
IN3020/IN4020 – Database Systems
Spring 2021, Week 10.1

DBMS Architecture:
Components & Interdependencies

Dr. M. Naci Akkøk
CEO, In-Virtualis, Assoc. Prof. UiO/Ifi, Assoc. Prof. OsloMet/CEET

FOR IN4020
recommended but not required for IN3020



Ex
am

pl
e 

DB
M

S 
ar

ch
ite

ct
ur

e
an

d 
its

 c
om

po
ne

nt
s



Same 
architecture 
as functional 
layers

Applications

User Interfaces / View Management

Semantic Integrity Control / Authorization

Query Processing and Optimization

Storage Structures

Buffer Management 

Concurrency Control / Logging

Interface

Control

Compilation

Execution

Data Access

Consistency

Tr
an

sa
ct

io
n 

M
an

ag
em

en
t

Database



Dependencies – Example
o Understanding dependencies between these components is 

important!
o Remember “Group Commit”?
o With group commit, locks can be released earlier than with the strict 

locking rule
o Group commit:
o A transaction cannot release any write lock until it has committed or 

aborted, and the commit or abort log entry is written to (primary) 
memory

o Log blocks must be flushed to the log disk in the order they are in the 
primary memory

Transaction or Concurrency Manager Lock Manager

Buffer Manager

Log Manager



Dependencies between layers/components
o Central components: components that manage their 

resources directly down to the operating system interface -
system buffer management, lock component, log 
component (with savepoint management).

o Higher-level components: components 
demanding/requiring the central components as 
prerequisites - transaction management, access path 
management, sorting component, etc. 



Dependencies between central components

LOG COMPONENT
(with savepoint management)

LOCK COMPONENT

SYSTEM BUFFER 
MANAGEMENT

1 3

2



Interaction 1: Log & Buffer (pool)
o WAL (write ahead log) principle: log information is written to 

secondary storage before the “real” information (pages) is 
written to secondary storage.

o Page replacement strategy determines which protocol 
(logging) approaches are applicable. For instance, logical 
protocol approach rquires indirect replacement strategy.



Interaction 2: Log & Lock
o Logging unit ≤ Locking unit
o In case of logical protocol approaches, the logging unit is the set of 

all data objects changed by a DML operation. If a rollback is 
performed no other transactions must be affected (damaged).

o If the lock component realizes only a simple 2-phase-locking 
protocol - instead of a strict 2-phase-commit protocol (all locks are 
kept until end-of-transaction), all relationships (interferences) 
between transactions (also read-only) about commonly used data 
items must be logged to enable a recursive rollback in case of 
failure.



Interaction 3: Lock & Buffer (pool)
o The main task of the lock component is to guarantee the 

“logical single user mode”. 

o This requires that the lock component controlls which pages 
a fixed and which pages are unfixed in the system buffer by 
the system buffer management (influencing paging strategy) 
to guarantee isolation (locking).



Dependencies 
between 
central & 
higher-level 
components

CENTRAL COMPONENTS

ACCESS PATH 
MANAGEMENT

TRANSACTION 
MANAGEMENT

SORTING
COMPONENT

B CA D E F



Interaction A: Log & Access path mgmnt. 
o Physical state logging:

Requires the maintenance and logging of access paths when 
inserting new data items.

o Logical state logging: requires no extra effort of access path 
maintenance because DML operations can be rolled back 
(inverted) and repeated.



Interaction B: Lock & Access path mgmnt.
o For B* trees (special access paths) an unadjusted locking 

concept can decrease parallelism. No exclusive locks should 
be set on the root of the tree, because this would block all 
access paths along that tree.



Interaction C: Transaction mgmnt. & Log
o The “all-or-nothing” principle of a transaction requires the 

logging of UNDO information for rollback and REDO 
information to repeat a transaction. 

o In case of very many short transactions the logging 
component can become the bottleneck of the DBMS. 

o One solution to this problem is to group transactions and to 
defer their end-of-transaction in order to write the log 
information in a blocked way to secondary storage.



Interaction D: Tx & System buffer mgmnt
o The system buffer management is the central component 

concerning performance optimization. 
o The number of parallel transactions has a strong influence 

on the paging rate. 
o Transaction management should defer the activation of a 

transaction if this would cause a decrease of the paging 
rate. 

o Transaction management should group transactions in a 
buffer-oriented way for performance reasons.



Interaction E: Tx management & Lock
o The locking component guarantees the transaction-oriented isolation 

of data items. 
o It is possible that deadlock situations (circular resource allocations) 

occur that require “unjustified” rollbacks of transactions to resolve the 
deadlock. 

o Transaction management has to determine which transaction(s) have to
be rolled back in order to cause minimum work loss.

o Transaction management and locking component have to be adjusted 
so that deadlocks are not possible, e.g., by pre-claiming(*), or 
sequentialization of transactions which have overlapping data areas.



Pre-Claiming Lock Protocol
o Pre-claiming protocols evaluate their operations and create 

a list of data items on which they need locks in advance.
o Before initiating an execution, the transaction requests the 

system for all the locks it needs beforehand. 
o If all the locks are granted, the transaction executes and 

releases all the locks when all its operations are over. 
o If all the locks are not granted, the transaction rolls back 

and waits until all the locks are granted.



Interaction F: Sorting component & System 
buffer management
o Special precautions for system buffer management 

are necessary if the sorting component is active 
(especially relevant for relational DBMS). 

o The paging strategy should not be contra-productive 
to the applied sorting algorithm.



SEE YOU IN ABOUT 2 WEEKS!
(Monday 12th April)

STAY SAFE, STAY HEALTHY!


