IN3020/4020 – Database Systems Spring 2021, Weeks 4.2-5.2

Query Compilation – Parts 1-3

Egor V. Kostylev

Based upon slides by E. Thorstensen and M. Naci Akkøk

Query Compilation: Two Parts

Part 1:

- Parsing and (translating to relational algebra)
- Logical query plans (expressed in relational algebra)
- Optimization (using algebraic laws)

Part 2:

- Estimate the size/cost of the intermediary results
- Evaluate physical query plans

Materials to Read

- Part 8, Chapter 19 (and parts of 18) of the Book (Elmasri & Navathe, «Fundementals of Database Systems»)
- Parsing: not covered in the Book, can be read in any book on Compilers (or Wikipedia)
- NOTE: I do not follow any of them line by line

Overview: The (Typical) Journey of a Query

UiO ***** Institutt for informatikk

- Each node in a parse tree is
- an *atom (primitive)* i.e., a lexical element like a keyword, name, constant, parentheses or operators ... (leaf node)
- a syntactic category part of the query ... (inner node)

Simple Grammar #1

- \circ Query:
 - o <Query> ::= <SFW>
 - o <Query> ::= (<Query>)
 - o <Query> ::= ... (e.g., rules with UNION)
 - Rule 2 is typically used in sub-queries

Simple Grammar #2

- \circ Select-From-Where:
 - o <SFW> ::= SELECT <SelList> FROM <FromList> WHERE <Condition> [...]
 - [...] includes productions for GROUP BY, HAVING, ORDER BY, etc.
- Select-list:
 - o <SelList> ::= <Attribute>
 - o <SelList> ::= <Attribute>, <SelList>
 - <SelList> ::= ... (e.g., rules for expressions and aggregate functions)
- From-list:
 - o <FromList> ::= <Relation>
 - o <FromList> ::= <Relation>, <FromList>
 - o <FromList> ::= ... (e.g., rules for aliasing and expressions R JOIN S)

Simple Grammar #3

- Condition:
 - o <Condition> ::= <Condition> AND <Condition>
 - o <Condition> ::= <Tuple> IN <Query>
 - o <Condition> ::= <Attribute> = <Attribute>
 - o <Condition> ::= <Attribute> LIKE <Pattern>
 - o <Condition> ::= ... (e.g., rules for OR, NOT, comparison)
- \circ Tuple:
 - o <Tuple> ::= <Attribute>
 - <Tuple> ::= ... (e.g., rules for tuples with multiple attributes)
- Basic syntactic categories like <Relation>, <Attribute>, <Pattern> etc. do not have own rules, but are replaced with a name or a text string

Simple Grammar: Example

Find films with actors born in 1960:

SELECT title FROM StarsIn WHERE starName IN (SELECT name FROM MovieStar WHERE birthDate LIKE `%1960'

);

Simple Grammar: Example

Pre-processor

- Checks that the query are **syntactically** correct (i.e., parses)
- Checks that the query are **semantically** correct:
 - *relations* each relation in FROM must be a relation or a view in the schema the query is executed Each view must be replaced by a parsing tree.
 - attributes each attribute must exist in one of the relations within the scope of the query
 - *types* all usage of attributes must be in accordance with the given types

Generating the logical query plan

UiO **Institutt for informatikk** Det matematisk-naturvitenskapelige fakultet

Converting Select-From-Where (SFW)

SELECT <SelList> **FROM** <FromList> **WHERE** <Condition>

- Replace the relations in <FromList> with the product (×) of all the relations
- $_{\odot}\,$ This product is the argument for the selection ($\sigma_{\rm C}$) where C is the <Condition>
- $_{\odot}\,$ This selection is the argument for the projection ($\pi_{\rm L}$) where L is the list of attributes in <SelList>

SFW conversion example

Product (\times) of all relations in <FromList> Selection (σ_{c}) with C as <Condition> Projection (π_{L}) with L as attributes in <SelList>

SELECT name FROM MovieStar WHERE birthDate LIKE '%1960'

Simple Grammar: Example

Converting sub-queries

- For subqueries, we use an auxiliary operator, the two-argument selection σ(R, T), where T represents the subquery (i.e., that corresponds to <Condition>)
- Further processing depends on the type of the subquery

SELECT title FROM StarsIn WHERE starName IN
(SELECT name
 FROM MovieStar
 WHERE birthDate LIKE `%1960'
);

Let us look at t IN S as one example:

- \circ Replace <Condition> with the tree for S
- $_{\odot}~$ If S can contain duplicates, we need a δ operator above S
- $_{\odot}~$ Replace two-argument selection with oneargument selection $\sigma_{\rm C}$, where C compares each component in t with the corresponding attribute in S
- $_{\odot}~$ Let $\sigma_{\rm C}$ get the R \times S as argument

- Product of the relations in <FromList> \cap
- Select based upon <Condition>, Ο represented by two-argument selection
- Project on the attributes in <SelList> Ο
- Replace (temporarily) subquery with its Ο parse tree

- Product of the relations in <FromList>
- Select based upon <Condition>, represented by two-argument selection
- Project on the attributes in <SelList>
- Replace (temporarily) subquery with its parse tree

SELECT title FROM StarsIn WHERE starName IN
(SELECT name
 FROM MovieStar
 WHERE birthDate LIKE `%1960'
);

 $_{\circ}$ Replace <Condition> with the subquery tree

 \circ Replace two-argument selection with one-argument selection $\sigma_{
m C}$, where C is <code>starName = name</code>

 $_{\rm O}$ Let $\sigma_{\rm C}$ operate on the product of <code>StarsIn</code> and <code>MovieStar</code> as an argument

Converting sub-queries – some notes

- Sub-query conversion becomes more complicated if the sub-query is related to values defined <u>outside</u> the scope of the sub-query
 - We must then create a relation with extra attributes for comparison with the external attributes
 - The extra attributes are later removed using projections
 - In addition, all duplicate tuples must be removed

Logical and Physical query plans

 These parse trees are converted into «execution plans» in several stages

Logical plan: Relational algebra expressions
 Physical plan: Actual algorithms

 These are supposed to be two distinct stages, but, the two stages often overlap in reality

UiO **Institutt for informatikk**

Logical query plans – Example

Relation R

Relation S

Х	Y	Ζ
1	а	а
2	f	С
2 3	t	b
4	b	b
7	k	а
6	е	а
7	g	С
8 9	i	b
9	е	С

SELECT B, C, Y FROM R, S WHERE W = X AND A = 3 AND Z = ´a´

- 1. Take the cross product of R and S
- 2. Select tuples
- 3. Project the attributes

$$\pi_{B,C,Y}(\sigma_{W=X \land A=3 \land Z='a'}(R \times S))$$

NOTE:

attributes = #R-attributes + #S-attributes = 23 + 3 = 26
tuples = #R-tuples x #S-tuples = 9 x 9 = 81

SELECT B, C, Y FROM R, S WHERE W = X AND A = 3 AND Z = ´a´

- 1. Select tuples
- 2. Do an equi-join
- 3. Project the attributes

$$\pi_{B,C,Y}((\sigma_{A=3}(R)) \bowtie_{W=X}(\sigma_{Z='a'}(S))$$

Strategy 1 for comparison:

$$\pi_{B,C,Y} \left(\sigma_{W = X \land A = 3 \land Z = 'a'} \left(\mathsf{R} \times \mathsf{S} \right) \right)$$

UiO **Institutt for informatikk** Det matematisk-naturvitenskapelige fakultet

USE INDICES!

- 1. Use the index on R.A to select tuples where R.A = 3
- 2. Use the index on S.X to select tuples where S.X = R.W
- 3. Select the S-tuples where S.Z = 'a'
- 4. Join the tuples from R and S that match
- 5. Project the attributes B, C and Y

R C В W Α ... 1 1 4 Ζ • • • 2 2 6 С • • • 3 7 8 r • • • 9 4 4 n • • • 2 3 0 • • • 3 5 9 t ... 3 3 e ... f 8 5 8 • • • 7 5 1 h • • •

I_{R.A}

SELECT B, C, Y FROM R, S WHERE W = X AND A = 3 AND Z = ´a´

USE INDICES!

- 1. Use the index on R.A to select tuples where R.A = 3
- 2. Use the index on S.X to select tuples where S.X = R.W
- 3. Select the S-tuples where S.Z = 'a'
- 4. Join the tuples from R and S that match
- 5. Project the attributes B, C and Y

Х

1

2

3

4

7 4

6

7 4

8

9

SELECT B, C, Y FROM R, S WHERE W = X AND A = 3 AND Z = ´a´

USE INDICES!

- 1. Use the index on R.A to select tuples where R.A = 3
- 2. Use the index on S.X to select tuples where S.X = R.W
- 3. Select the S-tuples where S.Z = 'a'
- 4. Join the tuples from R and S that match
- 5. Project the attributes B, C and Y.

SELECT B, C, Y FROM R, S WHERE W = X AND A = 3 AND Z = ´a´

USE INDICES!

- 1. Use the index on R.A to select tuples where R.A = 3
- 2. Use the index on S.X to select tuples where S.X = R.W
- 3. Select the S-tuples where S.Z = 'a'
- 4. Join the tuples from R and S that match
- 5. Project the attributes B, C and Y

Α	В	С	•••	W	X	Y	Z
3	r	8	•••	7	7	k	а

В	С	Y
r	8	k

Det matematisk-naturvitenskapelige fakultet

7

1

Strategy 3 Summary

- Use the index on R.A to select tuples where R.A = 3 1.
- 2. Use the index on S.X to select tuples where S.X = R.W
- 3. Select the S-tuples where S.Z = 'a'
- 4. Join the tuples from R and S that match
- 5. Project the attributes B, C and Y

UiO **Institutt for informatikk**

Commutativity and associativity

• An operator ω is <u>commutative</u> if the order of the arguments does not matter:

 $x \omega y = y \omega x$

 An operator is <u>associative</u> if the order of applications has no significance:

 $x \omega (y \omega z) = (x \omega y) \omega z$

Algebraic laws for product and join

- Natural join and product are both <u>commutative</u> and <u>associative</u>:
 - \circ R⋈S = S⋈R and R⋈ (S⋈T) = (R⋈S) ⋈T
 - \circ R × S = S × R and R × (S × T) = (R × S) × T
- What about theta-join?
 - Commutative: $R \bowtie_c S = S \bowtie_c R$
 - But not always associative (formally)
 - Example: Given the relationships R (a, b), S (b', c), T (c, d), we have (R $\bowtie_{b < b'}$ S) $\bowtie_{a < d}$ T ≠ R $\bowtie_{b < b'}$ (S $\bowtie_{a < d}$ T)

Order of joins

Does the order of joins (incluing products) have an effect on efficiency?

- If only one of the relations fits into the memory, this should be the first argument -- a one-pass operation that reduces the number of disk IOs
- If the product or join of two of the relations result in a temporary relation that fits into the memory, these joins should be taken first to save both memory space and disk IO
- Temporary relations (intermediate results) should be as small as possible to save memory space
- If we can estimate (using statistics) the number of tuples to be joined, we can save many operations by joining the relations that give the fewest tuples first

Algebraic laws for union and intersection

 $_{\odot}~$ Union and intersection are commutative and associative:

- $\circ R \cup S = S \cup R \qquad R \cup (S \cup T) = (R \cup S) \cup T$
- \circ R ∩ S = S ∩ R R ∩ (S ∩ T) = (R ∩ S) ∩ T
- Union distributes over intersection:
 R U (S ∩ T) = (R U S) ∩ (R U T)
- Intersection distributes over union only for sets(!):
 R ∩_S (S ∪_S T) = (R ∩_S S) ∪_S (R ∩_S T)
 R ∩_B (S ∪_B T) ≠ (R ∩_B S) ∪_B (R ∩_B T)

Algebraic laws for selection

- Selection is a very important operator for optimization
 - Reduces the number of tuples (the size of the relationship)
 - o General rule: push selections as far down the tree as possible
- Conditions with AND and OR can be split:
 - $\circ \sigma_{a \text{ AND b}}(R) = \sigma_{a}(\sigma_{b}(R))$
 - $\circ \sigma_{a OR b}(R) = (\sigma_{a}(R)) U_{s}(\sigma_{b}(R))$, where R is a set and U_{s} is a set union
 - Splitting OR works only when R is a set, but if R is a bag and both conditions are met, bag union will include a tuple twice - once in each selection
- The order of subsequent selections has no bearing on the resulting set:
 - $\circ \sigma_{\rm a}$ ($\sigma_{\rm b}$ (R)) = $\sigma_{\rm b}$ ($\sigma_{\rm a}$ (R))

Pushing selection

- When selection is pushed down the tree, then ...
- $_{\odot}$ $\,$ It must be pushed to both arguments for
 - **Union:** $\sigma_{a}(R \cup S) = \sigma_{a}(R) \cup \sigma_{a}(S)$
- \circ It must be pushed to the first argument (optionally the second argument too) for
 - Difference: $\sigma_{a}(R S) = \sigma_{a}(R) S = \sigma_{a}(R) \sigma_{a}(S)$
- $_{\odot}$ $\,$ It can be pushed to one or both arguments for
 - Intersection: $\sigma_{a}(R \cap S) = \sigma_{a}(R) \cap \sigma_{a}(S) = R \cap \sigma_{a}(S) = \sigma_{a}(R) \cap S$
 - **Join:** $\sigma_a(R \bowtie S) = \sigma_a(R) \bowtie \sigma_a(S) = R \bowtie \sigma_a(S) = \sigma_a(R) \bowtie S$ (only if make sence!)
 - Theta join: $\sigma_{a}(R \bowtie_{b} S) = \sigma_{a}(R) \bowtie_{b} \sigma_{a}(S) = R \bowtie_{b} \sigma_{a}(S) = \sigma_{a}(R) \bowtie_{b} S$ (same!)
 - Cartesian product: similarly, but be careful with renaming

Pushing selection – Example

Assume that each attribute is 1 byte

 $\sigma_{A=2}$ (R \bowtie S)

- join: compare 4 * 4 items = 16 operations store (cache) the relation: R ⋈ S yields ((23 + 3) x 2) = 52 bytes
- selection: check each tuple: 2 operations

$\sigma_{\text{A=2}}(\text{R})\bowtie\text{S}$

- selection: check each tuple in R: 4 operations store (cache) the relation: $\sigma_{A=2}(R)$ gives 24 bytes
- o join: compare 1 x 4 items = 4 operations

R

Α	В	С	 Х
1	z	1	 4
2	с	6	 2
3	r	8	 7
4	n	9	 4

Х	Y	Ζ
2	f	С
3	t	b
7	g	С
9	е	С

S

R ⋈ **S**

 $\sigma_{A=2}(R)$

Pushing selection upwards in the tree

Sometimes it is useful to push selection the other way, ie upwards in the tree, using the law $\sigma_a(R \bowtie S) = R \bowtie \sigma_a(S)$ «backwards».

Det matematisk-naturvitenskapelige fakultet **REMEMBER Join:** $\sigma_a(R \bowtie S) = \sigma_a(R) \bowtie \sigma_a(S) = R \bowtie \sigma_a(S) = \sigma_a(R) \bowtie S$

Algebraic laws for projection #1

Projection can be pushed through join and cross product (i.e., new projections can be introduced) as long as we do <u>not</u> remove attributes used further up the tree:

- $\pi_L(R \bowtie S) = \pi_L(\pi_M(R) \bowtie \pi_N(S))$ if
 - M contains the join attributes and those of L that are in R
 - $_{\odot}$ $\,$ N contains the join attributes and those of L that are in S $\,$
- $\pi_L(R \bowtie_C S) = \pi_L(\pi_M(R) \bowtie_C \pi_N(S))$ if
 - $_{\odot}~$ M contains the join attributes and the attributes in C and L that are in R
 - N contains the join attributes and the attributes in C and L that are in S
- \circ $\pi_{L}(R \times S) = \pi_{M}(R) \times \pi_{N}(S)$ if
 - M contains the attributes of L that are in R (appropriately renamed)
 - N contains the attributes of L that are in S (appropriately renamed)

Algebraic laws for projection #2

Projection can be pushed through bag union:

 $\pi_{L}(R \cup_{B} S) = \pi_{L}(R) \cup_{B} \pi_{L}(S))$

Note: The same rule does not apply to set union, set intersection, bag intersection, set difference or bag difference because projection can change the multiplicity of the tuples:

- $\circ\,$ R being a set does not necessarily mean that $\pi_{\rm L}({
 m R})$ is a set
- If R is a bag and a tuple **t** occurs k times in R, then the projection of **t** on L may occur more than k times in $\pi_{L}(R)$.

Algebraic laws for projection #3

Projection can be pushed through selection (new projections are introduced) as long as we do not remove attributes used further up the tree:

•
$$\pi_L(\sigma_C(R)) = \pi_L(\sigma_C(\pi_M(R)))$$

if M contains the attributes in C and L

 NOTE: If R has an index on some of the attributes in selection condition C, then this index will not be possible to use during selection if we first do a projection on M.

Algebraic laws for join, product, selection and projection

Two important laws that follow from the definition of join:

$$\circ$$
 σ_c(R ⋈ S) = R ⋈_c S

- \circ π_L(σ_C(R × S)) = R ⋈ S if
 - C compares (via AND) each pair of tuples from R and S with the same name
 - L is all attributes of R and S appropriately renamed and without repetitions

Examples

- $\pi_{L}(\sigma_{R.a=S.a}(R \times S))$ vs. R \bowtie S
 - R(a,b,c,d,e,..., k), #Tuples(R) = 10,000, S(a,l,m,n,o,...,z), #Tuples(S) = 100
 - Each attribute takes 1 byte, a is a candidate (e.g., primary) key in both R and S
 - Assumes that each tuple in S find a single match in R, i.e., 100 tuples in the result
- \circ $\pi_L(\sigma_C(R \times S))$:
 - Cross product: combine 10,000 * 100 items = 1,000,000 operations temp storage, relation R × S = 1,000,000 * (11 + 16) = 27,000,000 bytes
 - Selection:

Check each tuple: 1,000,000 operations temp storage, relation $\sigma_{R.a = S.a}$ (R × S) = 100 * 27 = 2700 bytes

• Projection:

Check each tuple: 100 operations

- ∘ R⋈S:
 - join: check 10,000 * 100 elements = 1,000,000 operations

Algebraic laws for duplicate elimination

Duplication elimination can reduce the size of temporary relations by pushing through

- Cartesian product: $\delta(R \times S) = \delta(R) \times \delta(S)$
- \circ Join: δ (R⋈S) = δ (R) ⋈ δ (S)
- Theta join: $\delta(\mathbb{R} \bowtie_{\mathbb{C}} S) = \delta(\mathbb{R}) \bowtie_{\mathbb{C}} \delta(S)$
- Selection: $\delta(\sigma_{c}(R)) = \sigma_{c}(\delta(R))$
- Bag intersection: $\delta(R \cap_B S) = \delta(R) \cap_B \delta(S) = \delta(R) \cap_B S = R \cap_B \delta(S)$
- Note: duplicate elimination cannot be pushed through
 - Bag union and difference
 - Projection

Algebraic laws for grouping operation

This one is easy: No general rules!

Improving (optimizing) logical query plans

The most common LQP optimizations are:

- $\circ~$ Push selections as far down as possible
- If the selection condition consists of several parts (AND or OR), split into multiple selections and push each one as far down the tree as possible
- Push projections as far down as possible
- Combine selections and Cartesian products to an appropriate join
- Duplicate eliminations can sometimes be removed
- But don't ruin indexing: Pushing projection past a selection can ruin the use of indexes in the selection!

Query Compilation (in two parts)

Part 1 (done in part 1):

- o Parsing
- Logical query plans (expressed in relational algebra)
- Optimization (using algebraic laws)

Part 2 (now in part 2):

- Estimate the size/cost of the intermediary results
- (Construct physical query plans)

OVERVIEW: Our focus in part 2

UiO **Institutt for informatikk** Det matematisk-naturvitenskapelige fakultet

OVERVIEW

- To assess both logical and physical plans, we need some way to calculate cost
- These can not be calculated exactly (depending on the data we have), so the DBMS estimates the costs
- We want a cost function C that can be calculated locally: C(R \bowtie_c S) should be possible to calculate from C(R) and C(S)
- What kind of costs exist? What do we mean by cost? What should we choose as cost?

Costs: IO!

- $\circ~$ Disk IO: Cost of reading
 - A given page (random read)
 - A sequence of pages (sequential read)
- Sequence is usually cheaper
- $\circ~$ Relevant to choose from
 - \circ Table scan
 - \circ Index scan

Costs: Number of tuples (and size in bytes)

- Number of tuples to process in one operation
- Relevant for everything, including disk operations
- We will look at how this is estimated
- Size of each tuple in relation in bytes and size of the overall relation are together more fine-grained

Theme now: Estimating result size

UiO **Institutt for informatikk** Det matematisk-naturvitenskapelige fakultet

Estimating size

- $_{\odot}\,$ Ideally, we want rules that are
 - Accurate: a small error can result in the selection of an inappropriate algorithm in the physical query plan
 - Easy to calculate: minimal extra cost to make the choice
 - Logically consistent: not dependent on a specific algorithm for the operator
- No universal algorithm exists
- Fortunately, approximate estimates also help choose a good physical query plan

Notation

- Tup_R (or Tup(R)) is the number of tuples in R
 this is an estimate, so may be not integer
- TSize_R is the size of a tuple in R in bytes
- Size_R is the size of R in bytes: Size_R = Tup_R * TSize_R
- Val_R(A) is the number of different values for attribute A in R
- \circ Average number of tuples with equal A values: Tup_R / Val_R(A)

Size of a projection

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes

• The size of a projection $\pi_{L}(R)$ can be calculated accurately:

• One result tuple for each argument tuple Tup($\pi_{A, B, ...}(R)$) = Tup_R

• Changes only the size of each tuple: Size($\pi_{A, B, ...}(R)$) = Tup_R * (TSize_{R.A} + TSize_{R.B} + ...)

○ Val($\pi_{A, B, ...}$ (R), A) = Val(R, A)

Size of projection: Example

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes

R
I \

А	В	С	D
1	cat	1999	а
2	cat	2002	b
3	dog	2002	С
4	cat	1998	а
5	dog	2000	С

A: 4 byte integer B: 20 byte text string C: 4 byte date (year) D: 30 byte text string $Val_{R}(A) = 5$ $Val_{R}(B) = 2$ $Val_{R}(C) = 4$ $Val_{R}(D) = 3$

 $Tup_{R} = 5$ $TSize_{R} = 58$

Size $(\pi_{A, B, ...}(R)) = \operatorname{Tup}_{R} * (\operatorname{TSize}_{A} + \operatorname{TSize}_{B} + ...)$ Size $_{R} = ...$ Size $(\pi_{A}(R)) = ...$ Size $(\pi_{A, B, C, D, (A+10) \rightarrow E}(R)) = ...$

Size of a selection

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes
- A selection $\sigma_{\text{Cond}}(R)$ reduces the number of tuples, but the size of each tuple remains unchanged
 - Size($\sigma_{cond}(R)$) = Tup($\sigma_{cond}(R)$) * TSize_R
- $_{\odot}~$ Estimating the number of tuples depends upon
 - $_{\odot}~$ the selection condition Cond
 - $_{\odot}\,$ distribution of values for the relevant attributes:
 - we assume a uniform distribution where we use Val_R(A) to estimate the number of tuples in the result (naive)
 - DBMSs use more advanced statistics (e.g., histograms)
- Estimation of the number of values Val can be done similarly

Size of a selection (cont.)

For attribute A and constant *c*:

- Similarity, $\sigma_{A=c}(R)$: Use the selectivity factor $1/Val_R(A)$ Tup($\sigma_{A=c}(R)$) = Tup_R / Val_R(A)
- Inequality, $\sigma_{A \neq c}(R)$: Use the selectivity factor 1 - $1/Val_R(A)$ Tup($\sigma_{A \neq c}(R)$) = Tup_R * (1 - $1/Val_R(A)$)
- Interval, $\sigma_{A < c}(R)$: ...
- \circ Equality of two attributes, $\sigma_{A=B}$ (R): ...

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes

Size of a selection: Example

А	В	С	D
1	cat	1999	а
2	cat	2002	b
3	dog	2002	С
4	cat	1998	а
5	dog	2000	С

 $\begin{array}{l} \operatorname{Tup}(\sigma_{\mathsf{A}\,=\,c}(\mathsf{R})) = \operatorname{Tup}_{\mathsf{R}} / \operatorname{Val}_{\mathsf{R}}(\mathsf{A}) \\ \operatorname{Tup}(\sigma_{\mathsf{A}\,=\,3}(\mathsf{R})) = \dots \\ \operatorname{Tup}(\sigma_{\mathsf{B}\,=\,\text{`cat'}}(\mathsf{R})) = \dots \end{array}$

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes
- A: 4 byte integerB: 20 byte text stringC: 4 byte date (year)D: 30 byte text string

 $Val_{R}(A) = 5$ $Val_{R}(B) = 2$ $Val_{R}(C) = 4$ $Val_{R}(D) = 3$

 $Tup_R = 5$ Size_R = 58

 $Tup(\sigma_{A \neq c}(\mathsf{R})) = Tup_{\mathsf{R}}^{*} (1 - 1/Val_{\mathsf{R}}(\mathsf{A}))$ $Tup(\sigma_{B \neq cat'}(\mathsf{R})) = ...$

Size of a selection with AND and NOT

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes
- Multi-condition selection with AND, $\sigma_{Cond1 AND Cond2 AND ...}(R)$:
 - $_{\odot}~$ estimate the size using one selectivity factor for each condition:
 - \circ 1 − 1 / Val_R (A) for \neq on attribute A
 - \circ 1 / Val_R (A) for = on attribute A
 - 0 ...
 - Tup ($\sigma_{\text{Cond1 AND Cond2 AND}...}$ (R)) = Tup_R * factor_{Cond1} * factor_{Cond2} * ...
- Selection with NOT, such as σ_{NOT Cond} (R):
 Use the selectivity factor 1 Tup(σ_{Cond} (R)) / Tup_R
 Tup (σ_{NOT Cond} (R)) = Tup_R Tup (σ_{NOT Cond} (R))

Selection with AND and NOT: Example

Α	В	С	D
1	cat	1999	а
2	cat	2002	b
3	dog	2002	С
4	cat	1998	а
5	dog	2000	С

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes
- A: 4 byte integerB: 20 byte text stringC: 4 byte date (year)D: 30 byte text string

 $Tup_{R} = 5$

 $Size_{R} = 58$

 $Val_{R}(A) = 5$ $Val_{R}(B) = 2$ $Val_{R}(C) = 4$ $Val_{R}(D) = 3$

 $\begin{aligned} & \operatorname{Tup}(\sigma_{\operatorname{Cond1}\operatorname{AND}\operatorname{Cond2}\operatorname{AND}\dots}(\mathsf{R})) = \operatorname{Tup}_{\mathsf{R}} * \operatorname{factor}_{\operatorname{Cond1}} * \operatorname{factor}_{\operatorname{Cond2}} * \dots \\ & \operatorname{Tup}(\sigma_{\mathsf{C} = 1999 \operatorname{AND}\mathsf{B} \neq 'cat'}(\mathsf{R})) = \dots \\ & \operatorname{Tup}(\sigma_{\mathsf{NOT}\operatorname{Cond}}(\mathsf{R})) = \operatorname{Tup}_{\mathsf{R}} - \operatorname{Tup}(\sigma_{\mathsf{Cond}}(\mathsf{R})) \\ & \operatorname{Tup}(\sigma_{\mathsf{NOT}\operatorname{A} = 3}(\mathsf{R})) = \dots \end{aligned}$

Size of a selection with OR

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes
- Multiple condition selection with OR, $\sigma_{Cond1 OR Cond2 OR ...}(R)$
 - Option 1:

 $\mathsf{Tup} \ (\sigma_{\mathsf{Cond1} \mathsf{OR} \mathsf{Cond2} \mathsf{OR} \ldots}(\mathsf{R})) = \mathsf{Tup} \ (\sigma_{\mathsf{Cond1}}(\mathsf{R})) + \mathsf{Tup} \ (\sigma_{\mathsf{Cond2}}(\mathsf{R})) + \ldots$

• Option 2:

 $\text{Tup} (\sigma_{\text{Cond1 OR Cond2 OR ...}}(R)) = \min(\text{Tup}_{R}, (\text{Tup}(\sigma_{\text{Cond1}}(R)) + \text{Tup}(\sigma_{\text{Cond2}}(R)) + ...))$

- Option 3:
 - $_{\odot}~$ Assume that m_1 tuples satisfy the first condition, m_2 satisfy the second condition, ...
 - $\circ~1$ m_i / Tup_{R} is the proportion of tuples that do not satisfy the i-th condition
 - Tup ($\sigma_{A \text{ OR B OR ...}}(R)$) = Tup_R * [1 (1 m₁ / Tup_R) * (1 m₂ / Tup_R) * ...]

Size of a PRODUCT

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes
- $_{\odot}\,$ The size of a Cartesian product R \times S can be calculated accurately:
 - One tuple for each possible combination of the tuples in relations R and S: Tup (R × S) = Tup_R * Tup_S
 - The size of each new tuple is the sum of the size of each of the original tuples: TSize $(R \times S) = TSize_R + TSize_S$
 - Size (R × S) = Tup (R × S) * TSize (R × S) = Tup_R * Tup_S * (TSize_R + TSize_S)

Size of a NATURAL JOIN

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes
- The size of natural join R (X, A) ⋈ S (A, Y) depends on how the values of the join attribute A is distributed between relations R (X, A) and S (A, Y):
- Disjoint set of A values empty result: Tup ($R \bowtie S$) = 0
- A is a foreign key from R to S -- each tuple in R matches one tuple in S: Tup (R ⋈ S) = Tup_R
- Almost all the R and S tuples have the same A value -combine all the tuples in each relation: Tup (R ⋈ S) = Tup_R * Tup_S

Size of a NATURAL JOIN (cont.)

- Tup_R is the number of tuples in R
- $Size_{R}$ is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes

Assumptions:

- Inclusion of values: If Val_R(A) ≤ Val_S(A), then assume that
 δ(π_A(R)) ⊆ δ(π_A(S)), i.e., each A value in R has a match in S
- Value conservation: Assume that the value of non-join attributes is the same before and after join, i.e.,
 Val(R ⋈ S, B) = Val_R(B), where B is an attribute in R, but not in S

Size of a NATURAL JOIN (cont.)

- Tup_R is the number of tuples in R
- $Size_{R}$ is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes

The number of tuples in R (X, A) \bowtie S (A, Y) can now be estimated as follows:

- If Val_R(A) ≤ Val_S(A), each tuple in R will match approximately Tup_S/Val_S(A) tuples in S: Tup (R ⋈ S) = Tup_R * Tup_S/Val_S(A)
- Similarly, if $Val_{S}(A) \le Val_{R}(A)$: Tup (R \bowtie S) = Tup_R * Tup_S/Val_R(A)
- General: Tup(R \bowtie S) = Tup_R * Tup_S / max (Val_R(A), Val_S(A))
- Val($R \bowtie S, B$) = Val_R(B) for B an attribute in X
- Val($R \bowtie S, C$) = Val_S(C) for C an attribute in Y
- Val(R \bowtie S, A) = min (Val_R(A), Val_S(A)) for the join-attribute A

Size of a NATURAL JOIN: Example

A(a, b)	B(b, c)	C(c, d)
$T_{A} = 10.000$	$T_{B} = 2.000$	$T_{\rm C} = 5.000$
$V_{A}(a) = 5.000$	$V_{B}(b) = 100$	$V_{\rm C}({\rm c}) = 100$
$V_{A}(b) = 1.000$	$V_{B}(c) = 1.000$	$V_{\rm C}({\rm d}) = 100$

Tup($A \bowtie B$) = ... Tup($A \bowtie B \bowtie C$) = ...

- Tup_R is the number of tuples in R
- **TSize**_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes

Size of a NATURAL JOIN (cont.)

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes
- If there is more than one join attribute, R (X, A₁, A₂, ...) ⋈ S (A₁, A₂, ..., Y), we get:

 $Tup (R \bowtie S) = \frac{(Tup_R * Tup_S)}{(max (Val_R(A_1), Val_S(A_1)) * max (Val_R (A_2), Val_S(A_2)) * ...}$ for each A_i attribute common to R and S

- \circ For natural join between multiple relationships $R_1 \bowtie R_2 \bowtie R_3 \bowtie ... \bowtie R_n$
 - Start with maximum number of tuples Tup(R₁) * Tup (R₂) * Tup (R₃) * ... * Tup (R_n)
 - for each attribute A that occurs in more than one relationship, divide by all except the smallest Val(R_i, A)

Size of a EQUI-JOIN and THETA-JOIN

• The size of the equi-join is calculated as a natural join

◦ Calculate the size of theta-join R \bowtie_{Cond} S by calculating the size of σ_{Cond} (R \bowtie S)

Size of a UNION

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes

Depends on whether we use the set or bag version:

• **Bag:**

The result is exactly equal to the sum of tuples in the arguments: Tup ($R \cup_b S$) = Tup_R + Tup_S

- **Set:**
 - $_{\odot}~$ As for bags if relationships are disjointed
 - Number of tuples in the largest relation if the smallest is a subset of it
 - Usually somewhere between these. We can use the average, for example: $Tup(R \cup_s S) = (Tup_R + Tup_S) / 2$, where S is the smallest relationship

Size of INTERSECTION

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes
- \circ Number of tuples in an intersection R∩S is
 - \circ 0 if the relationships are disjointed
 - \circ min(Tup_R, Tup_S) if one relationship is a subset of the other
 - Usually somewhere in between, for example, can use the average:
 - min(Tup_R, Tup_S) / 2

Size of DIFFERENCE

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes
- \circ Number of tuples in a difference R S is
 - Tup_R if the relationships are disjointed
 - Tup_R Tup_S if all tuples in S is also in in R
 - Usually somewhere in between. We can use the average, for example: $(Tup_R Tup_S) / 2$

Size of DUPLICATE ELIMINATION

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- $Size_{R}$ is the size of R in bytes
- The number of distinct tuples as a result of a duplicate elimination $\delta(R)$ is
 - \circ 1 if all the tuples are the same
 - \circ Tup_R if all the tuples are different
- An approach:
- Given $Val_{R}(A_{i})$ for all *n* attributes, the maximum number of different tuples will be $Val_{R}(A_{1}) * Val_{R}(A_{2}) * ... * Val_{R}(A_{n})$
- Let the estimated number of tuples be the least of this number and $Tup_R/2$, i.e., min (Val_R (A₁) * Val_R (A₂) * ... * Val_R (A_n), $Tup_R/2$)

Size of GROUPING

- Tup_R is the number of tuples in R
- $Size_{R}$ is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- Size_R is the size of R in bytes

• Grouping is similar to duplicate elimination:

Looks only at the grouping attributes $A_1, A_2, \dots A_m$

Comparing Logical Query Plans

- We compare different query plans for a given query using the size of temporary relations
 - Estimate the result of each operator in the questionnaire
 - Add costs to the tree
 - The cost of the plan is equal to the sum of all the costs in the tree, except for
 - the root which is for the end result
 - \circ the leaf nodes data stored on disk

Comparing Logical Query Plans: Example

StarsIn(title, year, starName)
MovieStar(name, address, gender, birthDate)

- Tup_R is the number of tuples in R
- TSize_R is the size of a tuple in R in bytes
- Val_R(A) is the number of different values for attribute A in R
- $Size_{R}$ is the size of R in bytes

Comparing Logical Query Plans - Example

- $A_1 = \sigma_{\text{birthDate LIKE '%1960'}}$ (MS):
- $Tup(A_1) = Tup(\sigma(MS)) = Tup(MS) / Val(MS, birthDate) = 1000 / 50 = 20$
- Size(A₁) = 20 * 100 = 2000
- **A**₂ = $\pi_{name}(A_1)$:
- $Tup(A_2) = Tup(\pi(A_1)) = Tup(A_1) = 20$
- Assume that name is 20 bytes
- TSize(A₂) = 20
- Size(A₂) = 20 * 20 = 400
- $A_3 = SI \bowtie A_2$:
- $Tup(A_3) = Tup(SI \bowtie A_2) =$
- Tup(SI)*Tup(A₂) / max [Val(SI, starName), Val(A₂, name)] = 10,000 * 20 / max(500, <u>20</u>) = 400
- Size(A₃) = 400 * (80 + 20 20) = 32,000

A₄ = π_{title} (A₃):

- $Tup(A_4) = Tup(\pi(A_3)) = Tup(A_3) = 400$
- Assume that title is 40 bytes
- Size(A₄) = 400 * 40 = 16,000

Statistics:

Tup(StarsIn) = 10,000

Val(StarsIn, starName) = 500 TSize(StarsIn) = 80

Tup(MovieStar) = 1,000 Val(MovieStar, name) = 1,000 Val(MovieStar, birthDate) = 50 TSize(MovieStar) = 100

Comparing Logical Query Plans - Example

```
A<sub>1</sub> = \sigma_{\text{birthDate LIKE '%1960'}(\text{MS}) → as before: 2000, Tup(\sigma(\text{MS}))=20

A<sub>2</sub> = \pi_{\text{name}}(A_1) → as before: 400, Tup(A_2) = Tup(A_1) = 20

B<sub>3</sub> = SI × A<sub>2</sub>:
```

• $Tup(B_3) = Tup(SI \times A_2) = Tup(SI) * Tup(A_2) = 10000 * 20 = 200,000$

•
$$TSize(A_2) = 20$$

- Size(B₃) = 200,000 * (80 + 20) = 20,000,000
- $B_4 = \sigma_{\text{starName} = name}(B_3)$:
- Tup(B₄) = Tup(σ(B₃)) = Tup(B₃) / max(Val(B₃, name), Val(SI, starName)) = 200,000 / max(20, 500) = 400
- TSize(B₄) = TSize(SI)+TSize(B₃)=80+20=100
- Size(B₄) = 400 * 100 = 40,000

B₅ = $\pi_{\text{title}}(B_4)$ → as A₄: 400 * 40 = 16,000


```
Statistics:
```

Tup(StarsIn) = 10,000

```
Val(StarsIn, starName) = 500
TSize(StarsIn) = 80
```

```
Tup(MovieStar) = 1,000
Val(MovieStar, name) = 1,000
Val(MovieStar, birthDate) = 50
TSize(MovieStar) = 100
```


Comparing Logical Query Plans - Example

