
IN3020/4020 – Database Systems
Spring 2021, Week 9.2

Isolation Levels
Part 2 (Examples, Postgres & MySQL)

Dr. M. Naci Akkøk
CEO, In-Virtualis, Assoc. Prof. UiO/Ifi, Assoc. Prof. OsloMet/CEET

Based upon slides by E. Thorstensen from Spring 2019

Isolation levels

o Read uncommitted
o Read committed
o Repeatable read
o Serializable

o SELECT ... FOR UPDATE;

Isolation levels allow for

Serializable
[NONE]

Repeatable Read

Snapshot Isolation
Read Committed

Read Uncommitted

A3A – Phantom Read
A3B – Phantom Skew Write

A5B – Skew Write
A6 – Read Transaction Anomaly

P2 – Non-repeatable Read
P3 – Phantom Phenomena
P4 – Lost Update
A5A – Skew Read

P1 – Dirty Read

P0 – Dirty Write

SELECT ... FOR UPDATE;

(prohibits only)

The standard

Focus upon three anomalies:
o Dirty read
o Nonrepeatable read
o Phantom read

o The reality is more complex
o Remember: Not all DBMSs implement everything, and not

in the same manner.

Queries in transactions

o SELECT (read)
o UPDATE
o INSERT and DELETE

o For each of these, the isolation level specifies what can
happen in the transaction

Main idea: Postgres, Oracle and MySQL
o Common: Multiversion control (MVCC) with locking.
o Serializable is handled somewhat different (closer to its intent) in Postgres.
o The default isolation level for InnoDB (MySQL) is REPEATABLE READ. Serializable

is treated like repeatable read.
o Oracle DB 20c supports all isolation levels. Note that there are 2 major versions

of the DB in the cloud: Oracle Autonomous Transaction Processing (ATP)
database and Oracle Autonomous Data Warehouse (ADW)

o https://www.postgresql.org/docs/current/transaction-iso.html

o https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html

o https://docs.oracle.com/en/database/oracle/oracle-database/20/adfns/sql-processing-for-application-
developers.html#GUID-E79D04D4-6543-49B3-BAEB-D6585EE67AD7

https://www.postgresql.org/docs/current/transaction-iso.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-transaction-isolation-levels.html
https://docs.oracle.com/en/database/oracle/oracle-database/20/adfns/sql-processing-for-application-developers.html

IN3020/4020 – Database Systems
Spring 2020, Week 11.2

Isolation in Practice – For group sessions
(Postgres, MySQL & Oracle)

Dr. M. Naci Akkøk, Chief Architect, Oracle Nordics
Based upon slides by E. Thorstensen from Spring 2019

MVCC, main features

o Reading does not block writing, and writing does not block
reading.

o Only writing will lock, and only other writing may have to
wait.

o This is because the system stores multiple versions of
tuples.

Background: Data replication in MySQL

o Primary index cluster index, B-tree.
o Leaf nodes are data blocks, everything is in the same file.
o This affects the locking mechanisms.

Read uncommitted (MySQL)

o SELECT sees the latest versions of tuples,
including non-commits, as expected.

o UPDATE and INSERT / DELETE as in
READ COMMITTED.

Read committed (Postgres)

o Default in Postgres.
o Each SELECT sees the latest version of tuples committed

before SELECT starts.
o UPDATE / DELETE etc. sees the same version. What about

simultaneous updating?

Read committed (Postgres), continued

Simultaneous updating:
o If a transaction (say U) wrote a tuple while T was active, the

following happens:
o T waits for U to finish. In case of abort, T can continue
o When commit(U), double-checks the tuple and refreshes

to new value.
o Waiting via locks to ensure atomic proximity - no missed

updates.

Read committed (MySQL)

o Almost the same as in postgres.
o But, in MySQL, index records are locked and not table tuples!
o By default, a cluster index and everything it points to is

temporarily locked for UPDATE.
o The locks that are not needed are released after WHERE is

evaluated, but there still is some more locking.
o Again, tuples that others have updated have to be waited for.

Read committed example
BEGIN;
UPDATE website SET hits = hits + 1;
-- run from another session: DELETE FROM website

WHERE hits = 10;
COMMIT;
o DELETE finds t with hits (t) = 10 and waits for lock.
o When UPDATE is complete, DELETE gets a lock, but then
hits (t) = 11.
It does not see the new tuple with hits = 10.

Repeatable read, Postgres

o Every SELECT in T only sees data committed before T
began.

o It won´t see updates and not the inserts (phantoms) that
happen along the way.

Repeatable read, Postgres (continued)

o UPDATE sees the same as SELECT but waiting is FUW
(First Update Wins).

o If a transaction (U) wrote a tuple while T was active, the
following happens:

o T waits for U to finish; in case of abort, T can continue
o In case of commit(U), T is rolled back - because it doesn´t

get to see the new value!

Repeatable read, MySQL

o Pessimistic strategy!
o Each query only sees data committed before running (unlike

postgres)
o UPDATE locks all duplicates it matches / waits to lock them

(in the read phase).
o UPDATE with range condition (x <100) locks the «gap»

for INSERT.
o But ... no rollback!

Repeatable read, Postgres vs. MySQL
o Postgres: Writing does not block as much – lock on updating. But

rollbacks possible.
o MySQL: No rollback, lock when reading for update. And locking of

gaps - simultaneous insert not allowed!
o MySQL locks on index, if UPDATE condition is unindexed, locks

«index range scanned».
o Thus, simultaneous UPDATE or INSERT / DELETE cannot happen in

MySQL - but a concurrent insert can occur between queries in a
transaction (oooops!)

https://blog.pythian.com/understanding-mysql-isolation-levels-repeatable-read/

https://blog.pythian.com/understanding-mysql-isolation-levels-repeatable-read/

Serializable, MySQL
o Not quite the same implementation of serializable: different

interpretations of the standard.
o Every SELECT becomes as if they are UPDATE, i.e., locks

on gaps1 and rows.
o But where is the equivalent of a serial plan?

(MySQL does guarantee Serializable – but be careful, it has
statement version SESSION level serializability!)
https://stackoverflow.com/questions/49414519/mysql-interprets-serializable-less-strenuously-
than-postgresql-is-it-correct

(1) INNODB, Gap Locks. A gap lock is a lock on a gap between
index records, or a lock on the gap before the first or after the
last index record.

https://stackoverflow.com/questions/49414519/mysql-interprets-serializable-less-strenuously-than-postgresql-is-it-correct

More on MySQL Serializable

o Not quite the same implementation of serializable: different
interpretations of the standard.

o Concurrent INSERTs can succeed without being caught.
o Simultaneously updating different tuples fails occasionally ...
o So, MySQL is not really serializable according to the

standard.

Read the following interesting thread: https://stackoverflow.com/questions/6269471/does-mysql-
innodb-implement-true-serializable-isolation

https://stackoverflow.com/questions/6269471/does-mysql-innodb-implement-true-serializable-isolation

Serializable, Postgres

o Equivalent to a serial plan.
o Implemented using some kind of precedence graph

(somewhat intelligent).
o Can lead to rollback.
o Rollback can occur even if two transactions update each of

their own tolls (mandatory statement).

SELECT FOR UPDATE

This is a fine-grained locking mechanism.

BEGIN;
SELECT * FROM purchases WHERE processed = false
FOR UPDATE;
- * application is now processing the purchases *
UPDATE purchases SET ...;
COMMIT;

The rows selected are locked for other transaction´s updates
and for others´ select for update.

Isolation levels summarized

o In case of Read Committed, simultaneous updating on the
same tuple will continue if the tuple matches, with new
value available.

o This goes well if the update is x = f (x), but not if it is based
on other info.

o In case of Repeatable Read it will fail / wait for all locks.
o Serializable prevents all interactions (but not in MySQL).

When to use what?

o In Postgres: Read committed vs. repeatable read.
o In MySQL: Repeatable read locks a lot.
o Serializable costs but can guarantee the really big and

important transactions.
o For simple select-process-write, SELECT FOR UPDATE is

good.

IN3020/4020 – Database Systems
Spring 2020, Week 11.2

Other uses of logging & logs

Dr. M. Naci Akkøk, Chief Architect, Oracle Nordics
Based upon slides by E. Thorstensen from Spring 2019

Other uses of Undo, Redo, Undo/Redo logs

o As we saw earlier, DB logs are used to ensure database
consistency, either by “undoing” whatever may cause
inconsistency (taking the DB back to the previous consistent
state), or by redoing to ensure all intended changes are in
place (securing next consistent state), or a mix.

o But logs can be used for more.

Replication and synchronization
Central or “Master” data “Proxy” data 1 “Proxy” data 2 “Proxy” data n

Change

Replicate
(whole/partial)

Synch

Change
Re-replicate

(whole/partial)

. . .

Replication

o Can be whole or partial:
o Whole DB
o Some tables
o Even parts of tables

o Depends upon the need and kind of usage

o Initial: More like a “move”
o Later (re-replication): Incremental replication

Synchronization
o Pretty much like a “cache” – update propagated when data changed

(i.e., when “cache” or replica becomes “dirty”) on some location
o Very challenging in terms of concurrency
o Discuss how concurrency and isolation could be implemented in

such a case

REMEMBER GAP LOCK? A gap lock (in INNODB) is a lock on the gap between index records. Thanks to this
gap lock, when you run the same query twice, you get the same result, regardless other session
modifications on that table. This makes reads consistent and therefore makes the replication between
servers consistent. If you execute SELECT * FROM id > 1000 FOR UPDATE twice, you expect to get the same
value twice. To accomplish that, InnoDB locks all index records found by the WHERE clause with an
exclusive lock and the gaps between them with a shared gap lock.

Logs used in replication/synchronization

o Logs on all sides can be used to capture and compare all
operations

o And then to synchronize (also re-replicate)

o Most commercial tools also offer ETL (or ELT) capabilities for
ingestion, including varying degrees of data transformation
capabilities

o They are often used as real-time ETL (ELT) and data-
integration tools

Logs used in high-availability architectures

o Logs can also be used to keep an “active” or “passive” copy
(often called a “clone”) of the database and the server for
ensuring
o high-availability,
o disaster recovery,
o live backups etc.

Oracle GoldenGate

