
IN3020/4020 – Database Systems 
Spring 2021, Week 8.2 

Serialization and Concurrency Control 
Part 2

Dr. M. Naci Akkøk, Chief Architect, Oracle Nordics
Based upon slides by E. Thorstensen from Spring 2019



Another type of serialization protocol
o So far, we have only looked at 2PL-based protocols. All 2PL protocols 

have the following structure:
o First, we lock the data elements we are interested in
o Then we read and (possibly) write these data elements
o In the end we release the locks and give access to other transactions

o Such protocols are well suited when the data is stored in tabular form 
(such as arrays and hash tables)

o The other main way to store data is to organize them as trees (usually B 
trees or B + trees)

o For such data there is a more convenient locking protocol, 
called the tree protocol



The tree protocol
1. A transaction can put its first lock on an arbitrary node in the 

tree
2. Later, the transaction can only lock a node if it has locked the 

parent node
3. A transaction can delete a lock it has on a node at any time
4. A transaction cannot lock a node that it has previously released 

(even though it still has a lock on the parent node)

The tree protocol formulated here is based upon having only one 
type of lock, but it works equally well with several.



Tree protocol on B + trees
o In a B + tree, the root is always locked first
o In theory, the transaction must hold a lock on the root until the 

transaction is complete because both insert and delete can 
cause the root to be changed

o It would have meant that only one writing transaction at a time 
could access the B + tree

o However, the normal thing is that when you access the next 
level in the tree, you can immediately determine that the parent 
node will not be affected, and it can then be released 
immediately

o In practice, this gives a high degree of simultaneity



An example of the tree protocol
1. T locks A (root, Lock-1)
2. T locks B (Lock-2) 
3. T sees that A is not changed 

and removes Lock-1
4. T locks D (Lock-3)
5. T sees that B is not changed, 

and removes Lock-2
6. T locks F (Lock-4)
7. T sees that D will be changed
8. T writes F and D and removes 

Lock-3 and Lock-4

A

B C

D

E F

Lock-1

Lock-2
Lock-3

Lock-4

Extract of a B+ tree with root A



The tree protocol ensures serializability!
o Suppose that T1 is as before, that 

T2 will also write and that T1 locks 
A first

o T2 tries to lock A and is placed in 
the A queue until T1 releases 
Lock-1

o T2 gets lock A and can move on to 
C, but not to B until T1 has 
released lock-2

o T2 can never "pass" T1, so the 
order at the root determines a 
serialization order!

A

B C

D

E F

Lock-1

Lock-2
Lock-3

Lock-4

Extract of a B+ tree with root A

T1T2←



Time stamping
o Time stamping is the basis for a family of serialization protocols that do not use locks
o Timestamp provides optimized concurrency control where the transactions can go 

unimpeded until you discover that something went wrong such the transaction must be 
aborted (Remember: 2PL is pessimistic and tries to prevent mistakes in advance)

o When a transaction T starts, it receives a timestamp, TS(T)
o Two transactions cannot have the same timestamp, and if T1 starts before T2, then we 

should have TS(T1) < TS(T2)
o The serialization order is determined by the timestamps
o The two most common forms of timestamps are:

o The time T started (the value of the system clock)
o A serial number (transaction number in the system´s life-time)



Time stamps on data
o The Scheduler must maintain a table of active transactions (as before) and 

their timestamps now
o To able to use timestamp for concurrency checking, two timestamps and a 

Boolean variable are associated with each and every data item A in the 
database:
o RT(A): read time of A: The highest timestamp of any transaction that 

has read A
o WT(A): write time of A: The highest timestamp of any transaction that 

has written A
o C(A): commit flag of A: True if and only if the last transaction that 

wrote A, is committed

What does the scheduler schedule?
EXECUTION plans!



Time stamp serialization
o The serialization protocol using timestamps basically assumes that 

the serialization order is determined by the timestamps
o The protocol ensures that we get an execution plan that is conflict 

equivalent to the serial plan we would have had if all the 
transactions had done all their read and write operations at their 
timestamp (that is, if the transactions were instantaneous and did 
not take any time from start to finish)

o There are two problems that can occur:
o The transaction reads too late
o The transaction writes too late



Transaction reads too late
o Transaction T will read data element A
o The value of A is written by a transaction that started after T, i.e., 

WT(A) > TS(T)
• T would read «wrong» value of A
• Consequence: T must abort

Actual time for the event

Theoretical time for the 
event (time of serialization)



Transaction writes too late
o T wants to write data element A, but A is already read by U that 

started after T, i.e., RT(A) > TS(T)
o If WT(A) > TS(T), T shall not write A (everything is OK)If not, U should 

have read the value of A that T should now write, and T must then 
abort

Actual time for the event

Theoretical time for the 
event (time of serialization)



Dirty data
o Transaction T reads data element A written by another transaction U
o If U aborts after T has read A, T has read a value of A that should never have 

been in the database! We say that T has read a dirty value of A
o This is a violation of the isolation requirement, so T should wait to read A until 

commit flag of A is true

aT = T aborts
cT = T commits



Thomas´writing rule
o Transaction T wants to write data element A already written by 

another transaction V with TS(V) > TS(T)
o Since later transactions should read the A value written by V, T must 

not write A

Problem:
If V aborts, T 
should not have 
written A! 



Timestamp serialization protocol I
1) T wants to read A

a) If TS(T) ≥ WT(A), T may be allowed to read A:
i. If C(A), i.e., if the commit flag of A is set, then perform rT(A) and 

set RT(A) = max (RT(A), TS(T))
ii. If not C(A), let T wait in line for A (when T wakes up, it must test 

again)
b) If TS(T) < WT(A), it is physically impossible for T to read the correct 

value of A. T must be rolled back (we must perform rollback(T)):
i. Perform aT

ii. Restart with a higher timestamp



Timestamp serialization protocol II
2) T wants to write A

a) If TS(T) ≥ RT(A), and TS(T) ≥ WT(A), T can write:
i. Perform wT and set WT(A) = TS(T) and C(A) = false
ii. “Inform” those waiting for A

b) If TS(T) ≥ RT(A) and TS(T) < WT(A), then A is written by a newer 
transaction than T. If C(A), ignore the request (Thomas’ writing 
rule). If not C (A), let T wait in the A queue (and test again when 
T is awakened)

c) If TS(T) < RT(A), A is read by a newer transaction than T, and T 
must be rolled back



Timestamp serialization protocol III
3) T wants to commit

a) Execute CT (i.e., enter commit(T) into the log)
b) For each A where T was the last transaction that wrote A, 

set C(A) = true
c) Allow transactions pending to read or write A to continue

4) T is aborted (or wants to abort)
a) Use the log to perform Undo on all write operations of T and write 

abort(T) in the log
b) Let all transactions that are waiting to read or write a data item 

written by T try again



Versioning
o Versioning is a method for avoiding abort in the case when T wants to 

read an A written by a newer transaction
o When a write operation wT(A) is performed, a new version At of A is 

created, where t = TS(T)
o When a read operation rT (A) is performed, it reads the version that has 

the highest t ≤ TS(T)
o Obsolete versions of A can, and should, be deleted
o For At to be deleted, there must be a version Au where t < u and where 

u ≤ TS(T) for all active transactions T
o Effective versioning in practice requires that the data elements are 

blocks



Snapshot Isolation (SI)
o Commercial DBMSs use a form of versioning called "Snapshot 

Isolation", abbreviated SI
o In SI, a transaction T throughout all its lifetime will read the committed 

values the database had at TS(T)
o T is thus not affected by writing operations of other transactions after 

TS(T)
o SI does not guarantee serializability (!)
o But SI provides a high degree of merging (interweaving) and is the 

standard strategy for simultaneous control in most of today's 
commercial DBMSs.



Time stamping vs. locking

o Time stamping is best if most transactions are read only, or 
if conflicts are rare

o If conflicts are common, timestamping will result in many 
rollbacks, and locking is better

o Take some time to discuss why…
o And why not both? How?



Validation
o Validation is an optimistic serialization strategy based on time 

stamping
o It differs from regular timestamps in that it does not store read 

and write timestamps for all data elements in the database
o For each active transaction T, two quantities (sets) are stored 
o the read set of T, RS(T)
o the write set of T, WS(T)
which contains all data elements that T reads or writes, 
respectively



Validation (continued)
The execution of a transaction T is divided into three stages:
1. The reading phase

All reading and calculation is done here. RS(T) and WS(T) is built up in T's address 
space. The start time of the reading phase is called Start(T)

2. The validation phase
T is validated by comparing RS(T) and WS(T) with the read and write sets of other 
transactions (details soon). If the validation fails, T is rolled back. 
The end time of the validation phase is called Val(T)

3. The writing phase
Here, T writes the values in WS(T) to the database. The end time of the Writing 
phase is called Fin(T)

The value of Val(T) determines the serialization order



Validation (continued)
The planner (scheduler) maintains three sets of transactions:
1. START

Those who have started but have not yet completed the validation phase.
For each T ∈ START, Start(T) is stored

2. VAL
Those that are validated but have not completed the writing phase.
For each T ∈ VAL, Start(T) and Val(T) are stored

3. FIN
Those who (recently) have completed the writing phase.
For each T ∈ FIN, Start(T), Val(T) and Fin(T) are stored.
T can be removed from FIN when for all U ∈ START ∪ VAL, 
we have Start(U) > Fin(T)



Validation phase – Example 1

Assume that when T is to be be validated, there is a U such that
a) U ∈ VAL ∪ FIN (i.e., U is validated)
b) If U ∈ FIN: Fin(U) > Start(T) (i.e., U was not finished when T started)
c) RS(T) ∩ WS(U) ≠ Ø (In the figure, A ∈ RS(T) ∩ WS (U))
T must be rolled back because T may have read a "wrong" value of A



Validation phase – Example 2

Assume that when T is to be be validated, there is a U such that
a) U ∈ VAL (i.e., U is validated but not finished)
b) WS(T) ∩ WS(U) ≠ Ø (In the figure, A ∈ WS(T) ∩ WS(U))
T must be rolled back because T may write A before U does



The validation test
The two previous examples cover all possible «fault» situations.

o Thus, the validation phase consists of the following two tests:
o Check that RS(T) ∩WS(U) = Ø for all U ∈ VAL and all U ∈ FIN 

with Fin(U) > Start(T)
o Check that WS(T) ∩WS(U) = Ø for all U ∈ VAL

o If T passes both tests, T is validated and enters the writing phase
o If not, T must be rolled back



Cascaded rollback
Integrity rule A = B

Rejected!

When T1 aborts, 
the scheduler 
deletes all the 
locks T1 has. 
If T2 is allowed to
continue, then T2
will create an 
inconsistent state, 
so T2 must be 
rolled back 
(because T2 has 
read a dirty A)



Cascaded rollback (continued)
o As the name suggests, cascaded rollback can be recursive:
o Abort of T1 can lead to abort of T2, which then can lead to abort of T3, 

etc.
o Cascaded rollback can (without extra precautions) include committed 

transactions, which is in violation of D in ACID
o Cascaded rollback of uncommitted transactions should also be avoided

o Timestamp protocols with commit flags protect against cascaded rollback
o Validation also protects against cascaded rollback (no writing is done until 

we know that there will be no abort)



We continue with concurrency…

We will be looking at 
recoverable execution plans, and then isolation



Recoverable execution plans
o An execution plan is recoverable if no transaction T commits until all 

transactions that have written data that T has read have committed.
o Examples (hint: look at which transaction has read which data):
o Example 1: A recoverable serializable (serial) plan:

S1: w1(A); w1(B); w2(A); r2(B); c1; c2
o Example 2: A recoverable but not conflict-serializable plan:

S2: w2(A); w1(B); w1(A); r2(B); c1; c2
o Example 3: A serializable but non-recoverable, plan:

S3: w1(A); w1(B); w2(A); r2(B); c2; c1



Recoverable execution plans (continued)
o In order for an execution plan to be recoverable, the commit records 

must be written to disk in the same order as they are written in the 
log (multiple log entries can be in the same block and be written at 
the same time)

o This applies to both undo, redo and undo/redo logging



ACR (Avoid Cascade Rollback) plans
o An execution plan avoids cascade rollbacks if the transactions can 

only read data written by committed transactions
o Such plans are called ACR (Avoid Cascade Rollback) plans

o All ACR plans are recoverable

Proof: Suppose we have an ACR plan.
Suppose that T2 reads a value written by T1 after T1 has committed.
Since T2 did neither commit nor abort before it reads, T2 must do its 
commit or abort after T1 made its commit. Q.E.D.



Strict locking
o An execution plan uses strict locking if it is based on locks and 

adheres to the following rule:

Strict lock rule: A transaction cannot release any write lock until it 
has committed or aborted, and the commit or abort log entry is 
written to disk

o An execution plan that uses two-phase locking and first releases the 
write locks after commit/abort is called strict 2PL. The reader locks 
can be released at any time during the shrinkage phase.



Strict locking (continued)
o An execution plan with strict locking is an ACR plan

Proof: Because the write locks are not released until after the 
transactions commit, no one can read data written by a 
noncommited transaction. Q.E.D.

o Strict locking alone is not sufficient to ensure serializability. However, 
strict 2PL is serializable.



Execution plan types

SERIAL

STRICT 2PL

ACR (no cascaded rollback)

RECOVARABLE

SERIALIZABLE



Rolling back in case of locks
o If the data elements are blocks, everything is simple:

o All writing is done in the buffer; nothing is written to disk before commit
o In case of abort, the block is released, which becomes unused/available buffer 

area
o The same technique works in versioning; the block with the «aborted version» is 

released
o If there are multiple data elements in each block, there are three ways to restore 

data after an abort
1. The original can be read from the database on disk
2. With an undo or undo/redo log, the original can be retrieved from the log
3. Each active transaction can have its own log of its own changes in the memory



Group commit

o With group commit, locks can be released earlier than with 
the strict locking rule

o Group commit:
o A transaction cannot release any write lock until it has 

committed or aborted, and the commit or abort log entry 
is written to (primary) memory

o Log blocks must be flushed to the log disk in the order 
they are in the primary memory



Group commit (continued)
o Group commit gives recoverable plans
o Proof: Suppose T1 writes X and commits, and that T2 reads X. 

T2 can only read dirty data if the system crashes before T1's commit 
record is on disk. But in that case, T2's commit record can not be on 
the disk either, so both T1 and T2 are aborted by the Recovery 
Manager. Thus, this prevents dirty data from being read. Q.E.D.

o Group commit gives serializable plans
o Proof: The plans are conflict equivalent with the serial plans we get 

by allowing each transaction to be executed at the time of the 
commit. Q.E.D.



Logical locking
o Logical log is a log-type that uses the transaction logic for the rollbacks
o Typical logical log entries consist of four fields
o L: a log entry serial number
o T: transaction ID
o A: action (operation) performed (like «insert tuple t»)
o B: block where A was performed

o For each action there is a compensating action that cancels the effect (like 
delete for insert) and can be constructed based upon A

o If T aborts, all T´s actions are compensated, and the compensation is logged
o Each block has the log record number of the last action that affected it


