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Query Compilation: Two Parts
Part 1:
o Parsing and (translating to relational algebra)
o Logical query plans (expressed in relational algebra)
o Optimization (using algebraic laws) 

Part 2:
o Estimate the size/cost of the intermediary results
o Evaluate physical query plans



Materials to Read
o Part 8, Chapter 19 (and parts of 18) of the Book (Elmasri & Navathe, 

«Fundementals of Database Systems»)
o Parsing: not covered in the Book, can be read in any book on Compilers 

(or Wikipedia)
o NOTE: I do not follow any of them line by line
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PARSE

APPLY LAWS

ESTIMATE RESULT SIZE

CONSTRUCT PHYSICAL PLANS

CONVERT

EXECUTE

PICK THE BEST

ESTIMATE COSTS

SQL

Statistics

Parse tree

Logical query plan (LQP)

Improved LQPs

{ (LQP1, Size1), … }

Physical query plans (PQPs)

{ (PQP1, Size1), … }

PQPi

RESULT



Parsing 
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The goal is to convert an SQL-query to a parse tree



o Each node in a parse tree is 
o an atom (primitive) – i.e., a lexical element like a keyword, 

name, constant, parentheses or operators ... (leaf node) 
o a syntactic category – part of the query ... (inner node) 

Parsing



o Query: 
o <Query> ::= <SFW> 
o <Query> ::= ( <Query> ) 
o <Query> ::= ... (e.g., rules with UNION)

o Rule 2 is typically used in sub-queries

Simple Grammar #1



o Select-From-Where: 
o <SFW> ::= SELECT <SelList> FROM <FromList> WHERE <Condition> [...]
o [...] includes productions for GROUP BY, HAVING, ORDER BY, etc.

o Select-list: 
o <SelList> ::= <Attribute> 
o <SelList> ::= <Attribute>, <SelList> 
o <SelList> ::= ... (e.g., rules for expressions and aggregate functions)

o From-list: 
o <FromList> ::= <Relation> 
o <FromList> ::= <Relation>, <FromList> 
o <FromList> ::= ... (e.g., rules for aliasing and expressions R JOIN S)

Simple Grammar #2



o Condition: 
o <Condition> ::= <Condition> AND <Condition> 
o <Condition> ::= <Tuple> IN <Query> 
o <Condition> ::= <Attribute> = <Attribute> 
o <Condition> ::= <Attribute> LIKE <Pattern> 
o <Condition> ::= ... (e.g., rules for OR, NOT, comparison)

o Tuple: 
o <Tuple> ::= <Attribute> 
o <Tuple> ::= ... (e.g., rules for tuples with multiple attributes)

o Basic syntactic categories like <Relation>, <Attribute>, <Pattern> etc. do not have own
rules, but are replaced with a name or a text string

Simple Grammar #3



Find films with actors born in 1960: 

SELECT title FROM StarsIn WHERE starName IN
( SELECT name

FROM MovieStar
WHERE birthDate LIKE ‘%1960’ 

); 

Simple Grammar: Example



Simple Grammar: Example
SELECT title FROM StarsIn WHERE starName IN 
( SELECT name

FROM MovieStar
WHERE birthDate LIKE ‘%1960’ 

); 



o Checks that the query are syntactically correct (i.e., parses)
o Checks that the query are semantically correct: 
o relations – each relation in FROM must be a relation or a 

view in the schema the query is executed
Each view must be replaced by a parsing tree. 

o attributes – each attribute must exist in one of the
relations within the scope of the query

o types – all usage of attributes must be in accordance with
the given types

Pre-processor



Generating the logical query plan
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SELECT <SelList> FROM <FromList> WHERE <Condition> 

o Replace the relations in <FromList> with the product ( × ) of
all the relations

o This product is the argument for the selection ( 𝜎C ) where C 
is the <Condition>

o This selection is the argument for the projection ( 𝜋L ) where
L is the list of attributes in <SelList>

Converting Select-From-Where (SFW)



SELECT name FROM MovieStar WHERE birthDate LIKE ‘%1960’

SFW conversion example Product ( × ) of all relations in <FromList>
Selection ( 𝜎C ) with C as <Condition>
Projection ( 𝜋L ) with L as attributes in <SelList>

𝜋name

𝜎birthDate LIKE ´%1960´

×MovieStar



Simple Grammar: Example
SELECT title FROM StarsIn WHERE starName IN 
( SELECT name

FROM MovieStar
WHERE birthDate LIKE ‘%1960’ 

); 



o For subqueries, 
we use an auxiliary operator, 
the two-argument selection 𝜎(R, T), 
where T represents the subquery
(i.e., that corresponds to <Condition>)

o Further processing depends on the type 
of the subquery

Converting sub-queries

T
(represents)

(subquery)

(correponds to)

SELECT title FROM StarsIn WHERE starName IN 
( SELECT name

FROM MovieStar
WHERE birthDate LIKE ‘%1960’ 

); 



Let us look at t IN S as one example:
o Replace <Condition> with the tree for S 
o If S can contain duplicates, we need a 𝛿

operator above S
o Replace two-argument selection with one-

argument selection 𝜎C , where C compares
each component in t with the corresponding
attribute in S

o Let 𝜎C get the R × S as argument

Converting sub-queries
Example



Converting sub-queries
Example
o Product of the relations in <FromList>
o Select based upon <Condition>, 

represented by two-argument selection
o Project on the attributes in <SelList>
o Replace (temporarily) subquery with its

parse tree

SELECT title FROM StarsIn WHERE starName IN 
( SELECT name

FROM MovieStar
WHERE birthDate LIKE ‘%1960’ 

); 



Converting sub-queries
Example
o Product of the relations in <FromList>
o Select based upon <Condition>, 

represented by two-argument selection
o Project on the attributes in <SelList>
o Replace (temporarily) subquery with its

parse tree

SELECT title FROM StarsIn WHERE starName IN 
( SELECT name

FROM MovieStar
WHERE birthDate LIKE ‘%1960’ 

); 



Converting sub-queries
Example
o Replace <Condition> with the subquery tree
o Replace two-argument selection with one-argument selection 𝜎C , where C is starName = name
o Let 𝜎C operate on the product of StarsIn and MovieStar as an argument

SELECT title FROM StarsIn WHERE starName IN 
( SELECT name

FROM MovieStar
WHERE birthDate LIKE ‘%1960’ 

); 



o Sub-query conversion becomes more complicated if the
sub-query is related to values defined outside the scope of
the sub-query

o We must then create a relation with extra attributes for 
comparison with the external attributes

o The extra attributes are later removed using projections
o In addition, all duplicate tuples must be removed

Converting sub-queries – some notes



o These parse trees are converted into «execution plans» in 
several stages

o Logical plan: Relational algebra expressions
o Physical plan: Actual algorithms

o These are supposed to be two distinct stages, but, the two
stages often overlap in reality

Logical and Physical query plans



Algebraic laws for improving logical query 
plans
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Logical query plans – Example

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´



Logical query plans – Strategy 1

𝜋

𝜎

×

R S

1. Take the cross product of R and S
2. Select tuples
3. Project the attributes

𝐵, 𝐶, 𝑌

𝑊 = 𝑋 ∧ 𝐴 = 3 ∧ 𝑍 = ´𝑎´𝜋 ( 𝜎 ( R × S ) )
𝐵, 𝐶, 𝑌 𝑊 = 𝑋 ∧ 𝐴 = 3 ∧ 𝑍 = ´𝑎´

NOTE: 
# attributes = #R-attributes + #S-attributes = 23 + 3 = 26
# tuples = #R-tuples x #S-tuples = 9 x 9 = 81

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´



Logical query plans – Strategy 1

RESULT

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´

𝜋 ( 𝜎 ( R × S ) )
𝐵, 𝐶, 𝑌 𝑊 = 𝑋 ∧ 𝐴 = 3 ∧ 𝑍 = ´𝑎´



Logical query plans – Strategy 2
1. Select tuples
2. Do an equi-join 
3. Project the attributes

𝜋 ( ( 𝜎 ( R ) ) ⋈ ( 𝜎 ( S ) )
𝐵, 𝐶, 𝑌 𝐴 = 3 𝑊 = 𝑋 𝑍 = ´𝑎´

R S

𝜋𝐵, 𝐶, 𝑌

⋈𝑊 = 𝑋

𝜎𝐴 = 3 𝜎𝑍 = ´𝑎´

𝜋 ( 𝜎 ( R × S ) )
𝑊 = 𝑋 ∧ 𝐴 = 3 ∧ 𝑍 = ´𝑎´𝐵, 𝐶, 𝑌

Strategy 1 for comparison:

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´



Logical query plans – Strategy 2
1. Select tuples 
2. Do an equi-join 
3. Project the attributes

𝜋 ( ( 𝜎 ( R ) ) ⋈ ( 𝜎 ( S ) )
𝐵, 𝐶, 𝑌 𝐴 = 3 𝑊 = 𝑋 𝑍 = ´𝑎´

⋈

RESULT

𝜋

𝜎

𝜎

1 123



Logical query plans – Strategy 3
USE INDICES!
1. Use the index on R.A to select tuples where R.A = 3
2. Use the index on S.X to select tuples where S.X = R.W
3. Select the S-tuples where S.Z = ´a´
4. Join the tuples from R and S that match
5. Project the attributes B, C and Y

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´

1. Use the index on R.A to select tuples where R.A = 3

A B C … W

3 r 8 … 7

3 t 5 … 9

A B C … W

1 z 1 … 4

2 c 6 … 2

3 r 8 … 7

4 n 9 … 4

2 j 0 … 3

3 t 5 … 9

7 e 3 … 3

8 f 5 … 8

1 h 7 … 5

R

r1

IR.A



Logical query plans – Strategy 3
USE INDICES!
1. Use the index on R.A to select tuples where R.A = 3
2. Use the index on S.X to select tuples where S.X = R.W
3. Select the S-tuples where S.Z = ´a´
4. Join the tuples from R and S that match
5. Project the attributes B, C and Y

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´

2. Use the index on S.X to select tuples where S.X = R.W

A B C … W

3 r 8 … 7

3 t 5 … 9

X Y Z

1 a a

2 f c

3 t b

4 b b

7 k a

6 e a

7 g c

8 i b

9 e c

X Y Z

7 k a

7 g c

9 e c

r1S

s1

IS.X



Logical query plans – Strategy 3
USE INDICES!
1. Use the index on R.A to select tuples where R.A = 3
2. Use the index on S.X to select tuples where S.X = R.W
3. Select the S-tuples where S.Z = ´a´
4. Join the tuples from R and S that match
5. Project the attributes B, C and Y.

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´

3. Select the S-tuples where S.Z = ´a´

X Y Z

7 k a

7 g c

9 e c

s1
X Y Z

7 k a

s2



Logical query plans – Strategy 3
USE INDICES!
1. Use the index on R.A to select tuples where R.A = 3
2. Use the index on S.X to select tuples where S.X = R.W
3. Select the S-tuples where S.Z = ´a´
4. Join the tuples from R and S that match
5. Project the attributes B, C and Y.

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´

4. Join the tuples from R and S that match

X Y Z

7 k a

s2
A B C … W

3 r 8 … 7

3 t 5 … 9

r1
A B C … W X Y Z

3 r 8 … 7 7 k a

B C Y

r 8 k

Result

5. Project the attributes B, C and Y



Strategy 3 Summary

A B C … W

1 z 1 … 4

2 c 6 … 2

3 r 8 … 7

4 n 9 … 4

2 j 0 … 3

3 t 5 … 9

7 e 3 … 3

8 f 5 … 8

1 h 7 … 5

R

IR.A

X Y Z

1 a a

2 f c

3 t b

4 b b

7 k a

6 e a

7 g c

8 i b

9 e c

S

IS.X

A B C … W

3 r 8 … 7

3 t 5 … 9

X Y Z

7 k a

7 g c

9 e c

X Y Z

7 k a

A B C … W X Y Z

3 r 8 … 7 7 k a

B C Y

r 8 k

Result

1

2

3

4

5

1. Use the index on R.A to select tuples where R.A = 3
2. Use the index on S.X to select tuples where S.X = R.W
3. Select the S-tuples where S.Z = ´a´
4. Join the tuples from R and S that match
5. Project the attributes B, C and Y



Algebraic laws for improving logical query 
plans
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o An operator 𝜔 is commutative if the order of the arguments 
does not matter:

x 𝜔 y = y 𝜔 x

o An operator is associative if the order of applications has no
significance:

x 𝜔 (y 𝜔 z) = (x 𝜔 y) 𝜔 z

Commutativity and associativity



o Natural join and product are both commutative and associative:
o R⋈S = S⋈R and R⋈ (S ⋈ T) = ( R ⋈ S) ⋈ T
o R × S = S × R and R × (S × T) = (R × S) × T

o What about theta-join?
o Commutative: R ⋈c S = S ⋈c R
o But not always associative (formally)

o Example: Given the relationships R (a, b), S (b’, c), T (c, d), we
have (R ⋈b<b’ S) ⋈a<d T ≠ R ⋈b<b’ (S⋈a<dT)

Algebraic laws for product and join



Does the order of joins (incluing products) have an effect on efficiency?
o If only one of the relations fits into the memory, this should be the first 

argument -- a one-pass operation that reduces the number of disk IOs
o If the product or join of two of the relations result in a temporary relation that

fits into the memory, these joins should be taken first to save both memory
space and disk IO

o Temporary relations (intermediate results) should be as small as possible to save 
memory space

o If we can estimate (using statistics) the number of tuples to be joined, we can
save many operations by joining the relations that give the fewest tuples first

Order of joins



o Union and intersection are commutative and associative:
o R ∪ S = S ∪ R R ∪ (S ∪ T) = (R ∪ S) ∪ T 
o R ∩ S = S ∩ R R ∩ (S ∩ T) = (R ∩ S) ∩ T

o Union distributes over intersection:
o R ∪ (S ∩ T) = (R ∪ S) ∩ (R ∪ T)

o Intersection distributes over union only for sets(!):
o R ∩S (S ∪S T) = (R ∩S S) ∪S (R ∩S T)
o R ∩B (S ∪B T) ≠ (R ∩B S) ∪B (R ∩B T)

Algebraic laws for union and intersection



o Selection is a very important operator for optimization
o Reduces the number of tuples (the size of the relationship)
o General rule: push selections as far down the tree as possible

o Conditions with AND and OR can be split:
o 𝜎a AND b (R) = 𝜎a (𝜎b (R) )
o 𝜎a OR b (R) = ( 𝜎a (R) ) ∪S ( 𝜎b (R) ), where R is a set and ∪S is a set union

o Splitting OR works only when R is a set, but if R is a bag and both
conditions are met, bag union will include a tuple twice - once in each
selection

o The order of subsequent selections has no bearing on the resulting set:
o 𝜎a ( 𝜎b (R) ) = 𝜎b ( 𝜎a (R) )

Algebraic laws for selection



o When selection is pushed down the tree, then ...
o It must be pushed to both arguments for

o Union: 𝜎a(R ∪ S) = 𝜎a(R) ∪ 𝜎a(S)
o It must be pushed to the first argument (optionally the second argument too) for

o Difference: 𝜎a(R − S) = 𝜎a(R) − S = 𝜎a(R) − 𝜎a(S)
o It can be pushed to one or both arguments for

o Intersection: 𝜎a(R ∩ S) = 𝜎a(R) ∩ 𝜎a(S) = R ∩ 𝜎a(S) = 𝜎a(R) ∩ S 
o Join: 𝜎a(R⋈S) = 𝜎a(R) ⋈ 𝜎a(S) = R ⋈ 𝜎a(S) = 𝜎a(R) ⋈ S      (only if make sence!)
o Theta join: 𝜎a(R ⋈b S) = 𝜎a(R) ⋈b 𝜎a(S) = R ⋈b 𝜎a(S) = 𝜎a(R) ⋈b S          (same!)
o Cartesian product: similarly, but be careful with renaming

Pushing selection



Assume that each attribute is 1 byte 

𝝈A = 2 (R ⋈ S)
o join: compare 4 * 4 items = 16 operations

store (cache) the relation: R ⋈ S yields
((23 + 3) x 2) = 52 bytes

o selection: check each tuple: 2 operations

𝝈A = 2 (R) ⋈ S
o selection: check each tuple in R: 4 operations

store (cache) the relation: 𝜎A = 2(R) gives 24 
bytes

o join: compare 1 x 4 items = 4 operations

Pushing selection – Example
R S

R ⋈ S

𝝈A = 2 (R)



Sometimes it is useful to push selection the other way, ie upwards in the tree, using
the law 𝜎a(R ⋈ S) = R ⋈ 𝜎a(S) «backwards».

Pushing selection upwards in the tree

EXAMPLE: StarsIn(title, year, starName); Movies(title, year, studio ...)
CREATE VIEW Movies96 AS 

SELECT * FROM Movies WHERE year = 1996; 
SELECT starName, studio FROM Movies96 NATURAL JOIN StarsIn; 

REMEMBER Join: 𝜎a(R⋈S) = 𝜎a(R) ⋈ 𝜎a(S) = R ⋈ 𝜎a(S) = 𝜎a(R) ⋈ S 



Projection can be pushed through join and cross product (i.e., new projections can
be introduced) as long as we do not remove attributes used further up the tree:
o 𝜋L(R ⋈ S) = 𝜋L(𝜋M(R) ⋈ 𝜋N(S)) if

o M contains the join attributes and those of L that are in R
o N contains the join attributes and those of L that are in S

o 𝜋L(R ⋈C S) = 𝜋L(𝜋M(R) ⋈C 𝜋N(S)) if
o M contains the join attributes and the attributes in C and L that are in R
o N contains the join attributes and the attributes in C and L that are in S

o 𝜋L(R × S) = 𝜋M(R) × 𝜋N(S) if
o M contains the attributes of L that are in R (appropriately renamed)
o N contains the attributes of L that are in S (appropriately renamed)

Algebraic laws for projection #1



Projection can be pushed through bag union:
𝜋L(R ∪B S) = 𝜋L(R) ∪B 𝜋L(S))

Note: The same rule does not apply to set union, set
intersection, bag intersection, set difference or bag difference
because projection can change the multiplicity of the tuples:
o R being a set does not necessarily mean that 𝜋L(R) is a set
o If R is a bag and a tuple t occurs k times in R, then the

projection of t on L may occur more than k times in 𝜋L(R).

Algebraic laws for projection #2



Projection can be pushed through selection (new projections 
are introduced) as long as we do not remove attributes used 
further up the tree:

o 𝜋L( 𝜎C(R) ) = 𝜋L( 𝜎C(𝜋M(R)) ) 
if M contains the attributes in C and L

o NOTE: If R has an index on some of the attributes in 
selection condition C, then this index will not be possible to 
use during selection if we first do a projection on M.

Algebraic laws for projection #3



Two important laws that follow from the definition of join: 

o 𝜎C(R ⋈ S) = R ⋈C S

o 𝜋L(𝜎C(R × S)) = R ⋈ S if
o C compares (via AND) each pair of tuples from R and S 

with the same name
o L is all attributes of R and S appropriately renamed and 

without repetitions

Algebraic laws for join, product, 
selection and projection



o 𝜋L(𝜎R.a = S.a (R × S)) vs. R ⋈ S 
o R(a,b,c,d,e,..., k), #Tuples(R) = 10,000, S(a,l,m,n,o,...,z), #Tuples(S) = 100 
o Each attribute takes 1 byte, a is a candidate (e.g., primary) key in both R and S 
o Assumes that each tuple in S find a single match in R, i.e., 100 tuples in the result 

o 𝜋L(𝜎C(R × S)): 
o Cross product:

combine 10,000 * 100 items = 1,000,000 operations 
temp storage, relation R × S = 1,000,000 * (11 + 16) = 27,000,000 bytes

o Selection:
Check each tuple: 1,000,000 operations 
temp storage, relation 𝜎R.a = S.a (R × S) = 100 * 27 = 2700 bytes 

o Projection: 
Check each tuple: 100 operations

o R⋈S: 
o join: check 10,000 * 100 elements = 1,000,000 operations

Examples



Duplication elimination can reduce the size of temporary relations by pushing 
through

o Cartesian product: 𝛿(R × S) = 𝛿(R) × 𝛿(S)
o Join: 𝛿(R⋈S) = 𝛿(R) ⋈ 𝛿(S)
o Theta join: 𝛿(R ⋈C S) = 𝛿(R) ⋈C 𝛿(S)
o Selection: 𝛿(𝜎C(R)) = 𝜎C(𝛿(R))
o Bag intersection: 𝛿(R ∩B S) = 𝛿(R) ∩B 𝛿(S) = 𝛿(R) ∩B S = R ∩B 𝛿(S)

o Note: duplicate elimination cannot be pushed through
o Bag union and difference
o Projection

Algebraic laws for duplicate elimination



This one is easy: No general rules!

Algebraic laws for grouping operation



The most common LQP optimizations are:
o Push selections as far down as possible
o If the selection condition consists of several parts (AND or OR), split 

into multiple selections and push each one as far down the tree as 
possible

o Push projections as far down as possible
o Combine selections and Cartesian products to an appropriate join
o Duplicate eliminations can sometimes be removed
o But don't ruin indexing: Pushing projection past a selection can ruin the 

use of indexes in the selection!

Improving (optimizing) logical query plans



Query Compilation (in two parts)
Part 1 (done in part 1):
o Parsing 
o Logical query plans (expressed in relational algebra)
o Optimization (using algebraic laws) 

Part 2 (now in part 2):
o Estimate the size/cost of the intermediary results
o (Construct physical query plans)



OVERVIEW: Our focus in part 2

PARSE

APPLY LAWS

ESTIMATE RESULT SIZE

CONSTRUCT PHYSICAL PLANS

CONVERT

EXECUTE

PICK THE BEST

ESTIMATE COSTS

SQL

Statistics

Parse tree

Logical query plan (LQP)

Improved LQPs

{ (LQP1, Size1), … }

Physical query plans (PQPs)

{ (PQP1, Size1), … }

PQPi

RESULT



OVERVIEW

o To assess both logical and physical plans, we need some way
to calculate cost

o These can not be calculated exactly (depending on the data 
we have), so the DBMS estimates the costs

o We want a cost function C that can be calculated locally: 
C(R ⋈c S) should be possible to calculate from C(R) and C(S)

o What kind of costs exist? What do we mean by cost? What
should we choose as cost?



Costs: IO!

o Disk IO: Cost of reading
o A given page (random read)
o A sequence of pages (sequential read)

o Sequence is usually cheaper
o Relevant to choose from 
o Table scan
o Index scan



Costs: Number of tuples (and size in bytes)

o Number of tuples to process in one operation
o Relevant for everything, including disk operations
o We will look at how this is estimated

o Size of each tuple in relation in bytes and size of the overall 
relation are together more fine-grained



Theme now: Estimating result size

PARSE

APPLY LAWS

ESTIMATE RESULT SIZE

CONSTRUCT PHYSICAL PLANS
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EXECUTE
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SQL
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Parse tree

Logical query plan (LQP)

Improved LQPs

{ (LQP1, Size1), … }

Physical query plans (PQPs)

{ (PQP1, Size1), … }

PQPi

RESULT



Estimating size
o Ideally, we want rules that are
o Accurate: a small error can result in the selection of an 

inappropriate algorithm in the physical query plan
o Easy to calculate: minimal extra cost to make the choice
o Logically consistent: not dependent on a specific

algorithm for the operator
o No universal algorithm exists
o Fortunately, approximate estimates also help choose a good

physical query plan



Notation

o TupR (or Tup(R)) is the number of tuples in R
o this is an estimate, so may be not integer

o TSizeR is the size of a tuple in R in bytes
o SizeR is the size of R in bytes: SizeR = TupR * TSizeR

o ValR(A) is the number of different values for
attribute A in R

o Average number of tuples with equal A values: TupR / ValR(A)



Size of a projection

o The size of a projection 𝜋L(R) can be calculated accurately:

o One result tuple for each argument tuple
Tup(𝜋A, B, ...(R)) = TupR

o Changes only the size of each tuple:
Size(𝜋A, B, ...(R)) = TupR * (TSizeR.A + TSizeR.B + ...)

o Val(𝜋A, B, ...(R), A) = Val(R, A)

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of projection: Example
R A: 4 byte integer

B: 20 byte text string
C: 4 byte date (year) 
D: 30 byte text string

Size(𝜋A, B, ...(R)) = TupR * (TSizeA + TSizeB + ...) 
SizeR = ... 
Size(𝜋A(R)) = ... 
Size(𝜋&, (, ), *, &+,- →/ (R)) = ...

ValR(A) = 5 
ValR(B) = 2 
ValR(C) = 4 
ValR(D) = 3 

TupR = 5
TSizeR = 58 

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of a selection
o A selection 𝜎Cond(R) reduces the number of tuples, but the size

of each tuple remains unchanged
o Size(𝜎Cond(R)) = Tup(𝜎Cond(R)) * TSizeR

o Estimating the number of tuples depends upon
o the selection condition Cond
o distribution of values for the relevant attributes:
o we assume a uniform distribution where we use ValR(A) to 

estimate the number of tuples in the result (naive)
o DBMSs use more advanced statistics (e.g., histograms)

o Estimation of the number of values Val can be done similarly

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of a selection (cont.)
For attribute A and constant c:
o Similarity, 𝜎A = c (R):

Use the selectivity factor 1/ValR(A)
Tup(𝜎A = c (R)) = TupR / ValR(A)

o Inequality, 𝜎A ≠ c (R):
Use the selectivity factor 1 - 1/ValR(A)
Tup(𝜎A ≠ c (R)) = TupR * (1 - 1/ValR(A))

o Interval, 𝜎A < c (R): ...
o Equality of two attributes, 𝜎A = B (R): ...

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of a selection: Example
A: 4 byte integer
B: 20 byte text string
C: 4 byte date (year) 
D: 30 byte text string

ValR(A) = 5 
ValR(B) = 2 
ValR(C) = 4 
ValR(D) = 3 

TupR = 5
SizeR = 58 

Tup(𝜎A = c(R)) = TupR / ValR(A) 
Tup(𝜎A = 3(R)) = ...
Tup(𝜎B = ‘cat’(R)) = ... 

Tup(𝜎! " #(R)) = TupR * (1 – 1/ValR (A)) 
Tup(𝜎$ " ´#&'´(R)) = ... 

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of a selection 
with AND and NOT
o Multi-condition selection with AND, 𝜎Cond1 AND Cond2 AND ...(R):

o estimate the size using one selectivity factor for each condition:
o 1 – 1 / ValR (A) for ≠ on attribute A 
o 1 / ValR (A) for = on attribute A
o ...

o Tup (𝜎 Cond1 AND Cond2 AND ... (R)) = TupR * factorCond1 * factorCond2 * ...

o Selection with NOT, such as 𝜎NOT Cond (R):
o Use the selectivity factor 1 – Tup(𝜎Cond (R)) / TupR
o Tup (𝜎NOT Cond (R)) = TupR - Tup (𝜎NOT Cond (R))

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Selection with AND and NOT: 
Example

A: 4 byte integer
B: 20 byte text string
C: 4 byte date (year) 
D: 30 byte text string

ValR(A) = 5 
ValR(B) = 2 
ValR(C) = 4 
ValR(D) = 3 

TupR = 5
SizeR = 58 

Tup(𝜎Cond1 AND Cond2 AND ... (R)) = TupR * factorCond1 * factorCond2 * ...
Tup(𝜎C = 1999 AND B ≠ ´𝑐𝑎𝑡´ (R)) = ...
Tup(𝜎NOT Cond (R)) = TupR - Tup (𝜎Cond (R))
Tup(𝜎NOT A = 3 (R)) = ...

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of a selection with OR
o Multiple condition selection with OR, 𝜎Cond1 OR Cond2 OR ...(R)

o Option 1:
Tup (𝜎 Cond1 OR Cond2 OR ...(R)) = Tup (𝜎Cond1 (R)) + Tup (𝜎Cond2 (R)) +... 

o Option 2:
Tup (𝜎Cond1 OR Cond2 OR ...(R)) = min(TupR, (Tup(𝜎Cond1(R)) + Tup(𝜎Cond2(R)) + ...))

o Option 3:
o Assume that m1 tuples satisfy the first condition, m2 satisfy the second

condition, ...
o 1 - mi / TupR is the proportion of tuples that do not satisfy the i-th

condition
o Tup (𝜎A OR B OR ...(R)) = TupR * [1 – (1 – m1 / TupR) * (1 – m2 / TupR) * ...]

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of a PRODUCT

o The size of a Cartesian product R × S can be calculated
accurately:

o One tuple for each possible combination of the tuples in 
relations R and S: Tup (R × S) = TupR * TupS

o The size of each new tuple is the sum of the size of each
of the original tuples: TSize (R × S) = TSizeR + TSizeS

o Size (R × S) = Tup (R × S) * TSize (R × S) = TupR * TupS * 
(TSizeR + TSizeS)

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of a NATURAL JOIN
o The size of natural join R (X, A) ⋈ S (A, Y) depends on how

the values of the join attribute A is distributed between
relations R (X, A) and S (A, Y):

o Disjoint set of A values - empty result: Tup (R ⋈ S) = 0
o A is a foreign key from R to S -- each tuple in R matches one

tuple in S: Tup (R ⋈ S) = TupR
o Almost all the R and S tuples have the same A value --

combine all the tuples in each relation:                                  
Tup (R ⋈ S) = TupR * TupS

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of a NATURAL JOIN (cont.)

Assumptions:
o Inclusion of values: If ValR(A) ≤ ValS(A), then assume that
𝛿(𝜋A(R)) ⊆ 𝛿(𝜋A(S)), i.e., each A value in R has a match in S

o Value conservation: Assume that the value of non-join
attributes is the same before and after join, i.e., 
Val(R ⋈ S, B) = ValR(B), where B is an attribute in R, but not 
in S

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of a NATURAL JOIN (cont.)
The number of tuples in R (X, A) ⋈ S (A, Y) can now be estimated as 
follows:
o If ValR(A) ≤ ValS(A), each tuple in R will match approximately

TupS/ValS(A) tuples in S: Tup (R ⋈ S) = TupR * TupS/ValS(A)
o Similarly, if ValS(A) ≤ ValR(A): Tup (R ⋈ S) = TupR * TupS/ValR(A) 
o General: Tup(R ⋈ S) = TupR * TupS / max (ValR(A), ValS(A))
o Val(R ⋈ S, B) = ValR(B) for B an attribute in X
o Val(R ⋈ S, C) = ValS(C) for C an attribute in Y
o Val(R ⋈ S, A) = min (ValR(A), ValS(A)) for the join-attribute A

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of a NATURAL JOIN:
Example

Tup(A ⋈ B) = ...
Tup(A ⋈ B ⋈ C) = ... 

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of a NATURAL JOIN (cont.)
o If there is more than one join attribute, R (X, A1, A2, ...) ⋈ S (A1, A2, ..., Y), 

we get:
Tup (R ⋈ S) = (TupR ∗ TupS)

(max (ValR(A1), ValS(A1)) ∗ max (ValR (A2), ValS(A2)) ∗ ...
for each Ai attribute common to R and S

o For natural join between multiple relationships R1 ⋈ R2 ⋈ R3 ⋈ ... ⋈ Rn

o Start with maximum number of tuples
Tup(R1) * Tup (R2) * Tup (R3) * ... * Tup (Rn)

o for each attribute A that occurs in more than one relationship, divide by 
all except the smallest Val(Ri, A)

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of a EQUI-JOIN and THETA-JOIN

o The size of the equi-join is calculated as a natural join

o Calculate the size of theta-join R ⋈Cond S by 
calculating the size of 𝜎Cond(R ⋈ S)



Size of a UNION
Depends on whether we use the set or bag version:
o Bag:

The result is exactly equal to the sum of tuples in the arguments:
Tup (R ∪b S) = TupR + TupS

o Set:
o As for bags if relationships are disjointed
o Number of tuples in the largest relation if the smallest is a subset

of it
o Usually somewhere between these. We can use the average, for 

example: Tup(R ∪s S) = (TupR + TupS) / 2, where S is the smallest
relationship

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of INTERSECTION

o Number of tuples in an intersection R∩S is
o 0 if the relationships are disjointed
o min(TupR, TupS) if one relationship is a subset of the other
o Usually somewhere in between, for example, can use the

average:
min(TupR, TupS) / 2

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of DIFFERENCE

o Number of tuples in a difference R – S is
- TupR if the relationships are disjointed
- TupR -TupS if all tuples in S is also in in R
- Usually somewhere in between. We can use the average, 
for example: (TupR - TupS) / 2

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of DUPLICATE ELIMINATION
o The number of distinct tuples as a result of a duplicate elimination
𝛿(R) is
o 1 if all the tuples are the same
o TupR if all the tuples are different

o An approach:
o Given ValR(Ai) for all n attributes, the maximum number of different 

tuples will be ValR(A1) * ValR(A2) * ... * ValR(An)
o Let the estimated number of tuples be the least of this number and 

TupR/2, i.e., min (ValR (A1) * ValR (A2) * ... * ValR (An), TupR/2)

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Size of GROUPING

o Grouping is similar to duplicate elimination:

Looks only at the grouping attributes A1, A2, ... Am

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Comparing Logical Query Plans
o We compare different query plans for a given query using the size of

temporary relations
o Estimate the result of each operator in the questionnaire
o Add costs to the tree
o The cost of the plan is equal to the sum of all the costs in the tree, 

except for
o the root – which is for the end result
o the leaf nodes – data stored on disk



Comparing Logical Query Plans:
Example
StarsIn(title, year, starName) 
MovieStar(name, address, gender, birthDate) 

SELECT title FROM StarsIn
WHERE starName IN ( 

SELECT name FROM MovieStar
WHERE birthDate LIKE ‘%1960’); 

Statistics: 
Tup(StarsIn) = 10,000 

Val(StarsIn, starName) = 500 
TSize(StarsIn) = 80 

Tup(MovieStar) = 1,000 
Val(MovieStar, name) = 1,000 
Val(MovieStar, birthDate) = 50
TSize(MovieStar) = 100 

A1

A4

A3

A2

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes



Comparing Logical Query Plans - Example
Statistics: 
Tup(StarsIn) = 10,000 

Val(StarsIn, starName) = 500 
TSize(StarsIn) = 80 

Tup(MovieStar) = 1,000 
Val(MovieStar, name) = 1,000 
Val(MovieStar, birthDate) = 50 
TSize(MovieStar) = 100 

A1 = 𝜎birthDate LIKE ‘%1960’ (MS): 
• Tup(A1) = Tup(𝜎(MS)) = Tup(MS) / Val(MS, birthDate) = 1000 / 50 = 20
• Size(A1) = 20 * 100 = 2000 
A2 = 𝜋name(A1): 
• Tup(A2) = Tup(𝜋(A1)) = Tup(A1) = 20 
• Assume that name is 20 bytes 
• TSize(A2) = 20 
• Size(A2) = 20 * 20 = 400 
A3 = SI ⋈ A2: 
• Tup(A3) = Tup(SI ⋈ A2) = 
• Tup(SI)*Tup(A2) / max [Val(SI, starName), Val(A2, name)] = 

10,000 * 20 / max(500, 20) = 400 
• Size(A3) = 400 * (80 + 20 - 20) = 32,000 
A4 = 𝜋𝑡𝑖𝑡𝑙𝑒(A3): 
• Tup(A4) = Tup(𝜋(A3)) = Tup(A3) = 400 
• Assume that title is 40 bytes 
• Size(A4) = 400 * 40 = 16,000 

A1

A4

A3

A2



Comparing Logical Query Plans - Example

A1 =𝜎birthDate LIKE ‘%1960’(MS) → as before: 2000, Tup(𝜎(MS))=20 
A2 = 𝜋name(A1) → as before: 400, Tup(A2) = Tup(A1) = 20 
B3 = SI × A2: 
• Tup(B3) = Tup(SI × A2)= Tup(SI) * Tup(A2) = 10000 * 20 = 200,000 
• TSize(A2) = 20
• Size(B3) = 200,000 * (80 + 20) = 20,000,000 
B4 = 𝜎starName = name(B3):
• Tup(B4) = Tup(𝜎(B3)) =

Tup(B3) / max( Val(B3, name), Val(SI, starName) ) = 
200,000 / max(20, 500) = 400 

• TSize(B4) = TSize(SI)+TSize(B3)=80+20=100 
• Size(B4) = 400 * 100 = 40,000 
B5 = 𝜋title(B4) → as A4: 400 * 40 = 16,000

A1

A2

B3

B4

B5

Statistics: 
Tup(StarsIn) = 10,000 

Val(StarsIn, starName) = 500 
TSize(StarsIn) = 80 

Tup(MovieStar) = 1,000 
Val(MovieStar, name) = 1,000 
Val(MovieStar, birthDate) = 50 
TSize(MovieStar) = 100 



Comparing Logical Query Plans - Example

Total: 2000 + 400 + 32,000 = 34,400 Total: 2000 + 400 + 20,000,000 + 40,000 = 20,042,400


