
IN3020/4020 – Database Systems
Spring 2021, Weeks 4.2-5.2

Query Compilation – Parts 1-3

Egor V. Kostylev
Based upon slides by E. Thorstensen and M. Naci Akkøk

Query Compilation: Two Parts
Part 1:
o Parsing and (translating to relational algebra)
o Logical query plans (expressed in relational algebra)
o Optimization (using algebraic laws)

Part 2:
o Estimate the size/cost of the intermediary results
o Evaluate physical query plans

Materials to Read
o Part 8, Chapter 19 (and parts of 18) of the Book (Elmasri & Navathe,

«Fundementals of Database Systems»)
o Parsing: not covered in the Book, can be read in any book on Compilers

(or Wikipedia)
o NOTE: I do not follow any of them line by line

Overview: The (Typical) Journey of a Query

PARSE

APPLY LAWS

ESTIMATE RESULT SIZE

CONSTRUCT PHYSICAL PLANS

CONVERT

EXECUTE

PICK THE BEST

ESTIMATE COSTS

SQL

Statistics

Parse tree

Logical query plan (LQP)

Improved LQPs

{ (LQP1, Size1), … }

Physical query plans (PQPs)

{ (PQP1, Size1), … }

PQPi

RESULT

Parsing

PARSE

APPLY LAWS

ESTIMATE RESULT SIZE

CONSTRUCT PHYSICAL PLANS

CONVERT

EXECUTE

PICK THE BEST

ESTIMATE COSTS

SQL

Statistics

Parse tree

Logical query plan (LQP)

Improved LQPs

{ (LQP1, Size1), … }

Physical query plans (PQPs)

{ (PQP1, Size1), … }

PQPi

RESULT

The goal is to convert an SQL-query to a parse tree

o Each node in a parse tree is
o an atom (primitive) – i.e., a lexical element like a keyword,

name, constant, parentheses or operators ... (leaf node)
o a syntactic category – part of the query ... (inner node)

Parsing

o Query:
o <Query> ::= <SFW>
o <Query> ::= (<Query>)
o <Query> ::= ... (e.g., rules with UNION)

o Rule 2 is typically used in sub-queries

Simple Grammar #1

o Select-From-Where:
o <SFW> ::= SELECT <SelList> FROM <FromList> WHERE <Condition> [...]
o [...] includes productions for GROUP BY, HAVING, ORDER BY, etc.

o Select-list:
o <SelList> ::= <Attribute>
o <SelList> ::= <Attribute>, <SelList>
o <SelList> ::= ... (e.g., rules for expressions and aggregate functions)

o From-list:
o <FromList> ::= <Relation>
o <FromList> ::= <Relation>, <FromList>
o <FromList> ::= ... (e.g., rules for aliasing and expressions R JOIN S)

Simple Grammar #2

o Condition:
o <Condition> ::= <Condition> AND <Condition>
o <Condition> ::= <Tuple> IN <Query>
o <Condition> ::= <Attribute> = <Attribute>
o <Condition> ::= <Attribute> LIKE <Pattern>
o <Condition> ::= ... (e.g., rules for OR, NOT, comparison)

o Tuple:
o <Tuple> ::= <Attribute>
o <Tuple> ::= ... (e.g., rules for tuples with multiple attributes)

o Basic syntactic categories like <Relation>, <Attribute>, <Pattern> etc. do not have own
rules, but are replaced with a name or a text string

Simple Grammar #3

Find films with actors born in 1960:

SELECT title FROM StarsIn WHERE starName IN
(SELECT name

FROM MovieStar
WHERE birthDate LIKE ‘%1960’

);

Simple Grammar: Example

Simple Grammar: Example
SELECT title FROM StarsIn WHERE starName IN
(SELECT name

FROM MovieStar
WHERE birthDate LIKE ‘%1960’

);

o Checks that the query are syntactically correct (i.e., parses)
o Checks that the query are semantically correct:
o relations – each relation in FROM must be a relation or a

view in the schema the query is executed
Each view must be replaced by a parsing tree.

o attributes – each attribute must exist in one of the
relations within the scope of the query

o types – all usage of attributes must be in accordance with
the given types

Pre-processor

Generating the logical query plan

PARSE

APPLY LAWS

ESTIMATE RESULT SIZE

CONSTRUCT PHYSICAL PLANS

CONVERT

EXECUTE

PICK THE BEST

ESTIMATE COSTS

SQL

Statistics

Parse tree

Logical query plan (LQP)

Improved LQPs

{ (LQP1, Size1), … }

Physical query plans (PQPs)

{ (PQP1, Size1), … }

PQPi

RESULT

SELECT <SelList> FROM <FromList> WHERE <Condition>

o Replace the relations in <FromList> with the product (×) of
all the relations

o This product is the argument for the selection (𝜎C) where C
is the <Condition>

o This selection is the argument for the projection (𝜋L) where
L is the list of attributes in <SelList>

Converting Select-From-Where (SFW)

SELECT name FROM MovieStar WHERE birthDate LIKE ‘%1960’

SFW conversion example Product (×) of all relations in <FromList>
Selection (𝜎C) with C as <Condition>
Projection (𝜋L) with L as attributes in <SelList>

𝜋name

𝜎birthDate LIKE ´%1960´

×MovieStar

Simple Grammar: Example
SELECT title FROM StarsIn WHERE starName IN
(SELECT name

FROM MovieStar
WHERE birthDate LIKE ‘%1960’

);

o For subqueries,
we use an auxiliary operator,
the two-argument selection 𝜎(R, T),
where T represents the subquery
(i.e., that corresponds to <Condition>)

o Further processing depends on the type
of the subquery

Converting sub-queries

T
(represents)

(subquery)

(correponds to)

SELECT title FROM StarsIn WHERE starName IN
(SELECT name

FROM MovieStar
WHERE birthDate LIKE ‘%1960’

);

Let us look at t IN S as one example:
o Replace <Condition> with the tree for S
o If S can contain duplicates, we need a 𝛿

operator above S
o Replace two-argument selection with one-

argument selection 𝜎C , where C compares
each component in t with the corresponding
attribute in S

o Let 𝜎C get the R × S as argument

Converting sub-queries
Example

Converting sub-queries
Example
o Product of the relations in <FromList>
o Select based upon <Condition>,

represented by two-argument selection
o Project on the attributes in <SelList>
o Replace (temporarily) subquery with its

parse tree

SELECT title FROM StarsIn WHERE starName IN
(SELECT name

FROM MovieStar
WHERE birthDate LIKE ‘%1960’

);

Converting sub-queries
Example
o Product of the relations in <FromList>
o Select based upon <Condition>,

represented by two-argument selection
o Project on the attributes in <SelList>
o Replace (temporarily) subquery with its

parse tree

SELECT title FROM StarsIn WHERE starName IN
(SELECT name

FROM MovieStar
WHERE birthDate LIKE ‘%1960’

);

Converting sub-queries
Example
o Replace <Condition> with the subquery tree
o Replace two-argument selection with one-argument selection 𝜎C , where C is starName = name
o Let 𝜎C operate on the product of StarsIn and MovieStar as an argument

SELECT title FROM StarsIn WHERE starName IN
(SELECT name

FROM MovieStar
WHERE birthDate LIKE ‘%1960’

);

o Sub-query conversion becomes more complicated if the
sub-query is related to values defined outside the scope of
the sub-query

o We must then create a relation with extra attributes for
comparison with the external attributes

o The extra attributes are later removed using projections
o In addition, all duplicate tuples must be removed

Converting sub-queries – some notes

o These parse trees are converted into «execution plans» in
several stages

o Logical plan: Relational algebra expressions
o Physical plan: Actual algorithms

o These are supposed to be two distinct stages, but, the two
stages often overlap in reality

Logical and Physical query plans

Algebraic laws for improving logical query
plans

PARSE

APPLY LAWS

ESTIMATE RESULT SIZE

CONSTRUCT PHYSICAL PLANS

CONVERT

EXECUTE

PICK THE BEST

ESTIMATE COSTS

SQL

Statistics

Parse tree

Logical query plan (LQP)

Improved LQPs

{ (LQP1, Size1), … }

Physical query plans (PQPs)

{ (PQP1, Size1), … }

PQPi

RESULT

Logical query plans – Example

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´

Logical query plans – Strategy 1

𝜋

𝜎

×

R S

1. Take the cross product of R and S
2. Select tuples
3. Project the attributes

𝐵, 𝐶, 𝑌

𝑊 = 𝑋 ∧ 𝐴 = 3 ∧ 𝑍 = ´𝑎´𝜋 (𝜎 (R × S))
𝐵, 𝐶, 𝑌 𝑊 = 𝑋 ∧ 𝐴 = 3 ∧ 𝑍 = ´𝑎´

NOTE:
attributes = #R-attributes + #S-attributes = 23 + 3 = 26
tuples = #R-tuples x #S-tuples = 9 x 9 = 81

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´

Logical query plans – Strategy 1

RESULT

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´

𝜋 (𝜎 (R × S))
𝐵, 𝐶, 𝑌 𝑊 = 𝑋 ∧ 𝐴 = 3 ∧ 𝑍 = ´𝑎´

Logical query plans – Strategy 2
1. Select tuples
2. Do an equi-join
3. Project the attributes

𝜋 ((𝜎 (R)) ⋈ (𝜎 (S))
𝐵, 𝐶, 𝑌 𝐴 = 3 𝑊 = 𝑋 𝑍 = ´𝑎´

R S

𝜋𝐵, 𝐶, 𝑌

⋈𝑊 = 𝑋

𝜎𝐴 = 3 𝜎𝑍 = ´𝑎´

𝜋 (𝜎 (R × S))
𝑊 = 𝑋 ∧ 𝐴 = 3 ∧ 𝑍 = ´𝑎´𝐵, 𝐶, 𝑌

Strategy 1 for comparison:

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´

Logical query plans – Strategy 2
1. Select tuples
2. Do an equi-join
3. Project the attributes

𝜋 ((𝜎 (R)) ⋈ (𝜎 (S))
𝐵, 𝐶, 𝑌 𝐴 = 3 𝑊 = 𝑋 𝑍 = ´𝑎´

⋈

RESULT

𝜋

𝜎

𝜎

1 123

Logical query plans – Strategy 3
USE INDICES!
1. Use the index on R.A to select tuples where R.A = 3
2. Use the index on S.X to select tuples where S.X = R.W
3. Select the S-tuples where S.Z = ´a´
4. Join the tuples from R and S that match
5. Project the attributes B, C and Y

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´

1. Use the index on R.A to select tuples where R.A = 3

A B C … W

3 r 8 … 7

3 t 5 … 9

A B C … W

1 z 1 … 4

2 c 6 … 2

3 r 8 … 7

4 n 9 … 4

2 j 0 … 3

3 t 5 … 9

7 e 3 … 3

8 f 5 … 8

1 h 7 … 5

R

r1

IR.A

Logical query plans – Strategy 3
USE INDICES!
1. Use the index on R.A to select tuples where R.A = 3
2. Use the index on S.X to select tuples where S.X = R.W
3. Select the S-tuples where S.Z = ´a´
4. Join the tuples from R and S that match
5. Project the attributes B, C and Y

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´

2. Use the index on S.X to select tuples where S.X = R.W

A B C … W

3 r 8 … 7

3 t 5 … 9

X Y Z

1 a a

2 f c

3 t b

4 b b

7 k a

6 e a

7 g c

8 i b

9 e c

X Y Z

7 k a

7 g c

9 e c

r1S

s1

IS.X

Logical query plans – Strategy 3
USE INDICES!
1. Use the index on R.A to select tuples where R.A = 3
2. Use the index on S.X to select tuples where S.X = R.W
3. Select the S-tuples where S.Z = ´a´
4. Join the tuples from R and S that match
5. Project the attributes B, C and Y.

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´

3. Select the S-tuples where S.Z = ´a´

X Y Z

7 k a

7 g c

9 e c

s1
X Y Z

7 k a

s2

Logical query plans – Strategy 3
USE INDICES!
1. Use the index on R.A to select tuples where R.A = 3
2. Use the index on S.X to select tuples where S.X = R.W
3. Select the S-tuples where S.Z = ´a´
4. Join the tuples from R and S that match
5. Project the attributes B, C and Y.

SELECT B, C, Y
FROM R, S
WHERE W = X AND A = 3 AND Z =´a´

4. Join the tuples from R and S that match

X Y Z

7 k a

s2
A B C … W

3 r 8 … 7

3 t 5 … 9

r1
A B C … W X Y Z

3 r 8 … 7 7 k a

B C Y

r 8 k

Result

5. Project the attributes B, C and Y

Strategy 3 Summary

A B C … W

1 z 1 … 4

2 c 6 … 2

3 r 8 … 7

4 n 9 … 4

2 j 0 … 3

3 t 5 … 9

7 e 3 … 3

8 f 5 … 8

1 h 7 … 5

R

IR.A

X Y Z

1 a a

2 f c

3 t b

4 b b

7 k a

6 e a

7 g c

8 i b

9 e c

S

IS.X

A B C … W

3 r 8 … 7

3 t 5 … 9

X Y Z

7 k a

7 g c

9 e c

X Y Z

7 k a

A B C … W X Y Z

3 r 8 … 7 7 k a

B C Y

r 8 k

Result

1

2

3

4

5

1. Use the index on R.A to select tuples where R.A = 3
2. Use the index on S.X to select tuples where S.X = R.W
3. Select the S-tuples where S.Z = ´a´
4. Join the tuples from R and S that match
5. Project the attributes B, C and Y

Algebraic laws for improving logical query
plans

PARSE

APPLY LAWS

ESTIMATE RESULT SIZE

CONSTRUCT PHYSICAL PLANS

CONVERT

EXECUTE

PICK THE BEST

ESTIMATE COSTS

SQL

Statistics

Parse tree

Logical query plans (LQPs)

Improved LQPs

{ (LQP1, Size1), … }

Physical query plans (PQPs)

{ (PQP1, Size1), … }

PQPi

RESULT

o An operator 𝜔 is commutative if the order of the arguments
does not matter:

x 𝜔 y = y 𝜔 x

o An operator is associative if the order of applications has no
significance:

x 𝜔 (y 𝜔 z) = (x 𝜔 y) 𝜔 z

Commutativity and associativity

o Natural join and product are both commutative and associative:
o R⋈S = S⋈R and R⋈ (S ⋈ T) = (R ⋈ S) ⋈ T
o R × S = S × R and R × (S × T) = (R × S) × T

o What about theta-join?
o Commutative: R ⋈c S = S ⋈c R
o But not always associative (formally)

o Example: Given the relationships R (a, b), S (b’, c), T (c, d), we
have (R ⋈b<b’ S) ⋈a<d T ≠ R ⋈b<b’ (S⋈a<dT)

Algebraic laws for product and join

Does the order of joins (incluing products) have an effect on efficiency?
o If only one of the relations fits into the memory, this should be the first

argument -- a one-pass operation that reduces the number of disk IOs
o If the product or join of two of the relations result in a temporary relation that

fits into the memory, these joins should be taken first to save both memory
space and disk IO

o Temporary relations (intermediate results) should be as small as possible to save
memory space

o If we can estimate (using statistics) the number of tuples to be joined, we can
save many operations by joining the relations that give the fewest tuples first

Order of joins

o Union and intersection are commutative and associative:
o R ∪ S = S ∪ R R ∪ (S ∪ T) = (R ∪ S) ∪ T
o R ∩ S = S ∩ R R ∩ (S ∩ T) = (R ∩ S) ∩ T

o Union distributes over intersection:
o R ∪ (S ∩ T) = (R ∪ S) ∩ (R ∪ T)

o Intersection distributes over union only for sets(!):
o R ∩S (S ∪S T) = (R ∩S S) ∪S (R ∩S T)
o R ∩B (S ∪B T) ≠ (R ∩B S) ∪B (R ∩B T)

Algebraic laws for union and intersection

o Selection is a very important operator for optimization
o Reduces the number of tuples (the size of the relationship)
o General rule: push selections as far down the tree as possible

o Conditions with AND and OR can be split:
o 𝜎a AND b (R) = 𝜎a (𝜎b (R))
o 𝜎a OR b (R) = (𝜎a (R)) ∪S (𝜎b (R)), where R is a set and ∪S is a set union

o Splitting OR works only when R is a set, but if R is a bag and both
conditions are met, bag union will include a tuple twice - once in each
selection

o The order of subsequent selections has no bearing on the resulting set:
o 𝜎a (𝜎b (R)) = 𝜎b (𝜎a (R))

Algebraic laws for selection

o When selection is pushed down the tree, then ...
o It must be pushed to both arguments for

o Union: 𝜎a(R ∪ S) = 𝜎a(R) ∪ 𝜎a(S)
o It must be pushed to the first argument (optionally the second argument too) for

o Difference: 𝜎a(R − S) = 𝜎a(R) − S = 𝜎a(R) − 𝜎a(S)
o It can be pushed to one or both arguments for

o Intersection: 𝜎a(R ∩ S) = 𝜎a(R) ∩ 𝜎a(S) = R ∩ 𝜎a(S) = 𝜎a(R) ∩ S
o Join: 𝜎a(R⋈S) = 𝜎a(R) ⋈ 𝜎a(S) = R ⋈ 𝜎a(S) = 𝜎a(R) ⋈ S (only if make sence!)
o Theta join: 𝜎a(R ⋈b S) = 𝜎a(R) ⋈b 𝜎a(S) = R ⋈b 𝜎a(S) = 𝜎a(R) ⋈b S (same!)
o Cartesian product: similarly, but be careful with renaming

Pushing selection

Assume that each attribute is 1 byte

𝝈A = 2 (R ⋈ S)
o join: compare 4 * 4 items = 16 operations

store (cache) the relation: R ⋈ S yields
((23 + 3) x 2) = 52 bytes

o selection: check each tuple: 2 operations

𝝈A = 2 (R) ⋈ S
o selection: check each tuple in R: 4 operations

store (cache) the relation: 𝜎A = 2(R) gives 24
bytes

o join: compare 1 x 4 items = 4 operations

Pushing selection – Example
R S

R ⋈ S

𝝈A = 2 (R)

Sometimes it is useful to push selection the other way, ie upwards in the tree, using
the law 𝜎a(R ⋈ S) = R ⋈ 𝜎a(S) «backwards».

Pushing selection upwards in the tree

EXAMPLE: StarsIn(title, year, starName); Movies(title, year, studio ...)
CREATE VIEW Movies96 AS

SELECT * FROM Movies WHERE year = 1996;
SELECT starName, studio FROM Movies96 NATURAL JOIN StarsIn;

REMEMBER Join: 𝜎a(R⋈S) = 𝜎a(R) ⋈ 𝜎a(S) = R ⋈ 𝜎a(S) = 𝜎a(R) ⋈ S

Projection can be pushed through join and cross product (i.e., new projections can
be introduced) as long as we do not remove attributes used further up the tree:
o 𝜋L(R ⋈ S) = 𝜋L(𝜋M(R) ⋈ 𝜋N(S)) if

o M contains the join attributes and those of L that are in R
o N contains the join attributes and those of L that are in S

o 𝜋L(R ⋈C S) = 𝜋L(𝜋M(R) ⋈C 𝜋N(S)) if
o M contains the join attributes and the attributes in C and L that are in R
o N contains the join attributes and the attributes in C and L that are in S

o 𝜋L(R × S) = 𝜋M(R) × 𝜋N(S) if
o M contains the attributes of L that are in R (appropriately renamed)
o N contains the attributes of L that are in S (appropriately renamed)

Algebraic laws for projection #1

Projection can be pushed through bag union:
𝜋L(R ∪B S) = 𝜋L(R) ∪B 𝜋L(S))

Note: The same rule does not apply to set union, set
intersection, bag intersection, set difference or bag difference
because projection can change the multiplicity of the tuples:
o R being a set does not necessarily mean that 𝜋L(R) is a set
o If R is a bag and a tuple t occurs k times in R, then the

projection of t on L may occur more than k times in 𝜋L(R).

Algebraic laws for projection #2

Projection can be pushed through selection (new projections
are introduced) as long as we do not remove attributes used
further up the tree:

o 𝜋L(𝜎C(R)) = 𝜋L(𝜎C(𝜋M(R)))
if M contains the attributes in C and L

o NOTE: If R has an index on some of the attributes in
selection condition C, then this index will not be possible to
use during selection if we first do a projection on M.

Algebraic laws for projection #3

Two important laws that follow from the definition of join:

o 𝜎C(R ⋈ S) = R ⋈C S

o 𝜋L(𝜎C(R × S)) = R ⋈ S if
o C compares (via AND) each pair of tuples from R and S

with the same name
o L is all attributes of R and S appropriately renamed and

without repetitions

Algebraic laws for join, product,
selection and projection

o 𝜋L(𝜎R.a = S.a (R × S)) vs. R ⋈ S
o R(a,b,c,d,e,..., k), #Tuples(R) = 10,000, S(a,l,m,n,o,...,z), #Tuples(S) = 100
o Each attribute takes 1 byte, a is a candidate (e.g., primary) key in both R and S
o Assumes that each tuple in S find a single match in R, i.e., 100 tuples in the result

o 𝜋L(𝜎C(R × S)):
o Cross product:

combine 10,000 * 100 items = 1,000,000 operations
temp storage, relation R × S = 1,000,000 * (11 + 16) = 27,000,000 bytes

o Selection:
Check each tuple: 1,000,000 operations
temp storage, relation 𝜎R.a = S.a (R × S) = 100 * 27 = 2700 bytes

o Projection:
Check each tuple: 100 operations

o R⋈S:
o join: check 10,000 * 100 elements = 1,000,000 operations

Examples

Duplication elimination can reduce the size of temporary relations by pushing
through

o Cartesian product: 𝛿(R × S) = 𝛿(R) × 𝛿(S)
o Join: 𝛿(R⋈S) = 𝛿(R) ⋈ 𝛿(S)
o Theta join: 𝛿(R ⋈C S) = 𝛿(R) ⋈C 𝛿(S)
o Selection: 𝛿(𝜎C(R)) = 𝜎C(𝛿(R))
o Bag intersection: 𝛿(R ∩B S) = 𝛿(R) ∩B 𝛿(S) = 𝛿(R) ∩B S = R ∩B 𝛿(S)

o Note: duplicate elimination cannot be pushed through
o Bag union and difference
o Projection

Algebraic laws for duplicate elimination

This one is easy: No general rules!

Algebraic laws for grouping operation

The most common LQP optimizations are:
o Push selections as far down as possible
o If the selection condition consists of several parts (AND or OR), split

into multiple selections and push each one as far down the tree as
possible

o Push projections as far down as possible
o Combine selections and Cartesian products to an appropriate join
o Duplicate eliminations can sometimes be removed
o But don't ruin indexing: Pushing projection past a selection can ruin the

use of indexes in the selection!

Improving (optimizing) logical query plans

Query Compilation (in two parts)
Part 1 (done in part 1):
o Parsing
o Logical query plans (expressed in relational algebra)
o Optimization (using algebraic laws)

Part 2 (now in part 2):
o Estimate the size/cost of the intermediary results
o (Construct physical query plans)

OVERVIEW: Our focus in part 2

PARSE

APPLY LAWS

ESTIMATE RESULT SIZE

CONSTRUCT PHYSICAL PLANS

CONVERT

EXECUTE

PICK THE BEST

ESTIMATE COSTS

SQL

Statistics

Parse tree

Logical query plan (LQP)

Improved LQPs

{ (LQP1, Size1), … }

Physical query plans (PQPs)

{ (PQP1, Size1), … }

PQPi

RESULT

OVERVIEW

o To assess both logical and physical plans, we need some way
to calculate cost

o These can not be calculated exactly (depending on the data
we have), so the DBMS estimates the costs

o We want a cost function C that can be calculated locally:
C(R ⋈c S) should be possible to calculate from C(R) and C(S)

o What kind of costs exist? What do we mean by cost? What
should we choose as cost?

Costs: IO!

o Disk IO: Cost of reading
o A given page (random read)
o A sequence of pages (sequential read)

o Sequence is usually cheaper
o Relevant to choose from
o Table scan
o Index scan

Costs: Number of tuples (and size in bytes)

o Number of tuples to process in one operation
o Relevant for everything, including disk operations
o We will look at how this is estimated

o Size of each tuple in relation in bytes and size of the overall
relation are together more fine-grained

Theme now: Estimating result size

PARSE

APPLY LAWS

ESTIMATE RESULT SIZE

CONSTRUCT PHYSICAL PLANS

CONVERT

EXECUTE

PICK THE BEST

ESTIMATE COSTS

SQL

Statistics

Parse tree

Logical query plan (LQP)

Improved LQPs

{ (LQP1, Size1), … }

Physical query plans (PQPs)

{ (PQP1, Size1), … }

PQPi

RESULT

Estimating size
o Ideally, we want rules that are
o Accurate: a small error can result in the selection of an

inappropriate algorithm in the physical query plan
o Easy to calculate: minimal extra cost to make the choice
o Logically consistent: not dependent on a specific

algorithm for the operator
o No universal algorithm exists
o Fortunately, approximate estimates also help choose a good

physical query plan

Notation

o TupR (or Tup(R)) is the number of tuples in R
o this is an estimate, so may be not integer

o TSizeR is the size of a tuple in R in bytes
o SizeR is the size of R in bytes: SizeR = TupR * TSizeR

o ValR(A) is the number of different values for
attribute A in R

o Average number of tuples with equal A values: TupR / ValR(A)

Size of a projection

o The size of a projection 𝜋L(R) can be calculated accurately:

o One result tuple for each argument tuple
Tup(𝜋A, B, ...(R)) = TupR

o Changes only the size of each tuple:
Size(𝜋A, B, ...(R)) = TupR * (TSizeR.A + TSizeR.B + ...)

o Val(𝜋A, B, ...(R), A) = Val(R, A)

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of projection: Example
R A: 4 byte integer

B: 20 byte text string
C: 4 byte date (year)
D: 30 byte text string

Size(𝜋A, B, ...(R)) = TupR * (TSizeA + TSizeB + ...)
SizeR = ...
Size(𝜋A(R)) = ...
Size(𝜋&, (,), *, &+,- →/ (R)) = ...

ValR(A) = 5
ValR(B) = 2
ValR(C) = 4
ValR(D) = 3

TupR = 5
TSizeR = 58

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of a selection
o A selection 𝜎Cond(R) reduces the number of tuples, but the size

of each tuple remains unchanged
o Size(𝜎Cond(R)) = Tup(𝜎Cond(R)) * TSizeR

o Estimating the number of tuples depends upon
o the selection condition Cond
o distribution of values for the relevant attributes:
o we assume a uniform distribution where we use ValR(A) to

estimate the number of tuples in the result (naive)
o DBMSs use more advanced statistics (e.g., histograms)

o Estimation of the number of values Val can be done similarly

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of a selection (cont.)
For attribute A and constant c:
o Similarity, 𝜎A = c (R):

Use the selectivity factor 1/ValR(A)
Tup(𝜎A = c (R)) = TupR / ValR(A)

o Inequality, 𝜎A ≠ c (R):
Use the selectivity factor 1 - 1/ValR(A)
Tup(𝜎A ≠ c (R)) = TupR * (1 - 1/ValR(A))

o Interval, 𝜎A < c (R): ...
o Equality of two attributes, 𝜎A = B (R): ...

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of a selection: Example
A: 4 byte integer
B: 20 byte text string
C: 4 byte date (year)
D: 30 byte text string

ValR(A) = 5
ValR(B) = 2
ValR(C) = 4
ValR(D) = 3

TupR = 5
SizeR = 58

Tup(𝜎A = c(R)) = TupR / ValR(A)
Tup(𝜎A = 3(R)) = ...
Tup(𝜎B = ‘cat’(R)) = ...

Tup(𝜎! " #(R)) = TupR * (1 – 1/ValR (A))
Tup(𝜎$ " ´#&'´(R)) = ...

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of a selection
with AND and NOT
o Multi-condition selection with AND, 𝜎Cond1 AND Cond2 AND ...(R):

o estimate the size using one selectivity factor for each condition:
o 1 – 1 / ValR (A) for ≠ on attribute A
o 1 / ValR (A) for = on attribute A
o ...

o Tup (𝜎 Cond1 AND Cond2 AND ... (R)) = TupR * factorCond1 * factorCond2 * ...

o Selection with NOT, such as 𝜎NOT Cond (R):
o Use the selectivity factor 1 – Tup(𝜎Cond (R)) / TupR
o Tup (𝜎NOT Cond (R)) = TupR - Tup (𝜎NOT Cond (R))

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Selection with AND and NOT:
Example

A: 4 byte integer
B: 20 byte text string
C: 4 byte date (year)
D: 30 byte text string

ValR(A) = 5
ValR(B) = 2
ValR(C) = 4
ValR(D) = 3

TupR = 5
SizeR = 58

Tup(𝜎Cond1 AND Cond2 AND ... (R)) = TupR * factorCond1 * factorCond2 * ...
Tup(𝜎C = 1999 AND B ≠ ´𝑐𝑎𝑡´ (R)) = ...
Tup(𝜎NOT Cond (R)) = TupR - Tup (𝜎Cond (R))
Tup(𝜎NOT A = 3 (R)) = ...

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of a selection with OR
o Multiple condition selection with OR, 𝜎Cond1 OR Cond2 OR ...(R)

o Option 1:
Tup (𝜎 Cond1 OR Cond2 OR ...(R)) = Tup (𝜎Cond1 (R)) + Tup (𝜎Cond2 (R)) +...

o Option 2:
Tup (𝜎Cond1 OR Cond2 OR ...(R)) = min(TupR, (Tup(𝜎Cond1(R)) + Tup(𝜎Cond2(R)) + ...))

o Option 3:
o Assume that m1 tuples satisfy the first condition, m2 satisfy the second

condition, ...
o 1 - mi / TupR is the proportion of tuples that do not satisfy the i-th

condition
o Tup (𝜎A OR B OR ...(R)) = TupR * [1 – (1 – m1 / TupR) * (1 – m2 / TupR) * ...]

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of a PRODUCT

o The size of a Cartesian product R × S can be calculated
accurately:

o One tuple for each possible combination of the tuples in
relations R and S: Tup (R × S) = TupR * TupS

o The size of each new tuple is the sum of the size of each
of the original tuples: TSize (R × S) = TSizeR + TSizeS

o Size (R × S) = Tup (R × S) * TSize (R × S) = TupR * TupS *
(TSizeR + TSizeS)

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of a NATURAL JOIN
o The size of natural join R (X, A) ⋈ S (A, Y) depends on how

the values of the join attribute A is distributed between
relations R (X, A) and S (A, Y):

o Disjoint set of A values - empty result: Tup (R ⋈ S) = 0
o A is a foreign key from R to S -- each tuple in R matches one

tuple in S: Tup (R ⋈ S) = TupR
o Almost all the R and S tuples have the same A value --

combine all the tuples in each relation:
Tup (R ⋈ S) = TupR * TupS

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of a NATURAL JOIN (cont.)

Assumptions:
o Inclusion of values: If ValR(A) ≤ ValS(A), then assume that
𝛿(𝜋A(R)) ⊆ 𝛿(𝜋A(S)), i.e., each A value in R has a match in S

o Value conservation: Assume that the value of non-join
attributes is the same before and after join, i.e.,
Val(R ⋈ S, B) = ValR(B), where B is an attribute in R, but not
in S

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of a NATURAL JOIN (cont.)
The number of tuples in R (X, A) ⋈ S (A, Y) can now be estimated as
follows:
o If ValR(A) ≤ ValS(A), each tuple in R will match approximately

TupS/ValS(A) tuples in S: Tup (R ⋈ S) = TupR * TupS/ValS(A)
o Similarly, if ValS(A) ≤ ValR(A): Tup (R ⋈ S) = TupR * TupS/ValR(A)
o General: Tup(R ⋈ S) = TupR * TupS / max (ValR(A), ValS(A))
o Val(R ⋈ S, B) = ValR(B) for B an attribute in X
o Val(R ⋈ S, C) = ValS(C) for C an attribute in Y
o Val(R ⋈ S, A) = min (ValR(A), ValS(A)) for the join-attribute A

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of a NATURAL JOIN:
Example

Tup(A ⋈ B) = ...
Tup(A ⋈ B ⋈ C) = ...

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of a NATURAL JOIN (cont.)
o If there is more than one join attribute, R (X, A1, A2, ...) ⋈ S (A1, A2, ..., Y),

we get:
Tup (R ⋈ S) = (TupR ∗ TupS)

(max (ValR(A1), ValS(A1)) ∗ max (ValR (A2), ValS(A2)) ∗ ...
for each Ai attribute common to R and S

o For natural join between multiple relationships R1 ⋈ R2 ⋈ R3 ⋈ ... ⋈ Rn

o Start with maximum number of tuples
Tup(R1) * Tup (R2) * Tup (R3) * ... * Tup (Rn)

o for each attribute A that occurs in more than one relationship, divide by
all except the smallest Val(Ri, A)

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of a EQUI-JOIN and THETA-JOIN

o The size of the equi-join is calculated as a natural join

o Calculate the size of theta-join R ⋈Cond S by
calculating the size of 𝜎Cond(R ⋈ S)

Size of a UNION
Depends on whether we use the set or bag version:
o Bag:

The result is exactly equal to the sum of tuples in the arguments:
Tup (R ∪b S) = TupR + TupS

o Set:
o As for bags if relationships are disjointed
o Number of tuples in the largest relation if the smallest is a subset

of it
o Usually somewhere between these. We can use the average, for

example: Tup(R ∪s S) = (TupR + TupS) / 2, where S is the smallest
relationship

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of INTERSECTION

o Number of tuples in an intersection R∩S is
o 0 if the relationships are disjointed
o min(TupR, TupS) if one relationship is a subset of the other
o Usually somewhere in between, for example, can use the

average:
min(TupR, TupS) / 2

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of DIFFERENCE

o Number of tuples in a difference R – S is
- TupR if the relationships are disjointed
- TupR -TupS if all tuples in S is also in in R
- Usually somewhere in between. We can use the average,
for example: (TupR - TupS) / 2

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of DUPLICATE ELIMINATION
o The number of distinct tuples as a result of a duplicate elimination
𝛿(R) is
o 1 if all the tuples are the same
o TupR if all the tuples are different

o An approach:
o Given ValR(Ai) for all n attributes, the maximum number of different

tuples will be ValR(A1) * ValR(A2) * ... * ValR(An)
o Let the estimated number of tuples be the least of this number and

TupR/2, i.e., min (ValR (A1) * ValR (A2) * ... * ValR (An), TupR/2)

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Size of GROUPING

o Grouping is similar to duplicate elimination:

Looks only at the grouping attributes A1, A2, ... Am

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Comparing Logical Query Plans
o We compare different query plans for a given query using the size of

temporary relations
o Estimate the result of each operator in the questionnaire
o Add costs to the tree
o The cost of the plan is equal to the sum of all the costs in the tree,

except for
o the root – which is for the end result
o the leaf nodes – data stored on disk

Comparing Logical Query Plans:
Example
StarsIn(title, year, starName)
MovieStar(name, address, gender, birthDate)

SELECT title FROM StarsIn
WHERE starName IN (

SELECT name FROM MovieStar
WHERE birthDate LIKE ‘%1960’);

Statistics:
Tup(StarsIn) = 10,000

Val(StarsIn, starName) = 500
TSize(StarsIn) = 80

Tup(MovieStar) = 1,000
Val(MovieStar, name) = 1,000
Val(MovieStar, birthDate) = 50
TSize(MovieStar) = 100

A1

A4

A3

A2

• TupR is the number of tuples in R
• TSizeR is the size of a tuple in R in bytes
• ValR(A) is the number of different values for

attribute A in R
• SizeR is the size of R in bytes

Comparing Logical Query Plans - Example
Statistics:
Tup(StarsIn) = 10,000

Val(StarsIn, starName) = 500
TSize(StarsIn) = 80

Tup(MovieStar) = 1,000
Val(MovieStar, name) = 1,000
Val(MovieStar, birthDate) = 50
TSize(MovieStar) = 100

A1 = 𝜎birthDate LIKE ‘%1960’ (MS):
• Tup(A1) = Tup(𝜎(MS)) = Tup(MS) / Val(MS, birthDate) = 1000 / 50 = 20
• Size(A1) = 20 * 100 = 2000
A2 = 𝜋name(A1):
• Tup(A2) = Tup(𝜋(A1)) = Tup(A1) = 20
• Assume that name is 20 bytes
• TSize(A2) = 20
• Size(A2) = 20 * 20 = 400
A3 = SI ⋈ A2:
• Tup(A3) = Tup(SI ⋈ A2) =
• Tup(SI)*Tup(A2) / max [Val(SI, starName), Val(A2, name)] =

10,000 * 20 / max(500, 20) = 400
• Size(A3) = 400 * (80 + 20 - 20) = 32,000
A4 = 𝜋𝑡𝑖𝑡𝑙𝑒(A3):
• Tup(A4) = Tup(𝜋(A3)) = Tup(A3) = 400
• Assume that title is 40 bytes
• Size(A4) = 400 * 40 = 16,000

A1

A4

A3

A2

Comparing Logical Query Plans - Example

A1 =𝜎birthDate LIKE ‘%1960’(MS) → as before: 2000, Tup(𝜎(MS))=20
A2 = 𝜋name(A1) → as before: 400, Tup(A2) = Tup(A1) = 20
B3 = SI × A2:
• Tup(B3) = Tup(SI × A2)= Tup(SI) * Tup(A2) = 10000 * 20 = 200,000
• TSize(A2) = 20
• Size(B3) = 200,000 * (80 + 20) = 20,000,000
B4 = 𝜎starName = name(B3):
• Tup(B4) = Tup(𝜎(B3)) =

Tup(B3) / max(Val(B3, name), Val(SI, starName)) =
200,000 / max(20, 500) = 400

• TSize(B4) = TSize(SI)+TSize(B3)=80+20=100
• Size(B4) = 400 * 100 = 40,000
B5 = 𝜋title(B4) → as A4: 400 * 40 = 16,000

A1

A2

B3

B4

B5

Statistics:
Tup(StarsIn) = 10,000

Val(StarsIn, starName) = 500
TSize(StarsIn) = 80

Tup(MovieStar) = 1,000
Val(MovieStar, name) = 1,000
Val(MovieStar, birthDate) = 50
TSize(MovieStar) = 100

Comparing Logical Query Plans - Example

Total: 2000 + 400 + 32,000 = 34,400 Total: 2000 + 400 + 20,000,000 + 40,000 = 20,042,400

