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What is a transaction?

o A transaction is a sequence of operations that maintains 
consistency in the database

Consistent DB 
State1

Consistent DB 
State2

Transaction T



ACID characteristics (repetition)
o A – Atomicity

Either the entire transaction is executed or none of it is executed.
o C - Consistency preservation

Transactions shall maintain (data) consistency, as in the definition of 
transaction

o I - Isolation
Transactions shall occur in isolation. No transaction will be affected by other 
transactions

o D - Durability (permanency)
Once transactions are completed, their effect should be lasting and not be 
affected by system failures



Ensuring/implementing ACID
o Atomicity: A transaction is an atomic processing unit (single unit of 

logic, single unit of work)
o The database system's recovery method (recovery manager) ensures 

A by reversing any changes a failed transaction T has made to the 
database

o This is done by reading the log and writing back the old values of 
data that T has changed

o (Database system´s concurrency control - transaction manager -
cooperates with log manager and buffer manager for logging of 
transactions)



Ensuring/implementing ACID
o Consistency preservation: Transactions bring database from one 

consistent state to another (next) consistent state
o C is partially guaranteed by the database management system by 

ensuring that certain types of integrity rules are not violated (e.g., 
primary and foreign keys)

o If the DBMS cannot handle a rule, the database programmer must 
take responsibility for maintaining consistency



Ensuring/implementing ACID
o Isolation: Updates should not be visible to other transactions before

the transaction is committed
o The concurrency control component (the scheduler - a 

subcomponent of transaction manager) is responsible for ensuring
Isolation

o There are many ways to do this, but Isolation is one of the most 
difficult ones to enforce in ACID features



Ensuring/implementing ACID
o Durability / permanency: Updates that are committed are 

permanent!
o The database system recovery method (the recovery manager) is 

responsible for ensuring Durability 
o After a system crash, the log is read and data written by committed 

transactions are restored in the database, while transactions that 
have not committed are «reversed»



State transition diagram for executing 
transactions

Active Partially 
committed

Committed

Failed Completed

begin Tx end Tx

read / write

abort abort

commit



We will look at challenges with f. ex. 
isolation

For that, we need several mechanisms,
like Serialization 



Serializability
o The execution of a transactions is serial if the execution is completed 

completely for one transaction before the next transaction is 
executed.

o Execution serializable if the transaction executions are such that 
there exists a serial execution that gives the same total result

o Atomic execution of each transaction and serializable execution of a 
collection of transactions help ensure that the database remains 
consistent and that the application that initiated the transaction 
experiences the result as predictable (remember isolation).



Execution plans
o An execution plan (schedule) S for a set of transactions {T1, ..., Tn} is 

a merging of the operations in T1, ..., Tn.

o Features/characteristics of S:
o Each element in S is an operation in exactly one of the 

transactions
o Each operation in a transaction is the element of S exactly once
o S maintains the order of operations from each transaction



Example transactions

Integrity Rule: A = B 



Example execution plan SA (serial!)



Example execution plan SB (also serial!)



Example execution plan SC



Example execution plan SD



Example execution plan SE

NOTE: “Same” plan as SD, but with new T2´



“Good” execution plans
o We want execution plans that are “good” 
o The term “good” should be independent of

o The initial state
o Transaction semantics

o The term should only depend on the reading and writing operations 
and their order

o There are several possible definitions of «good».
The purpose is to guarantee serializable executions!

o We will first look at "conflict serialization"



Some necessary concepts first
o Transaction: A sequence of read operations ri(A) and write operations wi(B)
o Transaction execution plan {T1, ..., Tn}: A merge of T1, ..., Tn
o Serial execution plan: Plan where all operations in one transaction are 

completed before the next transaction is started
o Conflict in an execution plan:

1. Read-write conflict: A couple of operations of the form ...ri(A) ...wk(A) ... 
or ...wi(A) ...rk(A) ... (where i ≠ k)

2. Write-write conflict: A couple of operations of the form ...wi(A) ...wk(A) ... 
(where i ≠ k)

3. Intra-transaction conflict: A pair of form operations ...oi(A) ...oi(B) ... where oi
is wi or ri



Conflict serializability

o Two execution plans S1 and S2 are called conflict equivalents
if S1 can be transformed into S2 by a series of exchanges of 
neighboring operations that do not conflict with each other

o An execution plan is conflict serializable if it is conflict 
equivalent to a serial execution plan



Example

SC can be transformed into a serial execution plan:
Thus, SC is conflict serializable.

1

2

3

4

5

1. Read-write conflict: A couple of 
operations of the form
...ri(A) ...wk(A) ... or ...wi(A) ...rk(A) ... 
(where i ≠ k)

2. Write-write conflict: A couple of 
operations of the form 
...wi(A) ...wk(A) ... (where i ≠ k)

3. Intra-transaction conflict: A pair of 
form operations 
...oi(A) ...oi(B) ... where oi is wi or ri



A “bad” execution plan
Let us look at the following execution plan (plan SD):

o We have a conflict between w1(A) and r2(A). These cannot switch 
place, so SD cannot be conflict equivalent to the serial plan T2; T1

o We also have a conflict between w2(B) and r1(B), which also cannot 
change place. Thus, SD cannot be conflict equivalent to the serial 
plan T1; T2 either

o Thus, SD is not conflict serializable!

1. Read-write conflict: A couple of operations of the form
...ri(A) ...wk(A) ... or ...wi(A) ...rk(A) ... (where i ≠ k)

2. Write-write conflict: A couple of operations of the form 
...wi(A) ...wk(A) ... (where i ≠ k)

3. Intra-transaction conflict: A pair of form operations 
...oi(A) ...oi(B) ... where oi is wi or ri



A “bad” execution plan
(continued)

All conflicts between operations in T1 and T2 are plotted
o The fact that T1 must deal with A before T2 does is called “T1 has 

precedence over T2 (on A)”, and we write it like this:
T1 → T2 in SD

o But we also have that T2 has precedence over T1 (on B), so we have 
both T2 → T1 and T1 → T2 in SD

o It is this kind of cyclic dependency that prevents SD from being 
rearranged into a serial execution plan

1. Read-write conflict: A couple of operations of the form
...ri(A) ...wk(A) ... or ...wi(A) ...rk(A) ... (where i ≠ k)

2. Write-write conflict: A couple of operations of the form 
...wi(A) ...wk(A) ... (where i ≠ k)

3. Intra-transaction conflict: A pair of form operations 
...oi(A) ...oi(B) ... where oi is wi or ri



A “bad” execution plan? 
Look at SE

Look at the plan – also slides 11 through 15:
o When the transaction semantics are abstracted away, we do not see 

the difference between SD and SE.
o We know that, unlike SD, SE is serializable (see slide 15 where the 

semantics of SE transactions are described), but it still is not conflict 
serializable! Why was that? (See next slide – and discuss)

1. Read-write conflict: A couple of operations of the form
...ri(A) ...wk(A) ... or ...wi(A) ...rk(A) ... (where i ≠ k)

2. Write-write conflict: A couple of operations of the form 
...wi(A) ...wk(A) ... (where i ≠ k)

3. Intra-transaction conflict: A pair of form operations 
...oi(A) ...oi(B) ... where oi is wi or ri



Recap: Execution plan SE
Why does it not result in a conflict?



Conflict serializable ⇒ Serializable
o Any conflict serializable execution plan is serializable

o Changing non-conflicting operations will not change the outcome of the 
execution

o Thus, it is sufficient to allow only execution plans that are conflict 
serializable (sufficient for what?)

o Observe and be aware: There are execution plans that are not conflict 
serializable but still serializable

o If we reject plans that are not conflict serializable, we may therefore be 
rejecting some plans that would have gone well, but it is too expensive or 
impossible to check serializability in general

o How can we check conflict serializability in practice?



Precedence graphs

Continued from 8. March 2021



Precedence graphs
o Let S be an execution plan, and let pi(A) and qk(B) be two (arbitrary) operations in S. 

The notation pi(A) <S qk(B) means that pi(A) is to be executed before qk(B) in S. Then 
the precedent graph P of S, defined as P(S), is as follows:
o Nodes: The transactions in S
o Edges: The precedents in S

o Ti→ Tk (where i ≠ k) if
1. pi(A) <S qk(A) and
2. at least one of pi or qk is a write operation

Exercise (group): Draw P(S) for S = w3(A); w2(C); r1(A); w1(B); r1 (C); w2(A); r4(A); w4(D)
Note: There are 4 transactions (T1, T2, T3, T4 ), and not all data elements A, B, C and D 
are in every transaction. Is S serializable?

T1

T4

T2 T3A precedence graph



Precedence graphs - Lemma
o Lemma: S1 and S2 are conflict equivalent plans ⟹ P(S1) = P(S2)
o Proof: We show that P(S1) ≠ P(S2) ⟹ S1 and S2 are not conflict equivalent.

o Assume that S1 and S2 are both merging/interweaving of transactions
{T1, ..., Tn}, but that P(S1) ≠ P(S2).

o Then i and k (i ≠ k) exist such that Ti→ Tk is an edge in P(S1), but not in 
P(S2).

o This means that there are operations pi and qk that conflict with a data 
element A such that
o S1 = ... pi(A) ... qk(A) ... (hence the edge Ti→ Tk in P(S1))
o S2 = ... qk(A) ... pi(A) ... (so there is also an edge Tk→ Ti in P(S2))

o This shows that S1 and S2 are not conflict equivalent.

Reminder
S is an execution plan and 
P(S) is a precedence graph
for the execution plan S



Precedence graphs - continued
o Note: We cannot conclude the opposite, i.e., from P(S1) = P(S2) that 

S1 and S2 are conflict equivalents.
o Proof (case example):

o S1 = w1(A); r2(A); w2(B); r1(B)
o S2 = r2(A); w1(A); r1(B); w2(B)

o S1 and S2 are obviously not conflict equivalent (why?)
o But P(S1) and P(S2) both have the two nodes T1 and T2 and the two 

edges T1→ T2 and T2→ T1, so P(S1) = P (S2).



Precedence graphs - Theorem
o Theorem:

P(S) is acyclic ⟺ S is conflict serializable
o Proof (⟹)

Suppose that P(S) is acyclic. Restructure S as follows:
1. Choose a transaction T1 that has no incoming edges in P(S)
2. Move all operations in T1 to the start of S 

(in the order they occur in T1), i.e., S = .... qk(B) .... p1(A) ....

3. Now we have S1 = [the operations in T1] [the rest of S>]
4. Repeat 1-3 to serialize the rest of S.

T1

T4

T2 T3



Enforcement of serializability and 
serializability protocols
o Method 1:

Run the system and register P(S)
"At the end of the day" we check if P(S) is acyclic, i.e., if 
everything went well

o Method 2:
Check in advance that the execution plan can never cause 
cycles in P(S)

o A framework that supports method 2 is called a serialization 
protocol



Locking protocols
o We introduce two new types of operation:
o Lock: li(A) – Ti puts (an exclusive) lock on A
o Unlock: ui(A) – Ti releases the lock on A

o In addition, we require that DBMS must maintain a lock 
table that shows which data elements are locked by which 
transactions

o Most DBMS´ have their own lock manager modules that 
keep track of the lock table



Execution plan SD with locks

Note that Locks alone do NOT guarantee serializability!



Locking rules – 2 Phase Locking (2PL)
o Rule 1 - Well-formed transactions:

Before Ti performs operation pi(A), Ti must have performed  
li(A), and it should perform ui(A) after pi(A)
Example: Ti: ... li(A) ... ri(A) ... wi(A) ... ui(A) ...

o Rule 2 - Allowed (“Legal”) Execution Plans: Execution plans 
cannot allow two transactions to lock on the same data 
element at the same time

i.e.,: S: ... li(A) ................ ui(A) ...

No lk(A) (for k ≠ i)



Locking rules – 2 Phase Locking (2PL)
o Rule 3 – 2 phase locking
o A transaction that has performed an unlock operation is not 

allowed to perform other lock operations
Ti = ............ li(A) ...... ui(A) ......

o The time leading up to the transaction's first unlock 
operation is called the transaction's growing phase

o The time from the transaction's first unlock operation is 
called the transaction shrinking phase

No ui(B) No li(B)



Conflict rules for lock/unlock

o li(A), lk(A) leads to conflict
o li(A), uk(A) leads to conflict

o Note that the following two situations do not lead to 
conflict:
o ui(A), uk(A)
o li(A), rk(A) 



Start of the shrinking phase
o A helping definition:

Sh(Ti) = first unlock operation that Ti performs
o Lemma: If Ti→ Tk in P(S), then Sh(Ti) <S Sh(Tk)
o Proof: Ti → Tk means that

S = ... pi(A) ... qk(A) ...; where pi and qk are in conflict
o Rule 1 states that ui(A) must come after pi(A) and lk(A) before qk(A)
o Rule 2 states that lk(A) must come after ui(A). 

Thus, we have S = ... pi(A) ... ui(A) ... lk(A) ... qk(A) ...;
o Rule 3 states that Sh(Ti) cannot come after ui(A) and that Sh(Tk) must come 

after lk(A)
o Q.E.D. We have proved that Sh(Ti) must come before Sh(Tk) in S

Reminder:
• The time leading up to the transaction's 

first unlock operation is called the 
transaction's growing phase

• The time from the transaction's first unlock 
operation is called the transaction 
shrinking phase

• Rule 1: Well formed transactions
• Rule 2: Allowed or “legal” execution plans
• Rule 3: 2 phase locking (2PL)



2PL ensures conflict serializability
o THEOREM: If a plan S complies with rules 1, 2 and 3, 

then S is conflict serializable

o Proof: According to the earlier theorem (see earlier slides from slide 28), 
it is sufficient to show that if a plan S complies with rules 1, 2 and 3, then 
the precedence graph P(S) is acyclic

o Thus, assume (ad absurdum) that P(S) has a cycle T1 → T2 → ... → Tn → T1
o According to the lemma, then

Sh(T1) <S Sh(T2) <S ... <S Sh(Tn) <S Sh(T1)
o But this is impossible, so P(S) is acyclic!

Reminder: 
Sh(Ti) = first unlock 
operation that Ti performs



Deadlock

This demonstrates that 2PL is NOT a guarantee against deadlock!

Must wait for T2

Must wait for T1



Read and write locks
o For improved concurrency, we can use two different types of locks:

o Shared lock (sl) that allows other transactions to read the data element but not 
write it

o Write lock (eXclusive lock, xl) that does not allow other transactions to read or write 
the data element

o Notation:
o slk(A) : Tk puts a read lock (shared lock) on A
o xlk(A) : Tk puts a write lock (eXclusive lock) on A
o uk(A) : Tk deletes its lock(s) on A (both read and write)

o slk(A) is not executed if any transaction other than Tk has write lock on A
o xlk(A) is not executed if a transaction other than Tk has locked A (it does not matter 

whether it is a read or write lock)



Rules for read and write locks
o For Well-formed transactions (rule 1)

Any transaction Tk must comply with the following three rules:
o An rk(A) must come after an slk(A) or xlk(A) without any uk(A) in 

between
o A wk(A) must come after an xlk(A) without any uk(A) in between
o There must be a uk(A) after an slk(A) or xlk(A)

o For 2-phase lock (rule 3)
In addition, any 2PL transaction Tk must comply with the following:
o No slk(A) or xlk(A) can come after an uk(B) regardless of what A and 

B are



Rules for read and write locks (continued)
o Allowed execution plans (rule 2)

Each data element is either unlocked, or has one write lock, 
or has one or more read locks.
This is ensured by all plans S following these rules:
o If xli(A) occurs in S, it must be followed by a ui(A) before 

an xlk(A) or slk(A) with k ≠ i
o If sli(A) occurs in S, it must be followed by a ui(A) before 

there can be an xlk(A), where k ≠ i



Conflict serializability of SL / XL plans
THEOREM: If a plan S complies with the rules for read and write 
locks on the two previous slides, then S is conflict serializable.
PROOF: Almost identical to the proof that plans using only 
exclusive locks ensure conflict serializability (slide 39), but with 
the only difference being that we need that neither

sli(A) followed by slk(A)
nor

sli(A) followed by uk(A)
is a conflict.



Compatibility matrices
o Compatibility matrices are used to store the lock allocation rules when using 

multiple lock types
o The matrices have one row and one column for each lock type 
o Compatibility matrices are interpreted as follows:

o If Ti asks to put a type K lock on data element A, it only gets it if there is a 'Yes' 
in column K in all rows R of the matrix where some other Tk has a type R lock 
on A

o Example: Compatibility matrix for S / X locks

Lock that A has ↓ S X

S Yes No

X No No

Lock that T is asking to get on A ↓



Upgrading the locks
o For better (more efficient) concurrency, we can allow T to first set 

read lock and then upgrade it to write lock if needed
o Example:

Rejected!



Upgrading the locks (continued)
o One disadvantage is that upgrading locks increases the risk of 

deadlock!
o Example:

o The example illustrates that protocols that use lock upgrades are 
only suitable if there are many more read than write transactions

Rejected!
Rejected!



Update locks
o An update lock is a read lock that will later be upgraded to a write lock
o Update locks are denoted by U (Update lock)
o The compatibility matrix for S / X / U locks comes in two variants (where the 

asymmetric is most common):
o an asymmetric ('N') that prioritizes writing transactions
o a symmetric (‘Y') that prioritizes reading transactions

Has lock ↓ S X U

S Yes No Yes

X No No No

U Yes/No No No

Requests lock ↓



Update locks (continued)
o Plans that earlier resulted in deadlock due to read-to-write lock 

upgrades do not do so with the use of update locks.
(BUT NOTE! There may be other causes of deadlock!)

o Example (which was a deadlock earlier):

Rejected!



Incremental locks
o Atomic increment operation: INi(A) 

{Read (A); A ← A + v; Write (A)}
o INi(A) and INk(A) are not in conflict!



Incremental locks (continued)
o The purpose is to streamline bookkeeping transactions
o Increment locks are denoted by I (looks sure like l, so be careful!)
o Increment locks conflict with both read and write locks, but not with 

other increment locks
o Here is the compatibility matrix for S / X / I locks:

Has lock ↓ S X I

S Yes No No

X No No No

I No No Yes

Requests lock ↓



We continue with the challenges of 
concurrency…

For that, we will be looking at 
new types of locks (alerts), lock management

and then isolation



Lock scheduling
o In practice, no DBMS will allow the transactions to set or release any 

locks themselves
o Transactions perform only the read, write, commit and abort 

operations, and optionally update and increment
o The locks are entered into the transactions and are set and released by 

a separate module in DBMS called the lock manager (Lock Scheduler)
o Lock manager uses its own internal data structure, the lock table, to 

manage the locks
o The lock table is not part of the buffer area; (depending upon the 

DBMS) it is (usually) unavailable for the transactions



Lock scheduling, lock management
The lock manager consists of two parts:
o Part I analyzes each transaction T and inserts “correct” lock requirements 

prior to operations in T and sets the requirements in the lock table. The 
requirements it selects depend on which lock types are available.

o Part II controls whether the operations and lock requirements it receives 
from Part I can be performed. Those that cannot be realized are placed in 
a queue to wait for the lock that prevents execution to be removed (which 
also means that there is a queue for each lock)

o When T does commit (or abort), Part I deletes all locks set by T and 
notifies Part II, which checks the queues for these locks and allows the 
transactions that can continue



Lock table
o Logically, the lock table is a table that contains all lock information for each data 

item in the database
o In practice, the lock table is organized as a hash table with the address of the 

data element´s address as the key
o Unlocked data elements are not included in the lock table
o The lock table is therefore proportional to the number of requested and granted 

locks, and not to the number of data elements
o For each A in the lock table, the following information is stored:

o Group mode (strictest lock held on A)
o A waiting flag that indicates whether someone is waiting to lock A
o A list of those T that are waiting for lock on A



Example of lock info for a data element A

To other data elements T3 has (pending) lock on 
(useful for commit / abort)

Trans  Mode Wait? Next T Data

no

no

no

Data element: A
Goup mode: U
Waiting: Yes
List: 



Granularity and alert (warning) locks
o The concept of a data element is intentionally undefined. Three 

natural granularities on data elements are:
o a relation: the naturally largest (lockable) data element 
o a block: a relation consists of one or more blocks
o a tuple: a block can contain one or more tuples

o Different transactions may require locks at all these levels at the 
same time

o To achieve this, we introduce alert (warning) locks, IS and IX, which 
state that we intend to put a read or write lock further down in the 
hierarchy, respectively. Note: Read “I” as “Intended lock”.



Alert (warning) locks (continued)

Example: T wants to write tuple A in block B in relation R

o If R has neither S-lock nor X-lock, T sets IX-lock on R

o If T gets IX-lock on R, it checks if B has S or X lock. If B does not have those, T puts IX-lock on B

o If T gets IX-lock on B, it checks if A has any locks. If A does not have any, T puts X-lock on A and then 
can write A

Note that if a transaction T has a write lock on R, no one else can write a tuple in R until T clears the lock

Has lock ↓ IS IX S X

IS Yes Yes Yes No

IX Yes Yes No No

S Yes No Yes No

X No No No No

Requests lock ↓



Managing phantom tuples
Example:
o We shall sum a field for all the tuples in a relation R
o Before summing, we put a read-lock on all the R tuples to ensure a 

consistent answer
o During the addition operation, another transaction inserts a new tuple 

in R, which makes the sum become wrong
o This is possible because the tuple did not exist when we put our 

reading locks. Such a tuple is called a phantom tuple!
o The solution is to put an IS (intended Shared Lock) lock on the relation. 

Then, no one can enter any new tuples until the lock is deleted.


