
IN3020/4020 – Database Systems 
Spring 2021, Week 7.1 

Overview of Transaction Management
and Introduction to Buffer Management

Dr. M. Naci Akkøk, Chief Architect, Oracle Nordics
Based upon slides by E. Thorstensen from Spring 2019



From INTRO: 
The syllabus can be divided into three parts
o Main focus:
o Queries, SQL and query optimization
o ACID, DBMS characteristics and mechanisms
o Other DBMS (slightly less than previous years)

o And an additional bit about emerging technologies and 
database research



We did this: Queries, SQL and query 
optimization

o SQL (repetition and a bit more)
o Query optimization (including relational algebra)
o Indexes, index usage and the underlying search
o Query plans and optimization



We are here: ACID, DBMS characteristics 
and Mechanisms 
o Managing multiple concurrent uses/users and protecting 

the data
o ACID – what it stands for

o Transaction Management
o Locking, logging, buffer & cache management

o Relationships between these mechanisms
o Synchronization/replication challenges



Overview

o Memory organization and data flow
o Files and blocks (pages) 
o Working memory and shared cache



Memory organization

o (Almost) everything is measured in and stored in blocks.
o In addition to files on “disk”, we have 
o Shared memory
o Working memory

o Each connection gets its own process.
o These have their own working memory for sorting / hash tables 

etc. 
o Blocks from disk are put in common memory, everyone has 

access.



Shared memory

o Works both as a workspace on blocks and as a cache. 
o All changes in tuples are made here.
o Tuples to be processed in a query are also read from here.
o Modified blocks must be written back to disk sooner or 

later.



Why own cache?

o The OS also has a cache, but this is not optimized for blocks.
o The DBMS knows more about its queries and can choose 

which individual blocks it caches.
o Can control writing back to disk better.



Some numbers

o IFI (typical) server could be something like:

o 8GB shared memory
o 32MB working memory 
o 8KB blocks



Blocks

o A block has a unique ID - which file it belongs to and its 
number.

o Makes blocks on disk and in memory "the same".



Blocks – Postgres examples
See: https://malisper.me/the-file-layout-of-postgres-tables/

Each table in Postgres is represented by one or more underlying files. Each 1GB chunk of the table is stored in a 
separate file. It is actually pretty easy to find the actual underlying files for a table. To do so, you first need to 
find the Postgres data directory, which is the directory in which Postgres keeps all of your data. You can find 
where the data directory is by running SHOW DATA_DIRECTORY;. When I run it locally, we see the following:

> SHOW DATA_DIRECTORY;
data_directory

------------------------------
/var/lib/postgresql/9.5/main

(1 row)

Now that you know where the Postgres data directory is, you will need to find where the files for the specific 
table we are looking for is located. To do so, you can use the pg_relation_filepath function with the name of 
the table you want to find the file for.

https://malisper.me/the-file-layout-of-postgres-tables/


Blocks and tuples
o Each tuple is in a block.
o What if a value is too large for a block?
o Then a technique called TOAST (the Oversized-Attribute Storage 

Technique) is used.

o https://www.postgresql.org/docs/9.6/storage-toast.html: PostgreSQL uses a fixed page size 
(commonly 8 kB) and does not allow tuples to span multiple pages. Therefore, it is not possible 
to store very large field values directly. To overcome this limitation, large field values are 
compressed and/or broken up into multiple physical rows. This happens transparently to the 
user, with only small impact on most of the backend code. The technique is affectionately 
known as TOAST (or "the best thing since sliced bread"). The TOAST infrastructure is also used to 
improve handling of large data values in-memory.

https://www.postgresql.org/docs/9.6/storage-toast.html


Deletion of tuples

o Lazy deletion: Tuples are marked as deleted.
o Background process (vacuum) takes care of the later 

(deletes, reorganizes block, updates free space).
o May cause some fragmentation (half-full blocks).
o Can be fixed with vacuum full but is an expensive and 

locking operation.



Cache-control

o DBMS cache is the shared memory.
o Blocks read from disk are stored here and remain here as 

long as there is free space. 
o Updates, reading for nested loop join etc. happen from 

here. 
o Updates must be flushed to disk sooner or later.



Sooner or later, it will be full!

o If the shared memory does not have more free space, a 
block must be ejected. Remember “paging” logic?

o Some requirements for such a block:
o Not in use by existing transaction 
o Not "dirty" (updated but not flushed)

o In addition, there are requirements related to multi-user 
problems.



Choosing a block to «sacrifice»

o Which block to evict?
o One that has not been used for a while?
o LRU: Least recently used. Requires keeping timestamps for 

each block and which one is the oldest.

o Better: One that has not been used for a while AND is not 
popular?

o Clock sweep algorithm!



Clock sweep
o We keep track of: 
o Pin bit (Boolean) 
o Usage count (Int)

o Usage count increases by 1 every time someone uses the block. 
o All blocks are in a “cycle” - we go through them in order (round 

robin scheduling style).
o Blocks in use (pinned) are skipped, others get -1 (decremented) 

usage count until we find a block with 0 usage count.



Clock sweep, pseudocode

while true:
b = next_page ()
if pinned (b) == false:

if use_count (b) == 0:
return b

use_count (b) = use_count (b) - 1

next_page () goes through the blocks in a cycle (i.e., 
after the last block, the next block is # 1)



Why clock sweep?

o A block that received use count - 1 will not be checked again 
until we have gone all the way around the cycle of blocks.

o If it gets 0 in use count, it is a candidate for eviction if we 
can't find one that got it earlier.

o A block that was accessed 5 times for a while back lives 
longer than one that was accessed once.



Cache control, special cases

o If someone loads a large table, large portions of the cache 
will be thrown out.

o It's unlikely that the whole table is cached.

o Such cases are handled as special cases –

free 32 (= 256
8 ) blocks, reuse these.



Smarter cache control

o All blocks are equal, but some are more equal to others J
o Can divide blocks by type (data table, index, metadata ...)
o Least Recently Used (LRU) / Clock Sweep separately for each 

type.



Some notes (“hot” cases)

o Nested loop join: The smallest table should be used over 
and over again.

o Fine if it stays cached. Some algorithms will be able to use 
such information.


