Database

5 w3resource MySQL Database

Tutorials

site topic

w3schools Database

w3schools WebDev

w3schools WebDev

w3resource Database

Note only one copy of (w3resource, Database) in the result



Cartesian (Cross) Product R×S 

o R×S is the relation obtained from R and S by forming all possible 
combinations of one tuple from R and one tuple from S 

o We often say that one tuple t from R and one tuple u from S is 
concatenated into a tuple v = tu in R×S 

o In the resulting schema, any name similarity between attributes 
in R and S is resolved by qualifying the names with the origin 
relation: R.A, S.A

o R and S cannot be the same, for self-joining one of them must 
first be renamed using renaming operation (see below)



Cartesian Product R×S Visual Example

( 1, a )
( 1, b )
( 1, c )
( 2, a )
( 2, b )
( 2, c )
( 3, a )
( 3, b )
( 3, c )

R S
1

2

3

a

b

c

EACH by EACH,
ALL TUPLES



Cartesian Product Example

o In SQL, the cartesian product is a CROSS JOIN
o NOTE: the result is often huge in practice and makes little sense

ID site HQ

101 w3schools USA

102 Udemy UK

103 Folkeuniversitetet NO

ID topic

501 Database

503 Language

× S.ID site HQ C.ID topic

101 w3schools USA 501 Database

102 Udemy UK 501 Database

103 Folkeuniversitetet NO 501 Database

101 w3schools USA 503 Language

102 Udemy UK 503 Language

103 Folkeuniversitetet NO 503 Language

→
S C C × S



RENAMING (𝛒)

o 𝜌S(A1,A2,...,An)(R) renames R to a relation S with name S and 
attributes A1, A2, ..., An 

o Shortcut: 𝜌S(R) renames R to a relation with name S 
Attribute names from R are kept as is

o In certain cases (operations on “self”), renaming the 
relation (giving it another name) may be necessary to avoid 
semantic misinterpretation



Self-join

o We want “names of all employees and each employee´s 
manager” given Employee(Id, Name), 
Manager(empId, mgrId). 

o THIS IS WORNG:
SELECT e.Name, e.Name FROM Employee e 

JOIN Manager ON empId=Id AND mgrId=Id; 
o There is obviously something very wrong with this query. 

We need TWO names! 



Self-join continued

o Try again: “names of all employees and each employee´s 
manager” given Employee(Id, Name), 
Manager(empId, mgrId)

o We need an extra copy of Employee: 
o This is correct:

SELECT e.Name, s.Name FROM Employee e 
JOIN Manager ON empId=e.Id

JOIN Employee s ON s.Id = mgrId; 



Self-join in Relational Algebra
SELECT e.Name, s.Name FROM Employee e 
JOIN Manager ON empId=e.Id
JOIN Employee s ON s.Id = mgrId; 

𝜋e.Name, s.Name (

𝜎empId=e.Id & s.Id=mgrId (

𝜌e(Employee) × Manager × 𝜌s(Employee)))

This query can be directly translated using national joins (see below)



The minimal set of operators
o Operators in the set {∪, –, 𝜎, 𝜋, ×, 𝜌} can not be expressed 

using the other operators in the set
o They are a minimal independent set of operators in our core 

relational algebra

o We still wish to keep the other operators (considered next) 
because 
o there are effective algorithms for them and 
o it is often simpler to formulate queries using them



Set Operations: INTERSECTION
o R ∩ S is a relation where

o Only those tuples that are in both R and S are in R ∩ S
o No other tuples appear in R ∩ S 

o Example of regular set intersection:
{a, b, c} ∩ {a, c, d} = {a, c} 

o R∩S = R – (R – S)
o So we do not need ∩ in the core RA  

R SR ∩ S 



Operators that combine tuples

o Cartesian product (cross product, cross join): R×S 

o Natural join: R ⋈ S 
o Theta-join: R ⋈θ S
o …



Natural Join

o R⋈S is the relation obtained from R and S by forming all 
possible mergers of one tuple from R with one from S where 
the tuples are to match all attributes with matching names

o Common attributes occur only once in the merged 
attributes

o The resulting schema has the attributes in R followed by 
those attributes in S that do not also occur in R

o Natural join is an EQUI-JOIN: join on equality



Dangling Tuple

o A dangling tuple is a tuple in one of the relations that has 
no matching tuple in the other relations

o Dangling tuples are not represented in the result relation 
after a natural join

o To keep them, use outer join (see below)



Natural Join R ⋈ S
Practical Example

SELECT * FROM foods 
NATURAL JOIN company;

NOTE that it is an “equi-join”
on COMPANY_ID

Dangling?

foods

company



Rewriting of Natural Join via Basic Operators

R ⋈ S is equivalent to 𝜋L (𝜌N (𝜎C (R × S))) where
o C is R.A1 = S.A1   AND  …  AND  R.An = S.An for common 

attributes A1, …, An
o N renames all attributes R.Ai to Ai
o L is the set of all attributes Ai (but not S.Aj)

Similarly, we can rewrite R × S via ⋈ and 𝜌



Theta Join (⋈θ)
o Generalization of a natural join 
o The relation R⋈S where θ is a condition (Boolean expression) is 

calculated as follows:
1. Calculate R⋈S
2. Pick the tuples that satisfy the condition θ

o The constituents (atoms) in θ have the form A 𝜑 B where A and B are 
attributes in R and S, A and B respectively have the same domain, 
and 𝜑 𝜖 { =,≠, <, >, <=, >= } + LIKE ´RegularExpression´ in practice!

o AGAIN, NOTE that a theta join links tables based on a relationship 
other than «natural» equality, but the condition can use equality!



Theta Join (⋈θ)
Example

SELECT * FROM foods 
NATURAL JOIN company
WHERE ITEM_ID < 3

Start with the Natural Join 
as suggested

Dangling?

foods

company



Equi-join (special case of theta Join)

Special case of a theta-join ⋈θ where condition θ satisfies 
following requirements: 
1. θ contains no other Boolean operators than AND, i.e., θ has 

the form θ1 AND θ2 AND ... AND θm

2. Where θk for 1 ≤ k ≤ m is in the form A = B there A is an 
attribute in R and B is an attribute in S with A and B having 
the same domain 

(In other words: When theta join uses only “=“)



Another Theta Join (⋈θ, an equi-join) Example

name manufacturer

Efes Pilsen Anadolu Gurubu

Ringnes Pils Ringnes

Ringnes Lite Ringnes

SELECT * FROM Beers B JOIN
Likes L ON B.name = L.beer;

drinker beer

Ada Efes Pilsen

Naci Efes Pilsen

Bjørn Ringnes Lite

⋈

name manufacturer drinker

Efes Pilsen Anadolu Gurubu Ada

Ringnes Pils Ringnes Naci

Ringnes Lite Ringnes Bjørn



Division
o Let R(A,B) and S(B) be two relations, and A, B be disjoint sets of 

attributes
o R div S is all tuples t from 𝜋𝐴(R) such that {t} × S is contained in R
o In other words: all t such that R contains a tuple tu for every u in S
o Division is the “inverse” of Cartesian product (R’ × S’) div S’ = R’
o NOTE that the opposite is not valid (R div S) × S ≠ R

o Queries with “all” often indicate division
o No division operator in SQL STD 2003! You need a technique.



You can derive division using projection, 
Cartesian product, and difference

R(A,B) div S(B)  is equivalent to 
𝜋A(R) –
𝜋A((𝜋A(R) × S) – R) 

Note:
(𝜋A(R) × S) – R are those that do NOT satisfy the condition



Typical steps for computation of R(A,B) div S(B):

o Find out all possible combinations of S(B) with R(A) by computing 
R(A) × S(B); call it R1 

o Subtract actual R(A,B) from R1; call it R2
o A in R2 are those that are not associated with any value in S(B); 

therefore R(A)-R2(A) gives us the A that are associated with all values 
in S

o Take a look at the examples here:
o https://www.geeksforgeeks.org/sql-division/
o https://www.studytonight.com/dbms/division-operator.php

https://www.geeksforgeeks.org/sql-division/
https://www.studytonight.com/dbms/division-operator.php


Division: Example of use
o Romutstyr (room equipment) 

show the equipment that 
exists

o Aktivitetskrav (for activity)
shows the kind of equipment 
needed for a given activity



Room that covers all equipment needs 
o Let R = Romutstyr (room equipment) and A = Aktivitetskrav (for 

activity)
o Room that covers all equipment requirements for MUS1225-

hørelære (hearing training): 
R div 𝜋utstyr(𝜎aktivitet = MUS1225-hørelære(A))

o Room that covers all equipment requirements for MUS1225, 
i.e., both hørelære (hearing training) and musikkprosuksjon
(music production): 

R div 𝜋utstyr(𝜎aktivitet LIKE ´MUS1225%´(A))



Result of the division



Outer Join
o Outer join is used when you want to preserve dangling tuples 

from natural join (Not expressible via other operators!)
o R⋈OS, outer join: 

o Start with R⋈S
o Add dangling tuples from R and S
o Missing attribute values are filled in with ⊥ (nil)

o R⋈OLS Left outer join: Only dangling tuples from R are added
o R⋈ORS Right outer join : Only dangling tuples from S are added



Outer Join Example
https://www.w3resource.com/sql/joins/perform-an-outer-join.php

SELECT company.company_name,
company.company_id, 
foods.company_id, 
foods.item_name, 
foods.item_unit
FROM company, foods 
WHERE company.company_id = 
foods.company_id(+);

foodscompany

https://www.w3resource.com/sql/joins/perform-an-outer-join.php


Extended projection

o 𝜋L(R), extended: L is a list where each item can be
i. A simple attribute in R
ii. An expression A→ B, where A is an attribute in R and B 

is an unused attribute name, renames A in R to B in the 
result relation (Expressible in basic algebra)

iii. An expression E→ B, where E is an expression built up of 
attributes in R, constants, arithmetic operators and 
string operators, and B is an unused attribute name (Not
Expressible)



Extended projection – The result relation

The result relation 𝜋L(R) is obtained from R as follows:
o Consider each tuple in R separately
o Substitute the tuple´s values for the attribute names in L 

and calculate the expressions in L
o The result relation is a set with as many attributes as items 

in L, and with names as given in L



Bags
o Real-life DBMSs use Bag (multiset) and not Set as

the basic type for realizing relations
o Set (D):

Each element in D occurs at most once. The order of the elements does 
not matter
{a, b, c} = {a, c, b} = {a, a, b, c} = {c, a, b, a}

o Bag (D):
Each element in D can occur more than once. The order of the 
elements does not matter
{a, b, c} = {a, c, b} ≠ {a, a, b, c} = {c, a, b, a}

o Every set is a bag



Why Bag and not Set?

o Bag provides more efficient union and projection 
calculations than Set

o In aggregation, we need Bag functionality

o But: Bag is more space consuming than Set



Relational operators on bags
o The definitions become slightly different

o Not all algebraic laws that hold for sets hold for bags
Example: (R ∪ S) – T = (R – T) ∪ (S – T) for sets but not for bags

o When we later in the lectures mention «bag relation», we mean a table as 
before except that tuples may repeat  (are a bag)

o We need another relational algebra for bags

o In fact, DBMSs usually allow only sets as stored tables, but bags as query 
answers (we can ignore this for further exposition)



Bag Union

o Let R and S be bag relations

If t is a tuple that occurs n times in R and m times in S, then 
t occurs n + m times in the bag relation R ∪ S

o Example of typical bag union: 
{a, a, b, c, c} ∪ {a, c, c, c, d} = {a, a, a, b, c, c, c, c, c, d} 



Bag Intersection

o Let R and S be bag relations

If t is a tuple that occurs n times in R and m times in S, then 
t occurs min(n, m) times in the bag relation R∩S 

o Example of typical Bag intersection: 
{a, a, b, c, c} ∩ {a, c, c, c, d} = {a, c, c} 



Bag Difference

o Let R and S be bag relations

If t is a tuple that occurs n times in R and m times in S, then 
t occurs max (0, n-m) times in the bag relation R−S 

o Example of typical Bag difference: 
{a, a, b, c, c} – {a, c, c, c, d} = {a, b} 



Bag Selection

o If R is a bag relation, then 𝜎𝜃(R) is a bag relation obtained 
from R by applying 𝜃 to each tuple individually and selecting 
the tuples in R that satisfy the condition 𝜃



Bag Projection

o If R is a bag relation and L is a (non-empty) list of attributes, 
then 𝜋L(R) is the bag relation obtained from R by selecting
the columns of the attributes in L

o 𝜋L(R) has as many tuples as R



Cartesian Product of Bags
o R × S is the bag relation obtained from the bag relations R and S 

by forming all possible concatenations of one tuple from R and 
one tuple from S

o If R has n tuples and S has m tuples, there will be nm tuples in 
R × S

o Contrary to some previous operations, this is a proper 
generalization of set Cartesian product (applied to sets gives a 
set)



Natural Join of Bags

o If R and S are bag relations, then R⋈S is the bag relation 
obtained by merging matching tuples in R and S individually

o Expressible via other operators as before



Theta-Join of Bags

o Direct generalization of natural join, as before

o If R and S are bag relations, the bag relation R⋈θS where θ
is a condition is formed as follows:

1. Calculate R⋈S (natural join)
2. Select the tuples that satisfy the condition 



Additional operators in bag relational 
algebra
o As before and omitted:
o Outer Join 
o Extended projection

o Duplicate elimination 
o Aggregation (with grouping) 

o Sorting (beyond bags)



Duplicate elimination

o 𝛿(R) removes multiple occurrences of tuples from the bag 
relation R 

o The result is a set



Aggregation operations

o Used on bags of atomic values for an attribute A
o Used in combination with the grouping operator



Standard aggregation operations #1
o COUNT (A):

o Counts the number of tuples in the relation with values in the 
column of A

o Tuples where A is NULL are not counted

o MIN (A), MAX (A):
o Selects the smallest / largest value in the column of A 

(The column must have at least one value)
o The domain of A must have an order relation
o For numeric values this is <
o Lexicographic arrangement is used for strings



Standard aggregation operations #2

o SUM(A):
o Sums all values in column A
o A´s domain must be numeric values

o AVG(A):
o Calculates the average of the values in column A 
o Assumes that the column has at least one value
o A´s domain must be numeric values



Grouping (with aggregation)
o Used when we want to apply an aggregation operator to groups of values
o Form: 𝛾L(R), where L is a list of items with all the items in the list different. The 

elements are in one of the following two forms:
o A

o A is an attribute in R
o A is called a grouping attribute 

o AGG (A) → AggRes
o AGG is an aggregation operator
o AggRes is an unused attribute name 
o A is called an aggregation attribute



The resulting relation after grouping
Given 𝛾L(R), the result relation is constructed as follows
1. Partition R in groups, one group for each collection of tuples 

that are equal in all grouping attributes in L
2. For each group, produce a tuple consisting of

i. The values of the grouping attributes in the group
ii. For each aggregation attribute in L, the aggregation over all 

the tuples in the group
The result relation gets as many attributes as there are elements in 
L, and attribute names as specified by L. The result instance 
contains one tuple per group.



Grouping and aggregation
use & example

SELECT MAX(mycount) FROM
(SELECT
agent_code, COUNT(agent_code) mycount
FROM orders
GROUP BY agent_code

);

𝛾MAX(mycount) -> mmc (𝛾agent_code, COUNT(agent_code) -> mycount (orders))



Sorting

o 𝜏L(R), where R is a relation and L a list of attributes 
A1, A2, ..., Ak, results in a list of tuples sorted first by A1, then 
by A2 internally in each batch of equal A1 values, etc.

o The attributes that are not included in the list are randomly 
arranged

o Result is a list, so the operation is meaningful only as a last, 
final operation on relations

o Beyond bag and set relational algebra!



Relations and rules of integrity

o We can express referential integrity, functional 
dependencies and multi-value dependencies - and also 
other classes of integrity rules - in relational algebra!



Examples of integrity rules in classical 
relational algebra
o If E is an expression in relational algebra, then E=∅ is an integrity rule 

that says that E does not have any tuples 
o If E1 and E2 are expressions in relational algebra, then 

E1 ⊆ E2 is an integrity rule that says that each tuple in E1 shall also be 
in E2

o Note that E1 ⊆ E2 and E1 – E2= ∅ are equivalent.
Also E = ∅ and E ⊆ ∅. Thus, only one of the forms above is sufficient

o Strictly speaking, ∅ is not a relational algebra expression. We could 
have written R – R instead (for an arbitrary relation R with same 
schema as E) 



Examples of integrity rules in classical 
relational algebra
o Referential integrity: ”A is foreign key for S”, where B is primary key in S: 
𝛿(𝜋A(R)) ⊆ 𝜋B(S) 

o FDs: ”A1 A2 ... An→B1 B2 ... Bm” in R: 
𝜎𝜃(𝜌R1(R)×𝜌R2(R))=∅

o where 𝜃 is the expression
R1.A1 = R2.A1 AND ... AND R1.An = R2.An AND                                                  

(R1.B1 ≠ R2.B1 OR ... OR R1.Bm ≠ R2.Bm) 
o Domain constraints: 
𝜎A≠’F’ AND A≠’M’(R) = ∅


