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Concurrency phenomena and anomalies
o There are undesirable "oddities" that can occur in execution plans.
o We have two types of such "oddities":

o Concurrency phenomena
(labeled P for Phenomena)
Phenomena can give rise to error situations.

o Concurrency anomalies
(labeled A for Anomalies)
Anomalies will always lead to error situations.



List of concurrency “phenomena”
o P0 - Dirty write w1(x) .. w2(x) .. (c1 or a1)
o P1 - Dirty read w1(x) .. r2(x) .. (c1 or a1)
o P2 - Non-repeatable (“fuzzy”) read r1(x) .. w2(x) .. (c1 or a1 )
o P3 - Phantom Phenomena r1(Q) .. w2(y in Q) .. (c1 or a1)
o P4 - Lost update (dirty write) r1(x) .. w2(x) .. w1(x) .. c1

In P3, Q stands for a predicate, which is the answer to a where expression (think 
of a query 𝜎𝑄𝐶 (… ) returning a number of tuples), and w2(y in Q) means that the 
write operation w2(y) can for example increase the number of results in Q (i.e., 
introduces a phantom tuple as we saw earlier).

Commit or Abort



List of concurrency “anomalies”
o A3A – Phantom read anomaly

r1(Q)..w2(y in Q)..c2..r1(Q)..c1
o A3B – Phantom skew write

r1(Q)..r2(Q)..w1(y in Q)..w2(z in Q)..(c1 and c2) 
o A5A – Skew read 

r1(x)..w2(x)..w2(y)..c2..r1(y)..c1
o A5B – Skew write

r1(x)..r2(y)..w1(y)..w2(x)..(c1 and c2) 
o A6 – Read transaction anomaly 

r2(x)..r2(y)..w1(y)..c1..r3(x)..r3(y)..c3..w2(x)..c2

https://vladmihalcea.com/write-skew-2pl-mvcc/

https://vladmihalcea.com/write-skew-2pl-mvcc/


Roughly three types of problems

o Dirty read
Read uncommitted data

o Nonrepeatable read
The data T read has changed, and T is exposed to the 
changes.

o Phantom read
Same Q returns different number of rows in T



SQL isolation levels
o Isolation levels were introduced with the SQL-92 standard.
o Ranked from the strongest to the weakest, they are:

o Serializable
No phenomena or anomalies are allowed in any plan
(plans should produce the same result as a serial plan)

o Repeatable Read
Only phantoms are allowed

o Read Committed
All phenomena and anomalies are allowed except for dirty write & dirty read

o Read Uncommitted
Only dirty write is prohibited.



Isolation in Postgres

o There are three levels of isolation in Postgres
o Read uncomitted does not exist
o In addition, repeatable read is stronger than what  the 

standard requires --- phantoms do not occur
o Note that this is not the same as serializable! Discuss!

o https://www.postgresql.org/docs/9.2/static/transaction-
iso.html

https://www.postgresql.org/docs/9.2/static/transaction-%20iso.html


Monotony
o Let S be a plan and let T be a subset of the transactions in S.
o We define the projection of S on T as the plan we get if we remove 

all operations from S performed by transactions that are not in T
o A class of plans is called monotonous if every projection of plans in 

the class are in the class itself
Example: 
o Consider the following multiversion plan for T1, T2 and T3: 

S = r1(x0)r1(y0)r2(y0)w2(y2)c2r3(x0)r3(y2)c3w1(x1)c1

o A straight-forward projection of S on T = {T1, T3} is as follows: ΠT(S) = 
r1(x0)r1(y0)r3(x0)r3(y2)c3w1(x1)c1



Monotony & planners (schedulers)

o Let E be the class of plans that a given scheduler Σ can create 
(E is the class of valid or «legal» plans).

o If E is not monotonous, the following can happen:
o Σ makes a plan P for a number of transactions T.
o One of the transactions in T aborts.
o The projection of P on the rest of the transactions in T is not 

in E (which means that they form an illegal plan).
o Another oddity is that an illegal plan can become legal if a 

new transaction is to be merged into the plan.



Monotony & schedulers (continued)

o In practice, it is (almost) impossible to make a reasonable 
scheduler for the class of plans that are not monotonous.

o It is therefore important to check if a class is monotonous 
before trying to create a planner/scheduler for it.

o Planners/schedulers use projections to handle aborts:
When one or more transactions in a plan abort, the plan is 
replaced by its projection on the non-aborted transactions 
in the plan.



The class of conflict serializable plans is 
monotonous!
o This is a consequence of the theorem which states that a plan is 

conflict serializable if and only if the precedent graph is acyclic.
o Rationale:
o Suppose that P is a conflict serializable plan, that is, P has an 

acyclic precedence graph.
o The precedence graph of any projection of P will be a 

subgraph of P's precedence graph. All such graphs will also be 
acyclic.

o Thus, all projections of P are conflict serializable. Q.E.D.



Multiversion databases
o Some DBMSs can store multiple versions of each data element.
o This requires that the transactions get a timestamp (transaction number) 

when they start.
o When a transaction Tk (where k is the transaction number) writes a new 

value in an element x, a new element xk is formed (the old value of x is not 
overwritten).

o We assume that the initial state is written by a fictitious committed 
transaction T0, i.e., that x0 is the initial value of x.

o Since there can be many versions of each item, there must be a process that 
deletes old versions that no longer can be used (garbage 
management/emptying).



Snapshot Isolation
o Snapshot Isolation is an effective and popular protocol that creates 

multiversion plans.
o It was launched by Borland in InterBase 4 (1995).
o Snapshot Isolation is used in several DBMSs.

o Oracle
o PostgreSQL
o Microsoft SQL Server

o We let SI denote the class of plans that can be generated by 
Snapshot Isolation.



The SI protocol
o The SI Protocol consists of enforcing the following two rules:

1. When a transaction T reads an item x, then T reads the latest 
version of x written by a transaction that committed before T 
started.

2. The write-set of two simultaneous transactions must be disjoint.
o Rule 2 means that if T1 and T2 are two transactions where T1 starts 

before T2 and T1 commits after T2 is started, then T1 and T2 cannot write 
the same element.

o There are several methods for enforcing Rule 2
o One of them is to compare the write-sets on commit.



First Update Wins (FUW)
o Oracle enforces Rule 2 so that the first update wins:
o Suppose that two transactions T1 and T2 are simultaneous, that T1 writes 

x, and that T2 will also write x.
o Then T2 cannot write x until T1 releases its write lock on x.
o There are then three options:

o If T2 is queued to write x, and T1 makes commit, T2 is immediately aborted. 
Think of it as being forced to restart!

o If T1 commits before T2 tries to write x, T2 is aborted as it tries to write x.
o If T1 releases the lock because it is aborting, T2 will write x.



Administrative information for FUW

o First Update Wins (FUW) info:
o When a transaction T starts, the start time TS(T) is 

recorded
o When a transaction T commits, the commit time TC(T) is 

noted
o The planner/scheduler must maintain for each item A the 

amount of Commit(A) of transactions that (recently) have 
written A



The FUW Protocol I
1. T wants to read A: Reading is always granted

o Read the version of At where t is the highest possible, but less than TS(T).
2. T wants to write A: Requests exclusive lock on A

o If there exists a U in Commit(A) where TC(U) > TS(T), T must be rolled 
back (aborted) because T and U are concurrent, have overlapping write 
sets and U has already committed.

o Otherwise: If the lock on A is free, T gets the lock and can change A to new 
value, but only in its local workspace (others cannot access the new value 
until T knows it can be committed).

o Otherwise: Let T wait in the A queue (T waits to get a lock on A – i.e., T 
waits to see if the one holding the lock commits or rolls back).



The FUW Protocol II
3. T wants to commit:

o Execute cT (write commit(T) in the log)
o For each item A that T has a lock on, place T in Commit(A) and write A 

(i.e., a new version At with t = TC(T) becomes available for other 
transactions). Release the lock on A.

o Signal to all waiting to get a lock on A that they must roll back.
4. T gets aborted (or wants to abort):

o Write abort(T) in the log
o For each item A on which T has a lock, release the lock. One of the 

transactions waiting for the lock will then receive it and can continue.



Example
Write-sets

T1 does not ask for an 
exclusive lock on x before 
it is going to write x.
T2 can still read x

T2 is rolled back when T1
commits because T1 and 
T2 have overlapping 
write-sets (x)

T3 is rolled back even 
though T1 has committed 
because T1 and T3 have 
overlapping write 
volumes (z)
T4 is allowed to continue 
because T2 was rolled 
back (they have common 
write-set y)

wait

wait

- rejected



Garbage collection using Snapshot Isolation (SI)

o The rule for when the garbage collector can remove "old" versions of data 
items is as follows:
o A version At of a data element A can only be removed if there is a 

newer version Au which is such that all active transactions started after 
Au was written.
o If U wrote Au, i.e., u = TC(U), then for all active transactions V is 

TS(V) > TC(U).
o When a version At is being removed, the transaction T that wrote A can 

be removed at the same time from Commit(A).
o One consequence of this rule is that the last written version of a data 

element can never be deleted by the garbage collector.



We continue with isolation…

We will be looking at 
the implications of Snapshot Isolation 

and some other cases & mechanisms of isolation



SI vs. serializability (SI ≠ Serializable)
o Consider the plan P = r1(x)r1(y)r2(x)r2(y)w1(y)w2(x)c1c2
o P is an example of the anomaly A5B (skewed writing):

T1 writes y that T2 has already read; T2 writes x that T1 has already 
read.

o P is obviously not conflict serializable (T1→T2 →T1).
o On the other hand, P is in SI - both T1 and T2 read only initial data 

(i.e., data that was committed before T1 and T2 started), and their 
write-sets are disjointed.

o Thus, Snapshot Isolation does not mean Serializable!



SI vs. phenomena and anomalies

o Only these three, and none of the other contemporaneous 
anomalies mentioned earlier can occur in Snapshot 
Isolation plans:
o A3B - phantom skew writing
o A5B – skew writing
o A6 - read transaction anomaly



SI vs. SQL isolation levels

o Based on the previous slides, we can conclude:

o SI is stricter than Read Committed, but not as strict as 
Serializable.

o SI is neither stricter nor weaker than Repeatable Read.

Ranked from the strongest to the weakest, Isolation levels are:
• Serializable

No phenomena or anomalies are allowed in any plan (plans 
should produce the same result as a serial plan)

• Repeatable Read
Only phantoms are allowed

• Read Committed
All phenomena and anomalies are allowed except for dirty 
write & dirty read

• Read Uncommitted
Only dirty write is prohibited.



SERIALIZABLE
None

Isolation levels and phenomena/anomalies 
that can occur in each

P0 – Dirty write
P1 - Dirty read
P2 - Non-repeatable (“fuzzy”) read
P3 - Phantom Phenomena
P4 - Lost update (dirty write)

A3A – Phantom read anomaly
A3B – Phantom skew write
A5A – Skew read 
A5B – Skew write
A6 – Read transaction anomaly



Monotony in multiversion databases
o There is no obvious way to define monotony in multiversion databases 

(the real problem is how to define projections)
o Consider the following multiversion plan for T1, T2 and T3: 

S = r1(x0)r1(y0)r2(y0)w2(y2)c2r3(x0)r3(y2)c3w1(x1)c1

o A straight-forward projection of S on T = {T1, T3} is as follows: ΠT(S) = 
r1(x0)r1(y0)r3(x0)r3(y2)c3w1(x1)c1

o But then ΠT(S) lets T3 read a version of y written by T2 that is not in the 
plan (which means that y2 should not be in this projected plan).

o We therefore let T3 read the last committed value of y, which gives: 
ΠT(S) = r1(x0)r1(y0)r3(x0)r3(y0)c3w1(x1)c1

This and the next two slides are taken from Lene Østby's master thesis (2008)



The class of SI plans is monotonous
Proof (Lene Østby 2008):
• Let S be a plan generated according to the Snapshot Isolation (SI) protocol.
• Let P be the projection of S on a subset of the transactions in S (the non-aborted 

transactions in S).
• Let T be a transaction in P that reads a data element x.
• When the planner constructed S, it planned that T should read the latest version 

xk of x written by a transaction Tk that committed before T started.
• Even if some transactions in S abort, T should still read the same xk.
• Then it is sufficient to observe that a projection cannot generate new write-

write conflicts. Q.E.D.



All SI plans are strict
o Definition: A plan is strict if it is true that every time a transaction T 

writes a data element x, then T must perform an abort or commit before 
other transactions can read or write x.

o All SI plans are strict. Proof (Lene Østby 2008):
o Let S be a plan generated according to the SI protocol.
o Let T1 and T2 be two transactions in S where T1 writes a data element x 

before T2 reads it.
o Since T2 only reads values that were committed before T2 started, T1

must either have aborted or committed before T2 reads x.
o Since S contains no write-write conflicts, it follows that S is strict.



Execution plan types

RECOVERABLE

ACR (Avoiding Cascaded Rollback)

SNAPSHOT ISOLATION

SERIAL

STRICTSERIALIZABLE

CONFLICT
SERIALIZABLE



Snapshot Isolation in the industry
o Up to 9.2 Postgres did not have “Serializable”.
o Oracle, MySQL & Microsoft SQL Server (later, from 2005) adheres to 

the standard.
o Both Serializable and Snapshot Isolation are offered as isolation 

levels.
o For efficiency reasons, they strongly recommend using Snapshot 

Isolation unless the application really needs the Serializable level.



Deadlocks and timeout
o In a lock-based system, we say we have a deadlock when two or more 

transactions are waiting for each other.
o When a deadlock occurs, it is generally impossible to avoid rolling back 

(at least) one transaction.
o A "timeout" is an upper limit on how long a transaction is allowed to

remain in the system.
o A transaction that exceeds the limit must release all its locks and be 

rolled back.
o The length of timeout and suitability of this method depends on the 

type of transaction we have.



Wait-for graphs
o To avoid (and possibly detect) deadlocks, the scheduler can maintain a wait-for 

graph:
o Nodes: Transactions that have or are waiting for a lock 
o Edges T→U: There is a data element A such that

o U has locked A.
o T is waiting to lock A.
o T does not get its expected lock on A until U releases its lock.

o We have deadlock if and only if there is a cycle in the wait-for graph.
o A simple strategy to avoid deadlock is to roll back all transactions that come with 

a lock request that will generate a cycle in the Wait-on Graph.



Deadlock management by ordering
o If all lockable data elements are ordered, we have a simple strategy 

to avoid deadlock: Let all transactions acquire their locks in order.
o Proof that we avoid deadlocks with this strategy:

o Suppose we have a cycle T1→ T2→ T3→ ... Tn→ T1 in the Wait-For 
Graph, that each Tk has locked Ak and that each Tk is waiting to 
lock Ak + 1, except Tn that is waiting to lock A1.

o Then A1 < A2 <... < An < A1, which is impossible.
o Since we rarely have a natural arrangement of the data elements, 

the value of this strategy is limited.



Deadlock timestamps
o Deadlock Timestamps are an alternative to maintaining a wait-for graph.
o All transactions are assigned a unique default lock timestamp as they start, 

and this timestamp has the following features:
o at the time of allocation, it is the largest (latest, newest) that has been 

allocated so far
o it is not the same timestamp that (possibly) is used for concurrency 

control
o it never changes; the transaction retains its default lock timestamp even if 

it is rolled back
o A transaction T is said to be older than a transaction U if T has a smaller 

deadlock time stamp than U.



Wait-die strategy
o Let T and U be transactions and assume that T must wait for a lock 

held by U.
o Wait-Die is the following strategy: 

o If T is older than U, have T wait until U has released its lock (s).
o If U is older than T, then T dies, i.e., T is rolled back.

o Since T is allowed to retain its deadlock time-stamp even if it is rolled 
back, it will sooner or later become the oldest and thus be secured 
against multiple rollbacks.

o We say that the Wait-Die strategy ensures against starvation.



Wound-wait strategy (counterpart to Wait-die)

o Let T and U be transactions and 
again, assume that T must wait for a lock held by U.

o Wound-wait is the following strategy:
o If T is older than U, U will be wounded by T.

Most often, U is rolled back and has to surrender its lock(s) to T.
The exception is if U is already in the shrinking phase.
Then U survives and gets to finish.

o If U is older than T, then T waits until U has released its lock(s).
o If U is rolled back, it will sooner or later become the oldest and thus be 

secured against several rollbacks, so the Wound-wait strategy also protects 
against starvation. Expanding (or growing) phase: locks are acquired and no locks are 

released (the number of locks can only increase). Shrinking (or 
contracting) phase: locks are released and no locks are acquired.



Comparison of Wait-die (WD) and Wound-wait (WW)

o Let T be older than U. Under WD, U dies if U asks for a lock that T has.
o Under WW, U dies if T asks for a lock U has.
o When U starts, T has probably almost all its locks. The chance that T wants 

a lock that U has is low, which means that there will rarely be aborts under 
Wound-wait.

o The opposite for Wait-die: The chance that U wants a lock T has is 
considerable (at least more than in WW).

o Note: During WW, U dies after getting some locks and doing something. 
Under the WD, U dies in the process of locking, before it has done 
anything.



Deadlock timestamps do their job!
o Theorem: Both Wait-die and Wound-wait prevent deadlock.
o Proof: It is sufficient to show that both strategies ensure that there will be no 

perpetual cycles in the wait-for graph.
o So, let us assume that the wait-for graph has a cycle, and let T be the 

oldest transaction included in the cycle.
o If we use the Wait-die strategy, transactions can only wait for younger 

transactions, so no transaction in the cycle can wait for T (the older one), 
which means that T cannot be in the cycle.

o If we use Wound-wait, transactions can only wait for older transactions, so 
T (itself being the older) cannot wait for anyone else in the cycle, which 
means that T itself cannot be in the cycle. Q.E.D.



Long transactions I

o A transaction is called long if it lasts so long that it cannot be 
allowed to keep locks throughout its lifetime, for example 
because it involves a «human-in-the-loop»

o Normal concurrency control cannot be used for a long 
transaction



Long transactions II

o Initially, one tries to push as much as possible of concurrency 
control down to the DBMS in the form of ordinary database 
transactions
o Each database transaction forms only part of the long 

transaction
o But consistency for the long transaction as a whole must be 

handled in addition



Sagas
o A saga represents every possible course of a long transaction and 

consists of:
o a number of (short) transactions called actions 
o a graph where the nodes are the actions as well as two

terminal nodes abort and complete.
o An edge Ai→ Ak means that Ak can only be executed if

Ai is done.
o All nodes except abort and complete have outgoing edges.

o a marked start node (the first action performed).
o Note that a saga may contain cycles.



Concurrency control for sagas
o A long transaction L is a path through the saga from the start node A0 to one of 

the terminal nodes (preferably completed).
o The actions are, and are treated as, ordinary database transactions.
o L does not abort even if an action is rolled back.
o In a saga, each action A has a compensating action A-1 that cancels the effect of 

A. More precisely: If D is an allowed (consistent) database state and S is an 
execution plan, executing S and ASA-1 on D should give the same resulting state.

o If L ends in abort, the effect of L is removed by running the compensatory 
actions in the reverse order:
A0A1 ... Anabort is compensated with
An

-1 ... A1
-1A0

-1completed.



Optimistic offline locks
o Used to enforce concurrency control for long transactions
o Suitable when there are typically few conflicts
o A common implementation is to use a version number that is stored 

together with the data element
o When the data element is read, the version number is also read
o When writing the data element, the version number must be 

presented as well. If it is identical to the version number in the 
database, the new value is written, and the version number is 
incremented. If they are different, it is a conflict. How the conflict is 
to be handled depends on the usage domain or business area.


