IN3020/4020 - Database Systems Spring 2021, Weeks 4.2-5.2

Query Compilation - Parts 1-3

Egor V. Kostylev
Based upon slides by E. Thorstensen and M. Naci Akkøk

Query Compilation: Two Parts

Part 1:

- Parsing and (translating to relational algebra)
- Logical query plans (expressed in relational algebra)
- Optimization (using algebraic laws)

Part 2:

- Estimate the size/cost of the intermediary results
- Evaluate physical query plans

Materials to Read

- Part 8, Chapter 19 (and parts of 18) of the Book (Elmasri \& Navathe, «Fundementals of Database Systems»)
- Parsing: not covered in the Book, can be read in any book on Compilers (or Wikipedia)
- NOTE: I do not follow any of them line by line

Overview: The (Typical) Journey of a Query

Parsing

The goal is to convert an SQL-query to a parse tree

Parsing

- Each node in a parse tree is
- an atom (primitive) - i.e., a lexical element like a keyword, name, constant, parentheses or operators ... (leaf node)
- a syntactic category - part of the query ... (inner node)

Simple Grammar \#1

- Query:
- <Query> ::= <SFW>
- <Query> ::= (<Query>)
- <Query> ::= ... (e.g., rules with UNION)
- Rule 2 is typically used in sub-queries

Simple Grammar \#2

- Select-From-Where:
- <SFW> ::= SELECT <SelList> FROM <FromList> WHERE <Condition> [...]
- [...] includes productions for GROUP BY, HAVING, ORDER BY, etc.
- Select-list:
- <SelList> ::= <Attribute>
- <SelList> ::= <Attribute>, <SelList>
- <SelList> ::= ... (e.g., rules for expressions and aggregate functions)
- From-list:
- <FromList> ::= <Relation>
- <FromList> ::= <Relation>, <FromList>
- <FromList> ::= ... (e.g., rules for aliasing and expressions R JOIN S)

Simple Grammar \#3

- Condition:
- <Condition> ::= <Condition> AND <Condition>
- <Condition> ::= <Tuple> IN <Query>
- <Condition> ::= <Attribute> = <Attribute>
- <Condition> ::= <Attribute> LIKE <Pattern>
- <Condition> ::= ... (e.g., rules for OR, NOT, comparison)
- Tuple:
- <Tuple> ::= <Attribute>
- <Tuple> ::= ... (e.g., rules for tuples with multiple attributes)
- Basic syntactic categories like <Relation>, <Attribute>, <Pattern> etc. do not have own rules, but are replaced with a name or a text string

Simple Grammar: Example

Find films with actors born in 1960:

```
SELECT title FROM StarsIn WHERE starName IN
    ( SELECT name
    FROM MovieStar
    WHERE birthDate LIKE `%1960'
);
```


Simple Grammar: Example

Pre-processor

- Checks that the query are syntactically correct (i.e., parses)
- Checks that the query are semantically correct:
- relations - each relation in FROM must be a relation or a view in the schema the query is executed Each view must be replaced by a parsing tree.
- attributes - each attribute must exist in one of the relations within the scope of the query
- types - all usage of attributes must be in accordance with the given types

Generating the logical query plan

Converting Select-From-Where (SFW)

SELECT <SelList> FROM <FromList> WHERE <Condition>

- Replace the relations in <FromList> with the product (\times) of all the relations
- This product is the argument for the selection (σ_{C}) where C is the <Condition>
- This selection is the argument for the projection (π_{L}) where L is the list of attributes in <SelList>

SFW conversion example

Product (\times) of all relations in <FromList> Selection $\left(\sigma_{\mathrm{C}}\right)$ with C as <Condition>
Projection (π_{L}) with L as attributes in <SelList>
SELECT name FROM MovieStar WHERE birthDate LIKE ‘\%1960'

Simple Grammar: Example

Converting sub-queries

```
SELECT title FROM StarsIn WHERE starName
- For subqueries, we use an auxiliary operator, the two-argument selection \(\sigma(\mathrm{R}, \mathrm{T})\), where \(T\) represents the subquery (i.e., that corresponds to <Condition>)

- Further processing depends on the type of the subquery

\section*{Converting sub-queries Example}


\section*{Converting sub-queries Example}
- Product of the relations in <FromList>
- Select based upon <Condition>, represented by two-argument selection
- Project on the attributes in <SelList>
- Replace (temporarily) subquery with its parse tree



\section*{Converting sub-queries Example}
- Product of the relations in <FromList>
- Select based upon <Condition>, represented by two-argument selection
- Project on the attributes in <SelList>
- Replace (temporarily) subquery with its parse tree
```

SELECT title FROM StarsIn WHERE starName IN
(SELECT name
FROM MovieStar
WHERE birthDate LIKE `%1960'
);

```


\section*{Converting sub-queries Example}
- Replace <Condition> with the subquery tree
- Replace two-argument selection with one-argument selection \(\sigma_{\mathrm{c}}\), where C is starName \(=\) name - Let \(\sigma_{\mathrm{C}}\) operate on the product of Stars In and MovieStar as an argument


UiO : Institutt for informatikk
Det matematisk-naturvitenskapelige fakultet

\section*{Converting sub-queries - some notes}
- Sub-query conversion becomes more complicated if the sub-query is related to values defined outside the scope of the sub-query
- We must then create a relation with extra attributes for comparison with the external attributes
- The extra attributes are later removed using projections
- In addition, all duplicate tuples must be removed

\section*{Logical and Physical query plans}
- These parse trees are converted into «execution plans» in several stages
- Logical plan: Relational algebra expressions
- Physical plan: Actual algorithms
- These are supposed to be two distinct stages, but, the two stages often overlap in reality

\section*{Algebraic laws for improving logical query} plans

SQL

PARSE
Parse tree


Logical query plan (LQP)



CONSTRUCT PHYSICAL PLANS

\section*{Logical query plans - Example}

SELECT B, C, Y
FROM R, \(S\)
WHERE \(W=X\) AND \(A=3\) AND \(Z={ }^{\prime} a^{\prime}\)

Relation R
\begin{tabular}{|c|c|c|c|c|}
\hline\(A\) & \(B\) & \(C\) & \(\ldots\) & \(W\) \\
\hline 1 & \(z\) & 1 & \(\ldots\) & 4 \\
\hline 2 & c & 6 & \(\ldots\) & 2 \\
\hline 3 & r & 8 & \(\ldots\) & 7 \\
\hline 4 & n & 9 & \(\ldots\) & 4 \\
\hline 2 & j & 0 & \(\ldots\) & 3 \\
\hline 3 & t & 5 & \(\ldots\) & 9 \\
\hline 7 & e & 3 & \(\ldots\) & 3 \\
\hline 8 & f & 5 & \(\ldots\) & 8 \\
\hline 1 & h & 7 & \(\ldots\) & 5 \\
\hline
\end{tabular}

Relation S
\begin{tabular}{|c|c|c|}
\hline X & Y & Z \\
\hline 1 & a & a \\
\hline 2 & f & c \\
\hline 3 & t & b \\
\hline 4 & b & b \\
\hline 7 & k & a \\
\hline 6 & e & a \\
\hline 7 & g & c \\
\hline 8 & i & b \\
\hline 9 & e & c \\
\hline
\end{tabular}

\section*{Logical query plans - Strategy 1}
1. Take the cross product of \(R\) and \(S\)
2. Select tuples
3. Project the attributes
\[
\pi_{B, C, Y}\left(\sigma_{W=X \wedge A=3 \wedge Z=^{\prime} a^{\prime}}(\mathrm{R} \times \mathrm{S})\right)
\]

NOTE:
\# attributes \(=\#\) R-attributes \(+\#\) S-attributes \(=23+3=26\)
\# tuples \(=\#\) R-tuples \(\times \#\)-tuples \(=9 \times 9=81\)


\section*{Logical query plans - Strategy 1}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline A & B & C & ... & W & X & Y & Z \\
\hline 1 & z & 1 & ... & 4 & 1 & a & a \\
\hline .. & .. & ... & \(\cdots\) & ... & 2 & f & C \\
\hline \(\ldots\) & \(\ldots\) \\
\hline 2 & c & 6 & ... & 2 & 1 & a & a \\
\hline \(\ldots\) & ... & ... & \(\ldots\) & \(\ldots\) & 2 & f & c \\
\hline .. & .. & \(\ldots\) & \(\ldots\) & ... & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
\hline 3 & r & 8 & \(\ldots\) & 7 & 1 & a & a \\
\hline .. & ... & ... & \(\ldots\) & \(\ldots\) & 2 & f & c \\
\hline .. & \(\ldots\) & ... & \(\ldots\) & \(\ldots\) & \(\ldots\) & ... & \(\ldots\) \\
\hline 3 & r & 8 & \(\ldots\) & 7 & 7 & k & a \\
\hline 4 & n & 9 & \(\ldots\) & 4 & 1 & a & a \\
\hline ... & ... & ... & \(\ldots\) & ... & 2 & f & c \\
\hline \(\ldots\) & ... & \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & ... & v \\
\hline 2 & 1 & 0 & ... & 3 & 1 & a & a \\
\hline \(\cdots\) & ... & \(\ldots\) & \(\ldots\) & \(\ldots\) & 2 & C & c \\
\hline & & & ... & & & ... & .. \\
\hline 3 & t & 5 & \(\ldots\) & 9 & 1 & a & a \\
\hline \(\ldots\) & .. & \(\ldots\) & \(\ldots\) & ... & 2 & f & c \\
\hline .. & .. & .. & \(\ldots\) & .. & & ... & . \\
\hline 7 & e & 3 & ... & 3 & 1 & a & a \\
\hline \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) & ... & 2 & f & c \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{Logical query plans - Strategy 2}
1. Select tuples
2. Do an equi-join
3. Project the attributes
\[
\pi_{B, C, Y}\left(\left(\sigma_{A=3}(\mathrm{R})\right) \bowtie_{W=X}\left(\sigma_{Z={ }^{\prime} a^{\prime}}(\mathrm{S})\right)\right.
\]

Strategy 1 for comparison:
\(\pi_{B, C, Y}\left(\sigma_{W=X \wedge A=3 \wedge Z={ }^{\prime} a^{\prime}}(\mathrm{R} \times \mathrm{S})\right)\)

\section*{Logical query plans - Strategy 2}
\(\pi_{B, C, Y}\left(\left(\sigma_{A=3}(\mathrm{R})\right){\underset{W}{2}=X}^{\left(\sigma_{Z=a^{\prime}}(\mathrm{S})\right)}\right.\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{\multirow[t]{2}{*}{\(\pi_{B, C, Y}\)}} & A & B & C & & & W & & & Z \\
\hline & & 3 & r & 8 & & & 7 & & & a \\
\hline \multicolumn{2}{|c|}{\(\bowtie_{w-x}\)} & \multicolumn{9}{|c|}{\(\pi\)} \\
\hline \multirow[t]{2}{*}{\(\sigma_{A=3}\)} & \(\sigma_{z=\alpha}\) & \multicolumn{9}{|r|}{RESULT \(\sigma\)} \\
\hline & & & & & & C & & & & \\
\hline R & S & & & & & 8 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline\(A\) & \(B\) & \(C\) & \(\ldots\) & \(W\) \\
\hline 1 & \(z\) & 1 & \(\ldots\) & 4 \\
\hline 2 & \(c\) & 6 & \(\ldots\) & 2 \\
\hline 3 & \(r\) & 8 & \(\ldots\) & 7 \\
\hline 4 & n & 9 & \(\ldots\) & 4 \\
\hline 2 & j & 0 & \(\ldots\) & 3 \\
\hline 3 & t & 5 & \(\ldots\) & 9 \\
\hline 7 & e & 3 & \(\ldots\) & 3 \\
\hline 8 & f & 5 & \(\ldots\) & 8 \\
\hline 1 & h & 7 & \(\ldots\) & 5 \\
\hline
\end{tabular}

Relation \(S\)
\begin{tabular}{|c|c|c|}
\hline\(X\) & \(Y\) & \(Z\) \\
\hline 1 & \(a\) & \(a\) \\
\hline 2 & \(f\) & \(c\) \\
\hline 3 & t & b \\
\hline 4 & b & b \\
\hline 7 & k & a \\
\hline 6 & e & a \\
\hline 7 & g & c \\
\hline 8 & i & b \\
\hline 9 & e & c \\
\hline
\end{tabular}

\section*{Logical query plans - Strategy 3}

\section*{USE INDICES!}
1. Use the index on R.A to select tuples where R.A \(=3\)
2. Use the index on \(S . X\) to select tuples where \(S . X=\) R.W
3. Select the S-tuples where \(S . Z=\) ' \(a\) '
4. Join the tuples from \(R\) and \(S\) that match
5. Project the attributes \(B, C\) and \(Y\)

\begin{tabular}{l}
\multicolumn{6}{|c|}{ R } \\
\begin{tabular}{|c|c|c|c|c|}
\hline A & B & C & \(\ldots\) & W \\
\hline 1 & z & 1 & \(\ldots\) & 4 \\
\hline 2 & c & 6 & \(\ldots\) & 2 \\
\hline 3 & r & 8 & \(\ldots\) & 7 \\
\hline 4 & n & 9 & \(\ldots\) & 4 \\
\hline 2 & j & 0 & \(\ldots\) & 3 \\
\hline 3 & t & 5 & \(\ldots\) & 9 \\
\hline 7 & e & 3 & \(\ldots\) & 3 \\
\hline 8 & f & 5 & \(\ldots\) & 8 \\
\hline 1 & h & 7 & \(\ldots\) & 5 \\
\hline
\end{tabular}
\end{tabular}

\section*{Logical query plans - Strategy 3}

\section*{USE INDICES!}
1. Use the index on R.A to select tuples where R.A \(=3\)
2. Use the index on \(S . X\) to select tuples where \(S . X=\) R.W
3. Select the S-tuples where \(S . Z=\) ' \(a\) '
4. Join the tuples from \(R\) and \(S\) that match
5. Project the attributes \(B, C\) and \(Y\)
\begin{tabular}{|c|c|c|}
\multicolumn{1}{c}{} & \multicolumn{1}{c}{\(\mathbf{s}_{\mathbf{1}}\)} \\
\hline\(X\) & \(Y\) & \(Z\) \\
\hline 7 & k & a \\
\hline 7 & g & c \\
\hline 9 & e & c \\
\hline
\end{tabular}


\section*{Logical query plans - Strategy 3}

\section*{USE INDICES!}
1. Use the index on R.A to select tuples where R.A \(=3\)
2. Use the index on \(S . X\) to select tuples where \(S . X=R . W\)
3. Select the S-tuples where \(S . Z=\) ' \(a\) '
4. Join the tuples from \(R\) and \(S\) that match
5. Project the attributes \(B, C\) and \(Y\).


\section*{Logical query plans - Strategy 3}

\section*{USE INDICES!}
1. Use the index on R.A to select tuples where R.A = 3
2. Use the index on \(S . X\) to select tuples where \(S . X=\) R.W
3. Select the S-tuples where \(S . Z=\) ' \(a\) '
4. Join the tuples from \(R\) and \(S\) that match
5. Project the attributes \(B, C\) and \(Y\)
\(\mathbf{r}_{1}\)
\begin{tabular}{|c|c|c|c|c|}
\hline A & B & C & \(\ldots\) & W \\
\hline 3 & r & 8 & \(\ldots\) & 7 \\
\hline 3 & t & 5 & \(\ldots\) & 9 \\
\hline
\end{tabular}
\(\mathbf{S}_{\mathbf{2}}\)
\begin{tabular}{|c|c|c|}
\hline X & Y & Z \\
\hline 7 & k & a \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline A & B & C & \(\ldots\) & W & X & Y & Z \\
\hline 3 & r & 8 & \(\ldots\) & 7 & 7 & k & a \\
\hline
\end{tabular}

Result
\begin{tabular}{|c|c|c|}
\hline B & C & Y \\
\hline\(r\) & 8 & \(k\) \\
\hline
\end{tabular}

\section*{Strategy 3 Summary}


\section*{Algebraic laws for improving logical query} plans SQL

PARSE
Parse tree


UiO : Institutt for informatikk
Det matematisk-naturvitenskapelige fakultet

\section*{Commutativity and associativity}
- An operator \(\omega\) is commutative if the order of the arguments does not matter:
\[
x \omega y=y \omega x
\]
- An operator is associative if the order of applications has no significance:
\[
x \omega(y \omega z)=(x \omega y) \omega z
\]

\section*{Algebraic laws for product and join}
- Natural join and product are both commutative and associative:
- \(R \bowtie S=S \bowtie R \quad\) and \(\quad R \bowtie(S \bowtie T)=(R \bowtie S) \bowtie T\)
- \(R \times S=S \times R\) and \(R \times(S \times T)=(R \times S) \times T\)
- What about theta-join?
- Commutative: \(\quad R \bowtie_{c} S=S \bowtie_{c} R\)
- But not always associative (formally)
- Example: Given the relationships R (a, b), S (b', c), T (c, d), we have \(\left(R \bowtie_{b<b^{\prime}} S\right) \bowtie_{a<d} T \neq R \bowtie_{b<b^{\prime}}\left(S \bowtie_{a<d} T\right)\)

\section*{Order of joins}

Does the order of joins (incluing products) have an effect on efficiency?
- If only one of the relations fits into the memory, this should be the first argument -- a one-pass operation that reduces the number of disk IOs
- If the product or join of two of the relations result in a temporary relation that fits into the memory, these joins should be taken first to save both memory space and disk IO
- Temporary relations (intermediate results) should be as small as possible to save memory space
- If we can estimate (using statistics) the number of tuples to be joined, we can save many operations by joining the relations that give the fewest tuples first

\section*{Algebraic laws for union and intersection}
- Union and intersection are commutative and associative:
- RUS = SUR
\(R \cup(S \cup T)=(R \cup S) \cup T\)
- \(R \cap S=S \cap R\)
\(R \cap(S \cap T)=(R \cap S) \cap T\)
- Union distributes over intersection:
\(\circ R \cup(S \cap T)=(R \cup S) \cap(R \cup T)\)
- Intersection distributes over union only for sets(!):
- \(R \cap_{S}\left(S U_{S} T\right)=\left(R \cap_{S} S\right) U_{S}\left(R \cap_{S} T\right)\)
- \(R \cap_{B}\left(S U_{B} T\right) \neq\left(R \cap_{B} S\right) U_{B}\left(R \cap_{B} T\right)\)

\section*{Algebraic laws for selection}
- Selection is a very important operator for optimization
- Reduces the number of tuples (the size of the relationship)
- General rule: push selections as far down the tree as possible
- Conditions with AND and OR can be split:
- \(\sigma_{\mathrm{a} \text { AND }}(\mathrm{R})=\sigma_{\mathrm{a}}\left(\sigma_{\mathrm{b}}(\mathrm{R})\right)\)
- \(\sigma_{\text {a ORb }}(R)=\left(\sigma_{a}(R)\right) U_{S}\left(\sigma_{b}(R)\right)\), where \(R\) is a set and \(U_{S}\) is a set union
- Splitting OR works only when \(R\) is a set, but if \(R\) is a bag and both conditions are met, bag union will include a tuple twice - once in each selection
- The order of subsequent selections has no bearing on the resulting set:
- \(\sigma_{\mathrm{a}}\left(\sigma_{\mathrm{b}}(\mathrm{R})\right)=\sigma_{\mathrm{b}}\left(\sigma_{\mathrm{a}}(\mathrm{R})\right)\)

\section*{Pushing selection}
- When selection is pushed down the tree, then ...
- It must be pushed to both arguments for
- Union: \(\sigma_{\mathrm{a}}(\mathrm{R} \cup \mathrm{S})=\sigma_{\mathrm{a}}(\mathrm{R}) \cup \sigma_{\mathrm{a}}(\mathrm{S})\)
- It must be pushed to the first argument (optionally the second argument too) for
- Difference: \(\sigma_{a}(R-S)=\sigma_{a}(R)-S=\sigma_{a}(R)-\sigma_{a}(S)\)
- It can be pushed to one or both arguments for
- Intersection: \(\sigma_{a}(R \cap S)=\sigma_{a}(R) \cap \sigma_{a}(S)=R \cap \sigma_{a}(S)=\sigma_{a}(R) \cap S\)
- Join: \(\sigma_{\mathrm{a}}(\mathrm{R} \bowtie \mathrm{S})=\sigma_{\mathrm{a}}(\mathrm{R}) \bowtie \sigma_{\mathrm{a}}(\mathrm{S})=\mathrm{R} \bowtie \sigma_{\mathrm{a}}(\mathrm{S})=\sigma_{\mathrm{a}}(\mathrm{R}) \bowtie \mathrm{S} \quad\) (only if make sence!)
- Theta join: \(\sigma_{\mathrm{a}}\left(\mathrm{R} \bowtie_{\mathrm{b}} \mathrm{S}\right)=\sigma_{\mathrm{a}}(\mathrm{R}) \bowtie_{\mathrm{b}} \sigma_{\mathrm{a}}(\mathrm{S})=\mathrm{R} \bowtie_{\mathrm{b}} \sigma_{\mathrm{a}}(\mathrm{S})=\sigma_{\mathrm{a}}(\mathrm{R}) \bowtie_{\mathrm{b}} \mathrm{S} \quad\) (same!)
- Cartesian product: similarly, but be careful with renaming

\section*{Pushing selection - Example}

Assume that each attribute is 1 byte
\(\sigma_{A=2}(R \bowtie S)\)
- join: compare 4 * 4 items \(=16\) operations store (cache) the relation: \(R \bowtie S\) yields \(((23+3) \times 2)=52\) bytes
- selection: check each tuple: 2 operations
\(\sigma_{\mathrm{A}=2}(\mathrm{R}) \bowtie \mathrm{S}\)
- selection: check each tuple in R: 4 operations store (cache) the relation: \(\sigma_{\mathrm{A}=2}(\mathrm{R})\) gives 24 bytes
- join: compare \(1 \times 4\) items \(=4\) operations
\(\mathrm{UiO}:\) Institutt for informatikk
Det matematisk-naturvitenskapelige fakultet

R
\begin{tabular}{|c|c|c|c|c|}
\hline\(A\) & \(B\) & \(C\) & \(\ldots\) & \(X\) \\
\hline 1 & \(z\) & 1 & \(\ldots\) & 4 \\
\hline 2 & \(C\) & 6 & \(\ldots\) & 2 \\
\hline 3 & \(r\) & 8 & \(\ldots\) & 7 \\
\hline 4 & \(n\) & 9 & \(\ldots\) & 4 \\
\hline
\end{tabular}

S
\begin{tabular}{|c|c|c|}
\hline\(X\) & \(Y\) & \(Z\) \\
\hline 2 & f & c \\
\hline 3 & t & b \\
\hline 7 & g & c \\
\hline 9 & e & c \\
\hline
\end{tabular}
\(R \bowtie S\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline A & B & C & \(\ldots\) & X & Y & Z \\
\hline 2 & C & 6 & \(\ldots\) & 2 & f & C \\
\hline 3 & r & 8 & \(\ldots\) & 7 & g & C \\
\hline
\end{tabular}
\[
\sigma_{A=2}(R)
\]
\begin{tabular}{|c|c|c|c|c|}
\hline\(A\) & \(B\) & \(C\) & \(\ldots\) & \(X\) \\
\hline 2 & \(C\) & 6 & \(\ldots\) & 2 \\
\hline
\end{tabular}

\section*{Pushing selection upwards in the tree}

Sometimes it is useful to push selection the other way, ie upwards in the tree, using the law \(\sigma_{\mathrm{a}}(\mathrm{R} \bowtie \mathrm{S})=\mathrm{R} \bowtie \sigma_{\mathrm{a}}(\mathrm{S})\) «backwards».

EXAMPLE: StarsIn(title, year, starName); Movies(title, year, studio...) CREATE VIEW Movies 96 AS

SELECT * FROM Movies WHERE year = 1996;
SELECT starName, studio FROM Movies96 NATURAL JOIN StarsIn;


UiO : Institutt for informatikk
Institutt for informatikk
Det matematisk-naturvitenskapelige fakultet
REMEMBER Join: \(\sigma_{a}(R \bowtie S)=\sigma_{a}(R) \bowtie \sigma_{a}(S)=R \bowtie \sigma_{a}(S)=\sigma_{a}(R) \bowtie S\)

\section*{Algebraic laws for projection \#1}

Projection can be pushed through join and cross product (i.e., new projections can be introduced) as long as we do not remove attributes used further up the tree:
- \(\pi_{\mathrm{L}}(\mathrm{R} \bowtie \mathrm{S})=\pi_{\mathrm{L}}\left(\pi_{\mathrm{M}}(\mathrm{R}) \bowtie \pi_{\mathrm{N}}(\mathrm{S})\right)\) if
- \(M\) contains the join attributes and those of \(L\) that are in \(R\)
- \(N\) contains the join attributes and those of \(L\) that are in \(S\)
- \(\pi_{\mathrm{L}}\left(\mathrm{R} \bowtie_{\mathrm{C}} \mathrm{S}\right)=\pi_{\mathrm{L}}\left(\pi_{\mathrm{M}}(\mathrm{R}) \bowtie_{\mathrm{C}} \pi_{\mathrm{N}}(\mathrm{S})\right)\) if
- \(M\) contains the join attributes and the attributes in \(C\) and \(L\) that are in \(R\)
- \(N\) contains the join attributes and the attributes in \(C\) and \(L\) that are in \(S\)
- \(\pi_{L}(R \times S)=\pi_{M}(R) \times \pi_{N}(S)\) if
- \(M\) contains the attributes of \(L\) that are in \(R\) (appropriately renamed)
- \(N\) contains the attributes of \(L\) that are in \(S\) (appropriately renamed)

\section*{Algebraic laws for projection \#2}

Projection can be pushed through bag union:
\[
\left.\pi_{\mathrm{L}}\left(\mathrm{R} \cup_{\mathrm{B}} \mathrm{~S}\right)=\pi_{\mathrm{L}}(\mathrm{R}) \mathrm{U}_{\mathrm{B}} \pi_{\mathrm{L}}(\mathrm{~S})\right)
\]

Note: The same rule does not apply to set union, set intersection, bag intersection, set difference or bag difference because projection can change the multiplicity of the tuples:
- \(R\) being a set does not necessarily mean that \(\pi_{L}(R)\) is a set
- If \(R\) is a bag and a tuple \(t\) occurs \(k\) times in \(R\), then the projection of \(t\) on \(L\) may occur more than \(k\) times in \(\pi_{L}(R)\).

\section*{Algebraic laws for projection \#3}

Projection can be pushed through selection (new projections are introduced) as long as we do not remove attributes used further up the tree:
- \(\pi_{\mathrm{L}}\left(\sigma_{\mathrm{C}}(\mathrm{R})\right)=\pi_{\mathrm{L}}\left(\sigma_{\mathrm{C}}\left(\pi_{\mathrm{M}}(\mathrm{R})\right)\right)\)
if M contains the attributes in C and L
- NOTE: If \(R\) has an index on some of the attributes in selection condition \(C\), then this index will not be possible to use during selection if we first do a projection on \(M\).

\section*{Algebraic laws for join, product, selection and projection}

Two important laws that follow from the definition of join:
- \(\sigma_{C}(R \bowtie S)=R \bowtie_{C} S\)
- \(\pi_{\mathrm{L}}\left(\sigma_{\mathrm{C}}(\mathrm{R} \times \mathrm{S})\right)=\mathrm{R} \bowtie \mathrm{S}\) if
- C compares (via AND) each pair of tuples from \(R\) and \(S\) with the same name
- \(L\) is all attributes of \(R\) and \(S\) appropriately renamed and without repetitions

\section*{Examples}
- \(\quad \pi_{L}\left(\sigma_{\text {R. } a=\text { s.a }}(R \times S)\right)\) vs. \(R \bowtie S\)
- \(R(a, b, c, d, e, \ldots, k), \# T u p l e s(R)=10,000, S(a, l, m, n, o, \ldots, z), \# T u p l e s(S)=100\)
- Each attribute takes 1 byte, a is a candidate (e.g., primary) key in both \(R\) and \(S\)
- Assumes that each tuple in \(S\) find a single match in R, i.e., 100 tuples in the result
- \(\pi_{\mathrm{L}}\left(\sigma_{\mathrm{C}}(R \times S)\right)\) :
- Cross product:
combine \(10,000 * 100\) items \(=1,000,000\) operations
temp storage, relation \(R \times S=1,000,000 *(11+16)=27,000,000\) bytes
- Selection:

Check each tuple: 1,000,000 operations
temp storage, relation \(\sigma_{\text {R.a }=\text { s.a }}(\mathrm{R} \times \mathrm{S})=100 * 27=2700\) bytes
- Projection:

Check each tuple: 100 operations
- R凶S:
- join: check 10,000 * 100 elements \(=1,000,000\) operations

\section*{Algebraic laws for duplicate elimination}

Duplication elimination can reduce the size of temporary relations by pushing through
- Cartesian product: \(\delta(\mathrm{R} \times \mathrm{S})=\delta(\mathrm{R}) \times \delta(\mathrm{S})\)
- Join: \(\delta(\mathrm{R} \bowtie \mathrm{S})=\delta(\mathrm{R}) \bowtie \delta(\mathrm{S})\)
- Theta join: \(\delta\left(\mathrm{R} \bowtie_{\mathrm{C}} \mathrm{S}\right)=\delta(\mathrm{R}) \bowtie_{\mathrm{C}} \delta(\mathrm{S})\)
- Selection: \(\delta\left(\sigma_{\mathrm{C}}(\mathrm{R})\right)=\sigma_{\mathrm{C}}(\delta(\mathrm{R}))\)
- Bag intersection: \(\delta\left(\mathrm{R} \cap_{\mathrm{B}} \mathrm{S}\right)=\delta(\mathrm{R}) \cap_{\mathrm{B}} \delta(\mathrm{S})=\delta(\mathrm{R}) \cap_{\mathrm{B}} \mathrm{S}=\mathrm{R} \cap_{\mathrm{B}} \delta(\mathrm{S})\)
- Note: duplicate elimination cannot be pushed through
- Bag union and difference
- Projection

\section*{Algebraic laws for grouping operation}

This one is easy: No general rules!

\section*{Improving (optimizing) logical query plans}

The most common LQP optimizations are:
- Push selections as far down as possible
- If the selection condition consists of several parts (AND or OR), split into multiple selections and push each one as far down the tree as possible
- Push projections as far down as possible
- Combine selections and Cartesian products to an appropriate join
- Duplicate eliminations can sometimes be removed
- But don't ruin indexing: Pushing projection past a selection can ruin the use of indexes in the selection!

\section*{Query Compilation (in two parts)}

\section*{Part 1 (done in part 1):}
- Parsing
- Logical query plans (expressed in relational algebra)
- Optimization (using algebraic laws)

Part 2 (now in part 2):
- Estimate the size/cost of the intermediary results
- (Construct physical query plans)

\section*{OVERVIEW: Our focus in part 2}


\section*{OVERVIEW}
- To assess both logical and physical plans, we need some way to calculate cost
- These can not be calculated exactly (depending on the data we have), so the DBMS estimates the costs
- We want a cost function \(C\) that can be calculated locally: \(C\left(R \bowtie_{c} S\right)\) should be possible to calculate from \(C(R)\) and \(C(S)\)
- What kind of costs exist? What do we mean by cost? What should we choose as cost?

\section*{Costs: IO!}
- Disk IO: Cost of reading
- A given page (random read)
- A sequence of pages (sequential read)
- Sequence is usually cheaper
- Relevant to choose from
- Table scan
- Index scan

\section*{Costs: Number of tuples (and size in bytes)}
- Number of tuples to process in one operation
- Relevant for everything, including disk operations
- We will look at how this is estimated
- Size of each tuple in relation in bytes and size of the overall relation are together more fine-grained

\section*{Theme now: Estimating result size}


\section*{Estimating size}
- Ideally, we want rules that are
- Accurate: a small error can result in the selection of an inappropriate algorithm in the physical query plan
- Easy to calculate: minimal extra cost to make the choice
- Logically consistent: not dependent on a specific algorithm for the operator
- No universal algorithm exists
- Fortunately, approximate estimates also help choose a good physical query plan

\section*{Notation}
- \(\operatorname{Tup}_{R}(\operatorname{or} \operatorname{Tup}(R))\) is the number of tuples in \(R\)
- this is an estimate, so may be not integer
- \(\mathrm{TSize}_{\mathrm{R}}\) is the size of a tuple in R in bytes
- Size \(_{R}\) is the size of \(R\) in bytes: Size \(_{R}=\operatorname{Tup}_{R} *\) TSize \(_{R}\)
- \(\operatorname{Val}_{R}(A)\) is the number of different values for attribute \(A\) in \(R\)
- Average number of tuples with equal \(A\) values: \(\operatorname{Tup}_{R} / \operatorname{Val}_{R}(A)\)

\section*{Size of a projection}
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- TSize \(_{R}\) is the size of a tuple in \(R\) in bytes
- \(\operatorname{Val}_{\mathrm{R}}(\mathrm{A})\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{R}\) is the size of \(R\) in bytes
- The size of a projection \(\pi_{\mathrm{L}}(\mathrm{R})\) can be calculated accurately:
- One result tuple for each argument tuple \(\operatorname{Tup}\left(\pi_{A, B}, \ldots(R)\right)=\operatorname{Tup}_{R}\)
- Changes only the size of each tuple: \(\operatorname{Size}\left(\pi_{A, B}, \ldots(R)\right)=\operatorname{Tup}_{R} *\left(\operatorname{TSize}_{R . A}+\operatorname{TSize}_{R . B}+\ldots\right)\)
\(\circ \operatorname{Val}\left(\pi_{\mathrm{A}, \mathrm{B}, \ldots}(\mathrm{R}), \mathrm{A}\right)=\operatorname{Val}(\mathrm{R}, \mathrm{A})\)

\section*{Size of projection: Example}
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- \(\mathrm{TSize}_{\mathrm{R}}\) is the size of a tuple in R in bytes
- \(\operatorname{Val}_{R}(A)\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{R}\) is the size of \(R\) in bytes
R
\begin{tabular}{|c|c|c|c|}
\hline A & B & C & D \\
\hline 1 & cat & 1999 & a \\
\hline 2 & cat & 2002 & b \\
\hline 3 & dog & 2002 & c \\
\hline 4 & cat & 1998 & a \\
\hline 5 & dog & 2000 & c \\
\hline
\end{tabular}
A: 4 byte integer
B: 20 byte text string
C: 4 byte date (year)
\(D: 30\) byte text string \(\quad \operatorname{Val}_{R}(D)=3\)
\(\operatorname{Tup}_{R}=5\)
TSize \(_{R}=58\)
\(\operatorname{Size}\left(\pi_{\mathrm{A}, \mathrm{B}, \ldots}(\mathrm{R})\right)=\operatorname{Tup}_{\mathrm{R}}{ }^{*}\left(\operatorname{TSize}_{\mathrm{A}}+\operatorname{TSize}_{\mathrm{B}}+\ldots\right)\)
Size \(_{R}=\ldots\)
\(\operatorname{Size}\left(\pi_{\mathrm{A}}(\mathrm{R})\right)=\ldots\)
\(\operatorname{Size}\left(\pi_{A, B, C, D,(A+10) \rightarrow E}(\mathrm{R})\right)=\ldots\)

\section*{Size of a selection}
- A selection \(\sigma_{\text {cond }}(R)\) reduces the number of tuples, but the size of each tuple remains unchanged
\(\circ \operatorname{Size}\left(\sigma_{\text {Cond }}(R)\right)=\operatorname{Tup}\left(\sigma_{\text {cond }}(R)\right) * \operatorname{TSize}_{R}\)
- Estimating the number of tuples depends upon
- the selection condition Cond
- distribution of values for the relevant attributes:
- we assume a uniform distribution where we use \(\operatorname{Val}_{R}(A)\) to estimate the number of tuples in the result (naive)
- DBMSs use more advanced statistics (e.g., histograms)
- Estimation of the number of values Val can be done similarly

\section*{Size of a selection (cont.)}
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- \(\mathrm{TSize}_{R}\) is the size of a tuple in R in bytes
- \(\operatorname{Val}_{\mathrm{R}}(\mathrm{A})\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{R}\) is the size of \(R\) in bytes

\section*{For attribute A and constant c :}
- Similarity, \(\sigma_{\mathrm{A}=c}(\mathrm{R})\) :

Use the selectivity factor \(1 / \operatorname{Val}_{R}(A)\)
\(\operatorname{Tup}\left(\sigma_{\mathrm{A}}=c(\mathrm{R})\right)=\operatorname{Tup}_{\mathrm{R}} / \operatorname{Val}_{\mathrm{R}}(\mathrm{A})\)
- Inequality, \(\sigma_{A \neq c}(R)\) :

Use the selectivity factor 1-1/Val \({ }_{R}(A)\)
\(\operatorname{Tup}\left(\sigma_{A \neq c}(\mathrm{R})\right)=\operatorname{Tup}_{R} *\left(1-1 / \operatorname{Val}_{\mathrm{R}}(\mathrm{A})\right)\)
- Interval, \(\sigma_{A<c}(R):\)...
- Equality of two attributes, \(\sigma_{\mathrm{A}=\mathrm{B}}(\mathrm{R})\) : ...

\section*{Size of a selection: Example}
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- TSize \(_{R}\) is the size of a tuple in \(R\) in bytes
- \(\operatorname{Val}_{R}(A)\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{R}\) is the size of \(R\) in bytes
\begin{tabular}{|c|c|c|c|}
\hline A & B & C & D \\
\hline 1 & cat & 1999 & a \\
\hline 2 & cat & 2002 & b \\
\hline 3 & dog & 2002 & c \\
\hline 4 & cat & 1998 & a \\
\hline 5 & dog & 2000 & c \\
\hline
\end{tabular}

A: 4 byte integer
B: 20 byte text string
C: 4 byte date (year)
D: 30 byte text string
\(\operatorname{Tup}_{\mathrm{R}}=5\)
Size \(_{R}=58\)
\(\operatorname{Val}_{R}(\mathrm{~A})=5\)
\(\operatorname{Val}_{\mathrm{R}}(\mathrm{B})=2\)
\(\operatorname{Val}_{\mathrm{R}}(\mathrm{C})=4\)
\(\operatorname{Val}_{R}(\mathrm{D})=3\)
\(\operatorname{Tup}\left(\sigma_{A \neq c}(\mathrm{R})\right)=\operatorname{Tup}_{\mathrm{R}}{ }^{*}\left(1-1 / \operatorname{Val}_{R}(\mathrm{~A})\right)\)
\(\operatorname{Tup}\left(\sigma_{B \neq \prime} \operatorname{cat}(\mathrm{R})\right)=\ldots\)

\section*{Size of a selection with AND and NOT}
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- \(\mathrm{TSize}_{R}\) is the size of a tuple in R in bytes
- \(\operatorname{Val}_{R}(A)\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{R}\) is the size of \(R\) in bytes
- Multi-condition selection with AND, \(\sigma_{\text {Cond1 AND Cond2 And .... }}\) (R):
- estimate the size using one selectivity factor for each condition:
- 1 - \(1 / \operatorname{Val}_{R}(A)\) for \(\neq\) on attribute \(A\)
- \(1 / \operatorname{Val}_{R}(A)\) for \(=\) on attribute \(A\)
- ...
- \(\operatorname{Tup}\left(\sigma_{\text {Cond1 AND Cond2 AND ... }}(\mathrm{R})\right)=\operatorname{Tup}_{\mathrm{R}} *\) factor \(_{\text {Cond1 }} *\) factor \(_{\text {Cond2 }} * \ldots\)
- Selection with NOT, such as \(\sigma_{\text {NOT Cond }}(R)\) :
- Use the selectivity factor \(1-\operatorname{Tup}\left(\sigma_{\text {Cond }}(R)\right) / \operatorname{Tup}_{R}\)
- \(\operatorname{Tup}\left(\sigma_{\text {NOT Cond }}(R)\right)=\operatorname{Tup}_{R}-\operatorname{Tup}\left(\sigma_{\text {NOT Cond }}(R)\right)\)

\title{
Selection with AND and NOT: Example
}
\begin{tabular}{|c|c|c|c|}
\hline A & B & C & D \\
\hline 1 & cat & 1999 & a \\
\hline 2 & cat & 2002 & b \\
\hline 3 & dog & 2002 & c \\
\hline 4 & cat & 1998 & a \\
\hline 5 & dog & 2000 & c \\
\hline
\end{tabular}

A: 4 byte integer
B: 20 byte text string
C: 4 byte date (year)
D: 30 byte text string
\(\operatorname{Tup}_{\mathrm{R}}=5\)
Size \(_{R}=58\)
\(\operatorname{Tup}\left(\sigma_{\text {Cond1 AND Cond2 AND } \ldots}(\mathrm{R})\right)=\operatorname{Tup}_{\mathrm{R}} *\) factor \(_{\text {Cond1 }} *\) factor \(_{\text {Cond2 }} * \ldots\)
\(\operatorname{Tup}\left(\sigma_{\mathrm{C}=1999_{\mathrm{AND} \mathrm{B}} \neq^{\prime} \mathrm{cata}^{\prime}}(\mathrm{R})\right)=\ldots\)
\(\operatorname{Tup}\left(\sigma_{\text {NOT Cond }}(R)\right)=\operatorname{Tup}_{R}-\operatorname{Tup}\left(\sigma_{\text {Cond }}(R)\right)\)
\(\operatorname{Tup}\left(\sigma_{\text {NOTA }=3}(\mathrm{R})\right)=\ldots\)

\section*{Size of a selection with OR}
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- \(\mathrm{TSize}_{\mathrm{R}}\) is the size of a tuple in R in bytes
- \(\operatorname{VaI}_{\mathrm{R}}(\mathrm{A})\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{R}\) is the size of \(R\) in bytes
- Multiple condition selection with OR, \(\sigma_{\text {Cond1 OR Cond2 OR ... }}(\mathrm{R})\)
- Option 1:
\[
\operatorname{Tup}\left(\sigma_{\text {Cond1 OR Cond2 OR } \ldots . .}(\mathrm{R})\right)=\operatorname{Tup}\left(\sigma_{\text {Cond1 }}(\mathrm{R})\right)+\operatorname{Tup}\left(\sigma_{\text {Cond2 }}(\mathrm{R})\right)+\ldots
\]
- Option 2:
\(\operatorname{Tup}\left(\sigma_{\text {Cond1 OR Cond2 OR } \ldots}(\mathrm{R})\right)=\min \left(\operatorname{Tup}_{R},\left(\operatorname{Tup}\left(\sigma_{\text {Cond1 }}(R)\right)+\operatorname{Tup}\left(\sigma_{\text {Cond2 }}(R)\right)+\ldots\right)\right)\)
- Option 3:
- Assume that \(m_{1}\) tuples satisfy the first condition, \(m_{2}\) satisfy the second condition, ...
- \(1-m_{i} /\) Tup \(_{R}\) is the proportion of tuples that do not satisfy the \(i\)-th condition
- \(\operatorname{Tup}\left(\sigma_{\text {A OR B OR } \ldots}(\mathrm{R})\right)=\operatorname{Tup}_{\mathrm{R}} *\left[1-\left(1-\mathrm{m}_{1} / \operatorname{Tup}_{\mathrm{R}}\right) *\left(1-\mathrm{m}_{2} / \operatorname{Tup}_{\mathrm{R}}\right)^{*} \ldots\right]\)

\section*{Size of a PRODUCT}
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- TSize \(_{R}\) is the size of a tuple in \(R\) in bytes
- \(\operatorname{Val}_{R}(A)\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{R}\) is the size of \(R\) in bytes
- The size of a Cartesian product \(R \times S\) can be calculated accurately:
- One tuple for each possible combination of the tuples in relations \(R\) and \(S\) : \(\operatorname{Tup}(R \times S)=\operatorname{Tup}_{R} * \operatorname{Tup}_{S}\)
- The size of each new tuple is the sum of the size of each of the original tuples: TSize \((R \times S)=\) TSize \(_{R}+\) TSize \(_{S}\)
- Size \((R \times S)=\operatorname{Tup}(R \times S) * \operatorname{TSize}(R \times S)=\operatorname{Tup}_{R} * \operatorname{Tup}_{S} *\) \(\left(\right.\) TSize \(_{\mathrm{R}}+\) TSize \(\left._{\mathrm{S}}\right)\)

\section*{Size of a NATURAL JOIN}
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- TSize \(_{R}\) is the size of a tuple in \(R\) in bytes
- \(\operatorname{Val}_{R}(A)\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{R}\) is the size of \(R\) in bytes
- The size of natural join \(R(X, A) \bowtie S(A, Y)\) depends on how the values of the join attribute \(A\) is distributed between relations \(R(X, A)\) and \(S(A, Y)\) :
- Disjoint set of \(A\) values - empty result: Tup \((R \bowtie S)=0\)
- \(A\) is a foreign key from \(R\) to \(S\)-- each tuple in \(R\) matches one tuple in \(S\) : Tup \((R \bowtie S)=\operatorname{Tup}_{R}\)
- Almost all the \(R\) and \(S\) tuples have the same \(A\) value -combine all the tuples in each relation:
\(\operatorname{Tup}(R \bowtie S)=\operatorname{Tup}_{R} * \operatorname{Tup}_{S}\)

\section*{Size of a NATURAL JOIN (cont.)}
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- \(\mathrm{TSize}_{\mathrm{R}}\) is the size of a tuple in R in bytes
- \(\operatorname{Val}_{\mathrm{R}}(\mathrm{A})\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{\mathrm{R}}\) is the size of R in bytes

\section*{Assumptions:}
- Inclusion of values: If \(\operatorname{Val}_{R}(A) \leq \operatorname{Val}_{S}(A)\), then assume that \(\delta\left(\pi_{A}(\mathrm{R})\right) \subseteq \delta\left(\pi_{\mathrm{A}}(\mathrm{S})\right)\), i.e., each A value in R has a match in S
- Value conservation: Assume that the value of non-join attributes is the same before and after join, i.e., \(\operatorname{Val}(R \bowtie S, B)=\operatorname{Val}_{R}(B)\), where \(B\) is an attribute in \(R\), but not in \(S\)
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)

\section*{Size of a NATURAL JOIN (cont.)}
- \(\operatorname{VaI}_{\mathrm{R}}(\mathrm{A})\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{\mathrm{R}}\) is the size of R in bytes

The number of tuples in \(R(X, A) \bowtie S(A, Y)\) can now be estimated as follows:
- If \(\operatorname{Val}_{\mathrm{R}}(\mathrm{A}) \leq \operatorname{Val}_{\mathrm{s}}(\mathrm{A})\), each tuple in R will match approximately \(\operatorname{Tup}_{S} / V a l_{S}(A)\) tuples in \(S\) : Tup \((R \bowtie S)=\operatorname{Tup}_{R} * \operatorname{Tup}_{S} / V{ }_{S}(A)\)
- Similarly, if \(\operatorname{Val}_{S}(A) \leq \operatorname{Val}_{R}(A): \operatorname{Tup}(R \bowtie S)=\operatorname{Tup}_{R} * \operatorname{Tup}_{S} / \operatorname{Val}_{R}(A)\)
- General: \(\operatorname{Tup}(R \bowtie S)=\operatorname{Tup}_{R} * \operatorname{Tup}_{S} / \max \left(\operatorname{Val}_{R}(A), \operatorname{Val}_{S}(A)\right)\)
- \(\operatorname{Val}(R \bowtie S, B)=\operatorname{Val}_{R}(B)\) for \(B\) an attribute in \(X\)
- \(\operatorname{Val}(R \bowtie S, C)=\operatorname{Val}_{S}(C)\) for \(C\) an attribute in \(Y\)
- \(\operatorname{Val}(R \bowtie S, A)=\min \left(\operatorname{Val}_{R}(A), \operatorname{Val}_{s}(A)\right)\) for the join-attribute \(A\)

\section*{Size of a NATURAL JOIN: Example}
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- TSize \(_{R}\) is the size of a tuple in \(R\) in bytes
- \(\operatorname{Val}_{R}(A)\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{R}\) is the size of \(R\) in bytes
\begin{tabular}{|l|l|l|}
\hline\(A(\mathrm{a}, \mathrm{b})\) & \(\mathrm{B}(\mathrm{b}, \mathrm{c})\) & \(\mathrm{C}(\mathrm{c}, \mathrm{d})\) \\
\hline \(\mathrm{T}_{\mathrm{A}}=10.000\) & \(\mathrm{~T}_{\mathrm{B}}=2.000\) & \(\mathrm{~T}_{\mathrm{C}}=5.000\) \\
\hline \(\mathrm{~V}_{\mathrm{A}}(\mathrm{a})=5.000\) & \(\mathrm{~V}_{\mathrm{B}}(\mathrm{b})=100\) & \(\mathrm{~V}_{\mathrm{C}}(\mathrm{c})=100\) \\
\hline \(\mathrm{~V}_{\mathrm{A}}(\mathrm{b})=1.000\) & \(\mathrm{~V}_{\mathrm{B}}(\mathrm{c})=1.000\) & \(\mathrm{~V}_{\mathrm{C}}(\mathrm{d})=100\) \\
\hline
\end{tabular}
\(\operatorname{Tup}(A \bowtie B)=\ldots\) \(\operatorname{Tup}(A \bowtie B \bowtie C)=\ldots\)
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- \(\mathrm{TSize}_{\mathrm{R}}\) is the size of a tuple in R in bytes

\section*{Size of a NATURAL JOIN (cont.)}
- \(\operatorname{Val}_{\mathrm{R}}(\mathrm{A})\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{R}\) is the size of \(R\) in bytes
- If there is more than one join attribute, \(R\left(X, A_{1}, A_{2}, \ldots\right) \bowtie S\left(A_{1}, A_{2}, \ldots, Y\right)\), we get:
\(\operatorname{Tup}(R \bowtie S)=\frac{\left(\operatorname{Tup}_{R} * \operatorname{Tup}_{S}\right)}{\left(\max \left(\operatorname{Val}_{R}\left(\mathrm{~A}_{1}\right), \operatorname{Val}_{S}\left(\mathrm{~A}_{1}\right)\right) * \max \left(\operatorname{Val}_{\mathrm{R}}\left(\mathrm{A}_{2}\right), \operatorname{Val}_{S}\left(\mathrm{~A}_{2}\right)\right) * \ldots\right.}\)
for each \(A_{i}\) attribute common to \(R\) and \(S\)
- For natural join between multiple relationships \(R_{1} \bowtie R_{2} \bowtie R_{3} \bowtie \ldots \bowtie R_{n}\)
- Start with maximum number of tuples \(\operatorname{Tup}\left(R_{1}\right) * \operatorname{Tup}\left(R_{2}\right) * \operatorname{Tup}\left(R_{3}\right) * \ldots\) Tup \(\left(R_{n}\right)\)
- for each attribute \(A\) that occurs in more than one relationship, divide by all except the smallest \(\operatorname{Val}\left(R_{i}, A\right)\)

\section*{Size of a EQUI-JOIN and THETA-JOIN}
- The size of the equi-join is calculated as a natural join
- Calculate the size of theta-join \(R \bowtie_{\text {cond }} S\) by calculating the size of \(\sigma_{\text {cond }}(\mathrm{R} \bowtie \mathrm{S})\)

\section*{Size of a UNION}
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- TSize \(_{R}\) is the size of a tuple in \(R\) in bytes
- \(\operatorname{VaI}_{\mathrm{R}}(\mathrm{A})\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{R}\) is the size of \(R\) in bytes

Depends on whether we use the set or bag version:
- Bag:

The result is exactly equal to the sum of tuples in the arguments:
\(\operatorname{Tup}\left(R U_{b} S\right)=\operatorname{Tup}_{R}+\operatorname{Tup}_{S}\)
- Set:
- As for bags if relationships are disjointed
- Number of tuples in the largest relation if the smallest is a subset of it
- Usually somewhere between these. We can use the average, for example: \(\operatorname{Tup}\left(R U_{S} S\right)=\left(\operatorname{Tup}_{R}+\operatorname{Tup}_{S}\right) / 2\), where \(S\) is the smallest relationship

\section*{Size of INTERSECTION}
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- \(\mathrm{TSize}_{\mathrm{R}}\) is the size of a tuple in R in bytes
- \(\operatorname{VaI}_{\mathrm{R}}(\mathrm{A})\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{R}\) is the size of \(R\) in bytes
- Number of tuples in an intersection R \(\cap S\) is
- 0 if the relationships are disjointed
- \(\min \left(\operatorname{Tup}_{R}, \operatorname{Tup}_{s}\right)\) if one relationship is a subset of the other
- Usually somewhere in between, for example, can use the average:
\(\min \left(\right.\) Tup \(_{R}\), Tup \(\left._{s}\right) / 2\)

\section*{Size of DIFFERENCE}
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- \(\mathrm{TSize}_{\mathrm{R}}\) is the size of a tuple in R in bytes
- \(\operatorname{VaI}_{\mathrm{R}}(\mathrm{A})\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{R}\) is the size of \(R\) in bytes
- Number of tuples in a difference \(R-S\) is
- Tup \(_{R}\) if the relationships are disjointed
- \(\operatorname{Tup}_{R}-\operatorname{Tup}_{S}\) if all tuples in \(S\) is also in in \(R\)
- Usually somewhere in between. We can use the average, for example: \(\left(\operatorname{Tup}_{R}-\operatorname{Tup}_{\mathrm{S}}\right) / 2\)

\section*{Size of DUPLICATE ELIMINATION}
- The number of distinct tuples as a result of a duplicate elimination \(\delta(\mathrm{R})\) is
- 1 if all the tuples are the same
- \(\operatorname{Tup}_{R}\) if all the tuples are different
- An approach:
- Given \(\operatorname{Val}_{R}\left(A_{i}\right)\) for all \(n\) attributes, the maximum number of different tuples will be \(\operatorname{Val}_{\mathrm{R}}\left(\mathrm{A}_{1}\right) * \operatorname{Val}_{\mathrm{R}}\left(\mathrm{A}_{2}\right) * \ldots * \operatorname{Val}_{\mathrm{R}}\left(\mathrm{A}_{\mathrm{n}}\right)\)
- Let the estimated number of tuples be the least of this number and \(\operatorname{Tup}_{\mathrm{R}} / 2\), i.e., \(\min \left(\operatorname{Val}_{\mathrm{R}}\left(\mathrm{A}_{1}\right) * \operatorname{Val}_{\mathrm{R}}\left(\mathrm{A}_{2}\right) * \ldots * \operatorname{Val}_{\mathrm{R}}\left(\mathrm{A}_{\mathrm{n}}\right), \operatorname{Tup}_{\mathrm{R}} / 2\right)\)

\section*{Size of GROUPING}
- \(\operatorname{Tup}_{R}\) is the number of tuples in \(R\)
- \(\mathrm{TSize}_{\mathrm{R}}\) is the size of a tuple in R in bytes
- \(\operatorname{VaI}_{\mathrm{R}}(\mathrm{A})\) is the number of different values for attribute \(A\) in \(R\)
- Size \(_{R}\) is the size of \(R\) in bytes
- Grouping is similar to duplicate elimination:

Looks only at the grouping attributes \(\mathrm{A}_{1}, \mathrm{~A}_{2}, \ldots \mathrm{~A}_{\mathrm{m}}\)

\section*{Comparing Logical Query Plans}
- We compare different query plans for a given query using the size of temporary relations
- Estimate the result of each operator in the questionnaire
- Add costs to the tree
- The cost of the plan is equal to the sum of all the costs in the tree, except for
- the root - which is for the end result
- the leaf nodes - data stored on disk

\title{
Comparing Logical Query Plans: Example
}
```

StarsIn(title, year, starName)
MovieStar(name, address, gender, birthDate)
SELECT title FROM StarsIn
WHERE starName IN (
SELECT name FROM MovieStar
WHERE birthDate LIKE `%1960');

```

\section*{Statistics:}
```

Tup(StarsIn) $=10,000$
Val(StarsIn, starName) $=500$
TSize(StarsIn) = 80
Tup $($ MovieStar $)=1,000$
$\operatorname{Val}($ MovieStar, name $)=1,000$
$\operatorname{Val}($ MovieStar, birthDate $)=50$
TSize $($ MovieStar $)=100$

```

```

$\mathrm{UiO}:$ Institutt for informatikk

```


Det matematisk-naturvitenskapelige fakultet

\section*{Comparing Logical Query Plans - Example}
\(\mathbf{A}_{1}=\sigma_{\text {birthDate LIKE }} \% 1960^{\prime}(\mathrm{MS}):\)
- \(\operatorname{Tup}\left(\mathrm{A}_{1}\right)=\operatorname{Tup}(\sigma(\mathrm{MS}))=\operatorname{Tup}(\mathrm{MS}) / \operatorname{Val}(\mathrm{MS}\), birthDate \()=1000 / 50=20\)
- \(\operatorname{Size}\left(\mathrm{A}_{1}\right)=20 * 100=2000\)
\(\mathrm{A}_{2}=\pi_{\text {name }}\left(\mathrm{A}_{1}\right)\) :
- \(\operatorname{Tup}\left(\mathrm{A}_{2}\right)=\operatorname{Tup}\left(\pi\left(\mathrm{A}_{1}\right)\right)=\operatorname{Tup}\left(\mathrm{A}_{1}\right)=20\)
- Assume that name is 20 bytes
- \(\operatorname{TSize}\left(\mathrm{A}_{2}\right)=20\)
- \(\operatorname{Size}\left(\mathrm{A}_{2}\right)=20 * 20=400\)
\(A_{3}=S I \bowtie A_{2}\) :
- \(\operatorname{Tup}\left(\mathrm{A}_{3}\right)=\operatorname{Tup}\left(\mathrm{SI} \bowtie \mathrm{A}_{2}\right)=\)
- \(\operatorname{Tup}(\mathrm{SI})^{*} \operatorname{Tup}\left(\mathrm{~A}_{2}\right) / \max \left[\operatorname{Val}(\mathrm{SI}\right.\), starName \(), \operatorname{Val}\left(\mathrm{A}_{2}\right.\), name \(\left.)\right]=\) 10,000 * \(20 / \max (500, \underline{20})=400\)
- \(\operatorname{Size}\left(\mathrm{A}_{3}\right)=400\) * \((80+20-20)=32,000\)
\(\mathrm{A}_{4}=\pi_{t i t l e}\left(\mathrm{~A}_{3}\right)\) :
- \(\operatorname{Tup}\left(\mathrm{A}_{4}\right)=\operatorname{Tup}\left(\pi\left(\mathrm{A}_{3}\right)\right)=\operatorname{Tup}\left(\mathrm{A}_{3}\right)=400\)
- Assume that title is 40 bytes
- \(\operatorname{Size}\left(\mathrm{A}_{4}\right)=400\) * \(40=16,000\)

\section*{Statistics:}

Tup(StarsIn) \(=10,000\)
\(\mathrm{Val}(\) StarsIn, starName \()=500\)
TSize(StarsIn) \(=80\)
Tup(MovieStar) \(=1,000\)
Val(MovieStar, name) \(=1,000\)
\(\mathrm{Val}(\) MovieStar, birthDate \()=50\)
TSize \((\) MovieStar \()=100\)


\section*{Comparing Logical Query Plans - Example}
\(\mathbf{A}_{\mathbf{1}}=\sigma_{\text {birthDate }}\) LIKE \({ }^{\circ} \% 1960\) ( MS ) \(\rightarrow\) as before: 2000, \(\operatorname{Tup}(\sigma(\mathrm{MS}))=20\)
\(\mathrm{A}_{2}=\pi_{\text {name }}\left(\mathrm{A}_{1}\right) \rightarrow\) as before: \(400, \operatorname{Tup}\left(\mathrm{~A}_{2}\right)=\operatorname{Tup}\left(\mathrm{A}_{1}\right)=20\)
\(B_{3}=S I \times A_{2}\) :
- \(\operatorname{Tup}\left(\mathrm{B}_{3}\right)=\operatorname{Tup}\left(\mathrm{SI} \times \mathrm{A}_{2}\right)=\operatorname{Tup}(\mathrm{SI}) * \operatorname{Tup}\left(\mathrm{~A}_{2}\right)=10000 * 20=200,000\)
- \(\operatorname{TSize}\left(\mathrm{A}_{2}\right)=20\)
- \(\operatorname{Size}\left(B_{3}\right)=200,000 *(80+20)=20,000,000\)
\(\mathrm{B}_{4}=\sigma_{\text {starName }}=\) name \(\left(\mathrm{B}_{3}\right)\) :
- \(\operatorname{Tup}\left(\mathrm{B}_{4}\right)=\operatorname{Tup}\left(\sigma\left(\mathrm{B}_{3}\right)\right)=\)
\(\operatorname{Tup}\left(\mathrm{B}_{3}\right) / \max \left(\mathrm{Val}\left(\mathrm{B}_{3}\right.\right.\), name \(), \mathrm{Val}(\mathrm{SI}\), starName \(\left.)\right)=\) 200,000 / max (20,500) \(=400\)
- \(\operatorname{TSize}\left(\mathrm{B}_{4}\right)=\operatorname{TSize}(\mathrm{SI})+\mathrm{TSize}\left(\mathrm{B}_{3}\right)=80+20=100\)
- \(\operatorname{Size}\left(B_{4}\right)=400 * 100=40,000\)
\(B_{5}=\pi_{\text {title }}\left(B_{4}\right) \rightarrow\) as \(A_{4}: 400 * 40=16,000\)


\section*{Comparing Logical Query Plans - Example}


Total: \(2000+400+32,000=34,400\)


Total: \(2000+400+20,000,000+40,000=20,042,400\)```

