
IN3020/4020 – Database Systems
Spring 2021, Week 8.1

(second half Continued from 8. March 2021)

Serialization and Concurrency Control
Part 1

Dr. M. Naci Akkøk, Chief Architect, Oracle Nordics
Based upon slides by E. Thorstensen from Spring 2019

Precedence graphs
o Let S be an execution plan, and let pi(A) and qk(B) be two (arbitrary) operations in S.

The notation pi(A) <S qk(B) means that pi(A) is to be executed before qk(B) in S. Then
the precedent graph P of S, defined as P(S), is as follows:
o Nodes: The transactions in S
o Edges: The precedents in S

o Ti→ Tk (where i ≠ k) if
1. pi(A) <S qk(A) and
2. at least one of pi or qk is a write operation

Exercise (group): Draw P(S) for S = w3(A); w2(C); r1(A); w1(B); r1 (C); w2(A); r4(A); w4(D)
Note: There are 4 transactions (T1, T2, T3, T4), and not all data elements A, B, C and D
are in every transaction. Is S serializable?

T1

T4

T2 T3A precedence graph

Precedence graphs - Lemma
o Lemma: S1 and S2 are conflict equivalent plans ⟹ P(S1) = P(S2)
o Proof: We show that P(S1) ≠ P(S2) ⟹ S1 and S2 are not conflict equivalent.

o Assume that S1 and S2 are both merging/interweaving of transactions
{T1, ..., Tn}, but that P(S1) ≠ P(S2).

o Then i and k (i ≠ k) exist such that Ti→ Tk is an edge in P(S1), but not in
P(S2).

o This means that there are operations pi and qk that conflict with a data
element A such that
o S1 = ... pi(A) ... qk(A) ... (hence the edge Ti→ Tk in P(S1))
o S2 = ... qk(A) ... pi(A) ... (so there is also an edge Tk→ Ti in P(S2))

o This shows that S1 and S2 are not conflict equivalent.

Reminder
S is an execution plan and
P(S) is a precedence graph
for the execution plan S

Precedence graphs - continued
o Note: We cannot conclude the opposite, i.e., from P(S1) = P(S2) that

S1 and S2 are conflict equivalents.
o Proof (case example):

o S1 = w1(A); r2(A); w2(B); r1(B)
o S2 = r2(A); w1(A); r1(B); w2(B)

o S1 and S2 are obviously not conflict equivalent (why?)
o But P(S1) and P(S2) both have the two nodes T1 and T2 and the two

edges T1→ T2 and T2→ T1, so P(S1) = P (S2).

Precedence graphs - Theorem
o Theorem:

P(S) is acyclic ⟺ S is conflict serializable
o Proof (⟹)

Suppose that P(S) is acyclic. Restructure S as follows:
1. Choose a transaction T1 that has no incoming edges in P(S)
2. Move all operations in T1 to the start of S

(in the order they occur in T1), i.e., S = qk(B) p1(A)

3. Now we have S1 = [the operations in T1] [the rest of S>]
4. Repeat 1-3 to serialize the rest of S.

T1

T4

T2 T3

Enforcement of serializability and
serializability protocols
o Method 1:

Run the system and register P(S)
"At the end of the day" we check if P(S) is acyclic, i.e., if
everything went well

o Method 2:
Check in advance that the execution plan can never cause
cycles in P(S)

o A framework that supports method 2 is called a serialization
protocol

Locking protocols
o We introduce two new types of operation:
o Lock: li(A) – Ti puts (an exclusive) lock on A
o Unlock: ui(A) – Ti releases the lock on A

o In addition, we require that DBMS must maintain a lock
table that shows which data elements are locked by which
transactions

o Most DBMS´ have their own lock manager modules that
keep track of the lock table

Execution plan SD with locks

Note that Locks alone do NOT guarantee serializability!

Locking rules – 2 Phase Locking (2PL)
o Rule 1 - Well-formed transactions:

Before Ti performs operation pi(A), Ti must have performed
li(A), and it should perform ui(A) after pi(A)
Example: Ti: ... li(A) ... ri(A) ... wi(A) ... ui(A) ...

o Rule 2 - Allowed (“Legal”) Execution Plans: Execution plans
cannot allow two transactions to lock on the same data
element at the same time

i.e.,: S: ... li(A) ui(A) ...

No lk(A) (for k ≠ i)

Locking rules – 2 Phase Locking (2PL)
o Rule 3 – 2 phase locking
o A transaction that has performed an unlock operation is not

allowed to perform other lock operations
Ti = li(A) ui(A)

o The time leading up to the transaction's first unlock
operation is called the transaction's growing phase

o The time from the transaction's first unlock operation is
called the transaction shrinking phase

No ui(B) No li(B)

Conflict rules for lock/unlock

o li(A), lk(A) leads to conflict
o li(A), uk(A) leads to conflict

o Note that the following two situations do not lead to
conflict:
o ui(A), uk(A)
o li(A), rk(A)

Start of the shrinking phase
o A helping definition:

Sh(Ti) = first unlock operation that Ti performs
o Lemma: If Ti→ Tk in P(S), then Sh(Ti) <S Sh(Tk)
o Proof: Ti → Tk means that

S = ... pi(A) ... qk(A) ...; where pi and qk are in conflict
o Rule 1 states that ui(A) must come after pi(A) and lk(A) before qk(A)
o Rule 2 states that lk(A) must come after ui(A).

Thus, we have S = ... pi(A) ... ui(A) ... lk(A) ... qk(A) ...;
o Rule 3 states that Sh(Ti) cannot come after ui(A) and that Sh(Tk) must come

after lk(A)
o Q.E.D. We have proved that Sh(Ti) must come before Sh(Tk) in S

Reminder:
• The time leading up to the transaction's

first unlock operation is called the
transaction's growing phase

• The time from the transaction's first unlock
operation is called the transaction
shrinking phase

• Rule 1: Well formed transactions
• Rule 2: Allowed or “legal” execution plans
• Rule 3: 2 phase locking (2PL)

2PL ensures conflict serializability
o THEOREM: If a plan S complies with rules 1, 2 and 3,

then S is conflict serializable

o Proof: According to the earlier theorem (see earlier slides from slide 28),
it is sufficient to show that if a plan S complies with rules 1, 2 and 3, then
the precedence graph P(S) is acyclic

o Thus, assume (ad absurdum) that P(S) has a cycle T1 → T2 → ... → Tn → T1
o According to the lemma, then

Sh(T1) <S Sh(T2) <S ... <S Sh(Tn) <S Sh(T1)
o But this is impossible, so P(S) is acyclic!

Reminder:
Sh(Ti) = first unlock
operation that Ti performs

Deadlock

This demonstrates that 2PL is NOT a guarantee against deadlock!

Must wait for T2

Must wait for T1

Read and write locks
o For improved concurrency, we can use two different types of locks:

o Shared lock (sl) that allows other transactions to read the data element but not
write it

o Write lock (eXclusive lock, xl) that does not allow other transactions to read or write
the data element

o Notation:
o slk(A) : Tk puts a read lock (shared lock) on A
o xlk(A) : Tk puts a write lock (eXclusive lock) on A
o uk(A) : Tk deletes its lock(s) on A (both read and write)

o slk(A) is not executed if any transaction other than Tk has write lock on A
o xlk(A) is not executed if a transaction other than Tk has locked A (it does not matter

whether it is a read or write lock)

Rules for read and write locks
o For Well-formed transactions (rule 1)

Any transaction Tk must comply with the following three rules:
o An rk(A) must come after an slk(A) or xlk(A) without any uk(A) in

between
o A wk(A) must come after an xlk(A) without any uk(A) in between
o There must be a uk(A) after an slk(A) or xlk(A)

o For 2-phase lock (rule 3)
In addition, any 2PL transaction Tk must comply with the following:
o No slk(A) or xlk(A) can come after an uk(B) regardless of what A and

B are

Rules for read and write locks (continued)
o Allowed execution plans (rule 2)

Each data element is either unlocked, or has one write lock,
or has one or more read locks.
This is ensured by all plans S following these rules:
o If xli(A) occurs in S, it must be followed by a ui(A) before

an xlk(A) or slk(A) with k ≠ i
o If sli(A) occurs in S, it must be followed by a ui(A) before

there can be an xlk(A), where k ≠ i

Conflict serializability of SL / XL plans
THEOREM: If a plan S complies with the rules for read and write
locks on the two previous slides, then S is conflict serializable.
PROOF: Almost identical to the proof that plans using only
exclusive locks ensure conflict serializability (slide 39), but with
the only difference being that we need that neither

sli(A) followed by slk(A)
nor

sli(A) followed by uk(A)
is a conflict.

Compatibility matrices
o Compatibility matrices are used to store the lock allocation rules when using

multiple lock types
o The matrices have one row and one column for each lock type
o Compatibility matrices are interpreted as follows:

o If Ti asks to put a type K lock on data element A, it only gets it if there is a 'Yes'
in column K in all rows R of the matrix where some other Tk has a type R lock
on A

o Example: Compatibility matrix for S / X locks

Lock that A has ↓ S X

S Yes No

X No No

Lock that T is asking to get on A ↓

Upgrading the locks
o For better (more efficient) concurrency, we can allow T to first set

read lock and then upgrade it to write lock if needed
o Example:

Rejected!

Upgrading the locks (continued)
o One disadvantage is that upgrading locks increases the risk of

deadlock!
o Example:

o The example illustrates that protocols that use lock upgrades are
only suitable if there are many more read than write transactions

Rejected!
Rejected!

Update locks
o An update lock is a read lock that will later be upgraded to a write lock
o Update locks are denoted by U (Update lock)
o The compatibility matrix for S / X / U locks comes in two variants (where the

asymmetric is most common):
o an asymmetric ('N') that prioritizes writing transactions
o a symmetric (‘Y') that prioritizes reading transactions

Has lock ↓ S X U

S Yes No Yes

X No No No

U Yes/No No No

Requests lock ↓

Update locks (continued)
o Plans that earlier resulted in deadlock due to read-to-write lock

upgrades do not do so with the use of update locks.
(BUT NOTE! There may be other causes of deadlock!)

o Example (which was a deadlock earlier):

Rejected!

Incremental locks
o Atomic increment operation: INi(A)

{Read (A); A ← A + v; Write (A)}
o INi(A) and INk(A) are not in conflict!

Incremental locks (continued)
o The purpose is to streamline bookkeeping transactions
o Increment locks are denoted by I (looks sure like l, so be careful!)
o Increment locks conflict with both read and write locks, but not with

other increment locks
o Here is the compatibility matrix for S / X / I locks:

Has lock ↓ S X I

S Yes No No

X No No No

I No No Yes

Requests lock ↓

We continue with the challenges of
concurrency…

For that, we will be looking at
new types of locks (alerts), lock management

and then isolation

Lock scheduling
o In practice, no DBMS will allow the transactions to set or release any

locks themselves
o Transactions perform only the read, write, commit and abort

operations, and optionally update and increment
o The locks are entered into the transactions and are set and released by

a separate module in DBMS called the lock manager (Lock Scheduler)
o Lock manager uses its own internal data structure, the lock table, to

manage the locks
o The lock table is not part of the buffer area; (depending upon the

DBMS) it is (usually) unavailable for the transactions

Lock scheduling, lock management
The lock manager consists of two parts:
o Part I analyzes each transaction T and inserts “correct” lock requirements

prior to operations in T and sets the requirements in the lock table. The
requirements it selects depend on which lock types are available.

o Part II controls whether the operations and lock requirements it receives
from Part I can be performed. Those that cannot be realized are placed in
a queue to wait for the lock that prevents execution to be removed (which
also means that there is a queue for each lock)

o When T does commit (or abort), Part I deletes all locks set by T and
notifies Part II, which checks the queues for these locks and allows the
transactions that can continue

Lock table
o Logically, the lock table is a table that contains all lock information for each data

item in the database
o In practice, the lock table is organized as a hash table with the address of the

data element´s address as the key
o Unlocked data elements are not included in the lock table
o The lock table is therefore proportional to the number of requested and granted

locks, and not to the number of data elements
o For each A in the lock table, the following information is stored:

o Group mode (strictest lock held on A)
o A waiting flag that indicates whether someone is waiting to lock A
o A list of those T that are waiting for lock on A

Example of lock info for a data element A

To other data elements T3 has (pending) lock on
(useful for commit / abort)

Trans Mode Wait? Next T Data

no

no

no

Data element: A
Goup mode: U
Waiting: Yes
List:

Granularity and alert (warning) locks
o The concept of a data element is intentionally undefined. Three

natural granularities on data elements are:
o a relation: the naturally largest (lockable) data element
o a block: a relation consists of one or more blocks
o a tuple: a block can contain one or more tuples

o Different transactions may require locks at all these levels at the
same time

o To achieve this, we introduce alert (warning) locks, IS and IX, which
state that we intend to put a read or write lock further down in the
hierarchy, respectively. Note: Read “I” as “Intended lock”.

Alert (warning) locks (continued)

Example: T wants to write tuple A in block B in relation R

o If R has neither S-lock nor X-lock, T sets IX-lock on R

o If T gets IX-lock on R, it checks if B has S or X lock. If B does not have those, T puts IX-lock on B

o If T gets IX-lock on B, it checks if A has any locks. If A does not have any, T puts X-lock on A and then
can write A

Note that if a transaction T has a write lock on R, no one else can write a tuple in R until T clears the lock

Has lock ↓ IS IX S X

IS Yes Yes Yes No

IX Yes Yes No No

S Yes No Yes No

X No No No No

Requests lock ↓

Managing phantom tuples
Example:
o We shall sum a field for all the tuples in a relation R
o Before summing, we put a read-lock on all the R tuples to ensure a

consistent answer
o During the addition operation, another transaction inserts a new tuple

in R, which makes the sum become wrong
o This is possible because the tuple did not exist when we put our

reading locks. Such a tuple is called a phantom tuple!
o The solution is to put an IS (intended Shared Lock) lock on the relation.

Then, no one can enter any new tuples until the lock is deleted.

