
IN3020/4020 – Database Systems
Spring 2021, Week 17.1-17.2

Semantic DBMS (Part 1)

Egor V. Kostylev (with M. Naci Akkøk)
Based upon slides by D. Roman from Spring 2019

1. Overview of (knowledge) graphs

2

UNIVERSITETET
I OSLO

Why graphs?

• Universal mechanism for
describing complex data

• Shared terminology between
disciplines

• Many data are graphs
– Social media, economic

networks, the Web, molecules,
networks of neurons, etc.

3
Picture taken from http://allthingsgraphed.com/public/images/linkedin/linkedin-network.png.

What are Knowledge Graphs?

• Part of the Knowledge Representation and Reasoning
(KRR) branch of AI

• Capture data (facts) and semantics (metadata and
rules)

• Nodes connected by relationships

4Picture taken from https://kpi6.com/wp-content/uploads/2018/12/Knowledge-graph.jpg.

Why Knowledge Graphs now?

• Still there in 2020 and 2021 (in some form)
• New generation of Web and Enterprise

applications
• Advances in NoSQL graph databases
• Enhanced learning

5

Gartner Top 10 Data and Analytics Technology Trends for 2019
Source: Gartner (February 2019)

1. Augmented Analytics
2. Augmented Data Management
3. NLP/ Conversational Analytics
4. Graph analytics
5. Commercial AI and ML

6. Data Fabric
7. Explainable AI
8. Blockchain in Data Analytics
9. Continuous Intelligence
10. Persistent Memory Servers

Enterprise Knowledge Graphs:
data integration

6
Joe bought three
phones from Apple.

Sales dept. Purchasing dept.

Id Name Amount

123 Apple Inc. 12

Customer Vendor

Company
is a is a

Google Knowledge Graph

● “A huge knowledge graph of interconnected entities and their attributes”.
Amit Singhal, Senior Vice President at Google

● “A knowledge base used by Google to enhance its search engine’s results
with semantic-search information gathered from a wide variety of sources”

http://en.wikipedia.org/wiki/Knowledge_Graph
● Used to answer direct spoken questions in Google Assistant and Google

Home voice queries

● Based on information derived from many
sources (e.g., Wikidata, Wikipedia)

● Contains over 70 billion facts and Objects

7

http://en.wikipedia.org/wiki/Knowledge_Graph

Google Knowledge Graph (cont’)

8

Entity Search and Summarization

Google Knowledge Graph (cont’)

9

Discovering related Entities

Google Knowledge Graph (cont’)

10

Factual Answers

Who else is building and using
Enterprise KGs?

• Microsoft, Siemens, LinkedIn, Airbnb, eBay,
Apple, and many others

11Picture taken from https://docs.microsoft.com/en-us/graph/overview

Enterprise KGs are (usually) proprietary

• Enterprise KGs are typically a closed
implementation of Web of Data / Linked Data
principles

12

Web of Documents Web of Data / Linked Data

“Documents” “Things”

Hyperlinks

Typed Links

Linked Data, Semantic Knowledge Graphs

13

• Method for publishing data on the Web
• Self-describing data and relations
• Interlinking
• Accessed using semantic queries

• A set of open standards developed by W3C
– Data format: RDF
– Knowledge representation: RDFS/OWL
– Query language: SPARQL

http://www.w3.org/standards/semanticweb/data

http://www.w3.org/standards/semanticweb/data

e.g.
(Alice has gender “female”)
(Alice has name “Alice”)
(Alice is a Person)

Example RDF Graph

14

“triple” = (subject, predicate, object)

(John is a student)
(Student kind of person)

(John is a person)

(has name applies to students)
(Mary has name “Mary”)

(Mary is a student)

Logical entailment with Linked Data (RDFS/OWL)
entails

entails

• Node, Relationship, Property
• Label, Relationship type
• Some constraints, e.g., a node can have none or several

labels, each relationship has exactly one type, etc.

15

Labeled Property Graphs (e.g., Neo4j)

• Centralities: determine the importance of distinct nodes in a
network
(PageRank, Betweenness Centrality, Closeness Centrality)

• Community detection: evaluate how a group is clustered or
partitioned, as well as its tendency to strengthen or break apart
(Louvain, Label Propagation, Connected Components, Triangle Count / Clustering
Coefficient)

• Path finding: find the shortest path or evaluate the availability and
quality of routes
(Minimum Weight Spanning Tree, All Pairs- and Single Source - Shortest Path, A*
Algorithm, Yen’s K-Shortest Paths, Random Walk)

16

Graph Algorithms

• Used for detecting communities in networks
• Evaluates how much more densely connected the

nodes within a community are, compared to how
connected they would be in a random network

17

Example: Louvain

Knowledge Graphs and ML

• Examples of classical ML tasks on graphs
– Node classification: Predict a type of a given node
– Link prediction: Predict whether two nodes are linked
– Community detection: Identify densely linked clusters

of nodes
– Network similarity: How similar are two (sub)networks

• ML algorithms can use KGs — both, as input
and as output

18

Training Data ML Rule Human check KG

New Data
Missing or incorrect data?

+ +

Opportunities for combining KGs and ML

19

Link prediction
(1-1, 1-n, n-m)

Attribute prediction
age=65

age?

age=63

Subgraph prediction
age=64

age=9

KG embeddings Rule mining

Graph matching
Automated KG

creation from text Optimal path finding on
KGs

Query answering on KGs

….

20

Common tasks when working with KGs
Designing KGs

• How do we represent the structure of graph?
• Manually designed or (semi-) automated/learned?

Populating KGs with data
• Data pre-processing/transformation/reconciliation
• Data validation

Storing/Accessing KGs data
• Big data infrastructure
• Query languages

Analyzing KGs data
• Deriving new knowledge (inference, learning)
• Insights/Analytics

Building KGs applications
• Search, data integration, etc.

https://datagraft.io

https://datagraft.io/

Summary

• KGs is an emerging technology
– Various types of KGs, e.g. semantic and property

graphs
– KGs are becoming popular in Enterprise applications

• Large and small companies are developing and using
KGs
– Research projects
– Graph databases are maturing

• KGs and ML complement each other

21

2. RDF Graphs

Topics:
• Resource Description Framework (RDF)
• RDF Schema (RDFS) + little bit of OWL
• SPARQL: RDF query language

• All are W3C standards

22

Intro to
Resource Description Framework (RDF)

• RDF is a language that enable to describe making statements on resources
– John is father of Ann

• RDF graph is a set of triples (here in Turtle syntax)

subject1 predicate1 object1 . subject2 predicate2 object2 . …

• Subject: Resource or blank node
• Predicate: Resource
• Object: Resource (or collection of resources), literal or blank node

• Often written as <subject, predicate, object> in texts

• Example: <ex:john, ex:father-of, ex:bill>

• Can be seen as a FO logical ex:father-of(ex:john,ex:bill) with binary
predicate ex:father-of relating object ex:john to object ex:bill

(Most of the examples in the upcoming slides are taken from: http://www.w3.org/TR/rdf-primer/)

23

http://www.w3.org/TR/rdf-primer/

RDF Triple Graph Representation

• The triple graph is often represented
as a labeled directed graph
– Nodes: subjects and objects
– Edges: predicates

• Such graph is called in the Artificial
Intelligence community a semantic net

• <ex:john, ex:father-of, ex:bill>

• Remember the mismatch:
edges can also be nodes (rare in practice)

24

RDF: a Direct Connected Graph-
Based Model

• Different interconnected triples lead to a more complex graphic model
• Basically a RDF document is a direct connect graph

25

Resources
• A resource may be:

– Web page (e.g. http://www.w3.org)
– A person (e.g. http://www.w3.org/People/Berners-Lee/)
– A book (e.g. urn:isbn:4-534-34674-4)
– Anything denoted with a URI! (or IRI, Unicode version of URI)

• A URI is an identifier and not a location on the Web

• RDF allows making statements about resources:
<http://www.w3.org/People/Berners-Lee/, http://www.w3.org/HasName, “Tim”>
<urn:isbn:0-345-33971-1, http://www.w3.org/Has-Author, “John”>

26

URI, URN, URL
• A Uniform Resource Identifier (URI) is a string of characters used to identify

a name or a resource on the Internet

• A URI can be a URL or a URN
• A Uniform Resource Name (URN) defines an item's identity

– the URN urn:isbn:urn:isbn:4-534-34674-4 is a URI that specifies the identifier system, i.e.
International Standard Book Number (ISBN), as well as the unique reference within that
system and allows one to talk about a book, but doesn't suggest where and how to obtain an
actual copy of it

• A Uniform Resource Locator (URL) provides a method for finding it
– the URL https://www.uio.no/studier/emner/matnat/ifi/INF1300 identifies a resource

(INF1300's home page) and implies that a representation of that resource (such as the home
page's current HTML code, as encoded characters) is obtainable via HTTP from a network
host named https://www.uio.no

27

Literals
• Plain literals

– E.g. ”any text”
– Optional language tag, e.g. ”Hello, how are you?”@en-GB

• Typed literals
– E.g. "hello"^^xsd:string, "1"^^xsd:integer
– Recommended datatypes:

• XML Schema datatypes

• Only as object of a triple, e.g.:
<http://example.org/#john,

http://example.org/#hasName,
”John Smith”ˆˆxsd:string>

28

Datatypes
• One pre-defined datatype: rdf:XMLLiteral

– Used for embedding XML in RDF

• Recommended datatypes are XML Schema datatypes, e.g.:
– xsd:string
– xsd:integer
– xsd:float
– xsd:anyURI
– xsd:boolean

29

Blank Nodes
• Blank nodes are nodes without a URI
• Used for

– Unnamed resources
– More complex constructs (see below)

• Usually written with _: prefix
• Differently from SQL NULLs, there may be many
• For example:

<#john, #hasName, _:johnsname>
<_:johnsname, #firstName, ”John”ˆˆxsd:string>
<_:johnsname, #lastName, ”Smith”ˆˆxsd:string>

30

RDF: a Direct Connected Graph-
Based Model

• Different interconnected triples lead to a more complex graphic model
• Basically a RDF document is a direct connect graph

31

Blank Nodes for Complex
Constructs

• Representation of complex data
A blank node can be used to indirectly attach to a resource a
consistent set of properties which together represent a
complex data

• Anonymous classes in OWL
The ontology language OWL uses blank nodes to represent
anonymous classes such as unions or intersections of
classes, or classes called restrictions, defined by a constraint
on a property

32

RDF Containers

“The lecture is attended by John, Mary and Chris” Bag

“[RDF-Concepts] is edited by Graham and Jeremy
(in that order)”

Seq

“The source code for the application may be found at
ftp1.example.org,
ftp2.example.org,
ftp3.example.org”

Alt

• Grouping property values:

33

RDF Containers 2
• Three types of containers:

– rdf:Bag - unordered set of items
– rdf:Seq - ordered set of items
– rdf:Alt - set of alternatives

• Every container has a triple declaring the rdf:type

• Items in the container are denoted with
– rdf:_1, rdf:_2, . . . ,rdf:_n

• Limitations:
– Semantics of the container is up to the

application
– What about closed sets?

• How do we know whether Graham and Jeremy are the only
editors of [RDF-Concepts]?

34

RDF Containers 2
• Three types of containers:

– rdf:Bag - unordered set of items
– rdf:Seq - ordered set of items
– rdf:Alt - set of alternatives

• Every container has a triple declaring the rdf:type

• Items in the container are denoted with
– rdf:_1, rdf:_2, ... ,rdf:_n

• Limitations:
– Semantics of the container is up to the application
– What about closed sets?

• How do we know whether Graham and Jeremy are the only editors
of [RDF-Concepts]?

35

RDF Containers Graph
Representation: Bag

“The lecture is attended by John, Mary and Chris”

36

RDF Containers Graph
Representation: Seq

“[RDF-Concepts] is edited by Graham and Jeremy
(in that order)”

37

RDF Containers Graph
Representation: Alt

“The source code for the application may be found at
ftp1.example.org, ftp2.example.org, ftp3.example.org”

38

RDF Collections

“[RDF-Concepts] is edited by Graham and Jeremy
(in that order) and nobody else”

RDF provides support for describing groups containing only the
specified members, in the form of RDF collections.

39

Reification I

• Reification: statements about statements

Mary claims that John’s name is “John Smith”.

<_:myStatement, rdf:type, rdf:Statement>

<_:myStatement, rdf:subject, #john>
<_:myStatement, rdf:predicate, #hasName>
<_:myStatement, rdf:object, ”John Smith”>

This kind of statement can be used to describe belief or trust in other
statements, which is important in some kinds of applications

Necessary because there are only triples in RDF: we cannot add an
identifier directly to a triple (then it would be a quadruple)

40

Reification II

• Reification: statements about statements

Mary claims that John’s name is “John Smith”.

<_:myStatement, rdf:type, rdf:Statement>

<_:myStatement, rdf:subject, #john>
<_:myStatement, rdf:predicate, #hasName>
<_:myStatement, rdf:object, ”John Smith”>

ô
<#john, #hasName, ”John Smith”>

In such a way we attached a label to the
statement.

41

Reification III

• Reification: statements about statements

Mary claims that John’s name is “John Smith”.

<_:myStatement, rdf:type, rdf:Statement>

<_:myStatement, rdf:subject, #john>
<_:myStatement, rdf:predicate, #hasName>
<_:myStatement, rdf:object, ”John Smith”>

<#mary, #claims, #myStatement>

RDF uses only binary properties. This restriction seems quite
serious because often we use predicates with more than two
arguments. Luckily, such predicates can be simulated by a number
of binary predicates.

42

RDF Vocabulary
• RDF defines a number of resources
• We have already seen: rdf:XMLLiteral, rdf:type, . . .
• RDF vocabulary is defined in the namespace:

http://www.w3.org/1999/02/22-rdf-syntax-ns#

• Classes:
– rdf:Property, rdf:Statement, rdf:XMLLiteral

– rdf:Seq, rdf:Bag, rdf:Alt, rdf:List

• Properties:
– rdf:type, rdf:subject, rdf:predicate, rdf:object,
– rdf:first, rdf:rest, rdf:_n
– rdf:value

• Other:
– rdf:nil 43

http://www.w3.org/1999/02/22-rdf-syntax-ns

RDF Vocabulary
• Typing using rdf:type:

<A, rdf:type, B>

“A belongs to class B”

• All properties belong to class rdf:Property:
<P, rdf:type, rdf:Property>

“P is a property”

<rdf:type, rdf:type, rdf:Property>

“rdf:type is a property”

44

Example RDF Graph
(Turtle syntax)

<http://example.org/#john> <http://.../vcard-rdf/3.0#FN> "John Smith” .

<http://example.org/#john> <http://.../vcard-rdf/3.0#N> :_X1 .
_:X1 <http://.../vcard-rdf/3.0#Given> "John” .
_:X1 <http://.../vcard-rdf/3.0#Family> "Smith” .

<http://example.org/#john> <http://example.org/#hasAge> "32” .

<http://example.org/#john> <http://example.org/#marriedTo> <#mary> .

<http://example.org/#mary> <http://.../vcard-rdf/3.0#FN> "Mary Smith” .

<http://example.org/#mary> <http://.../vcard-rdf/3.0#N> :_X2 .
_:X2 <http://.../vcard-rdf/3.0#Given> "Mary” .
_:X2 <http://.../vcard-rdf/3.0#Family> "Smith” .

<http://example.org/#mary> <http://example.org/#hasAge> "29” .

45

Example RDF Graph
(Extended Turtle syntax)

@prefix ex: <http://example.org/#> .

@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .

ex:john
vcard:FN "John Smith" ;
vcard:N [
vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [
vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

46

Example RDF Graph
(XML syntax)

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/“
xmlns:ex="http://example.org“>

<rdf:Description rdf:about=ex:john>
<foaf:name>John Smith</foaf:name>

</rdf:Description>
<rdf:Description rdf:about=ex:marry>

<foaf:name>Marry Smith</foaf:name>
</rdf:Description>

</rdf:RDF>

Note: This is another graph

47

RDF Named Graphs
• Sometimes we need to work with several RDF graphs

• To distinguish them (e.g., in SPARQL), we can give them names

• Often it is convenient to represent triples in named graphs as
quadruples

48

RDF Schema (RDFS)
• Types in RDF:

<#john, rdf:type, #Student>

• What is a “#Student”?

• RDF is not defining a vocabulary about the statements, but
only to express statements

• We know that “#Student” identifies a category (a concept or a
class), but this is only implicitly defined in RDF

49

RDF Schema (RDFS)
• We need a language for defining RDF types:

– Define classes:
• “#Student is a class”

– Relationships between classes:
• “#Student is a sub-class of #Person”

– Properties of classes:
• “#Person has a property hasName”

• RDF Schema is such a language

50

RDF Schema (RDFS)
• Classes:

<#Student, rdf:type, #rdfs:Class>
• Class hierarchies:

<#Student, rdfs:subClassOf, #Person>

• Properties:
<#hasName, rdf:type, rdf:Property>

• Property hierarchies:
<#hasMother, rdfs:subPropertyOf, #hasParent>

• Associating properties with classes (a):
– “The property #hasName only applies to #Person”

<#hasName, rdfs:domain, #Person>

• Associating properties with classes (b):
– “The type of the property #hasName is #xsd:string”

<#hasName, rdfs:range, xsd:string>

51

RDFS Vocabulary

RDFS Classes
– rdfs:Resource
– rdfs:Class

– rdfs:Literal
– rdfs:Datatype
– rdfs:Container
– rdfs:ContainerMembershipProperty

RDFS Properties
– rdfs:domain
– rdfs:range

– rdfs:subPropertyOf
– rdfs:subClassOf
– rdfs:member
– rdfs:seeAlso
– rdfs:isDefinedBy
– rdfs:comment

– rdfs:label

• RDFS Extends the RDF Vocabulary
• RDFS vocabulary is defined in the

namespace:
http://www.w3.org/2000/01/rdf-schema#

52

http://www.w3.org/2000/01/rdf-schema

RDFS Principles
• Resource

– All resources are implicitly instances of rdfs:Resource

• Class
– Describe sets of resources
– Classes are resources themselves - e.g. Webpages, people, document

types
• Class hierarchy can be defined through rdfs:subClassOf
• Every class is a member of rdfs:Class

• Property
– Subset of RDFS Resources that are properties

• Domain: class associated with property: rdfs:domain
• Range: type of the property values: rdfs:range
• Property hierarchy defined through: rdfs:subPropertyOf

53

RDFS Example

ex:Faculty-
Staff

54

RDFS Metadata Properties
• Metadata is “data about data”
• Any meta-data can be attached to a resource, using:

– rdfs:comment
• Human-readable description of the resource, e.g.

– á<ex:Person>, rdfs:comment, ”A person is any human being”ñ

– rdfs:label
• Human-readable version of the resource name, e.g.

– á<ex:Person>, rdfs:label, ”Human being”ñ

– rdfs:seeAlso
• Indicate additional information about the resource, e.g.

– á<ex:Person>, rdfs:seeAlso, <http://xmlns.com/wordnet/1.6/Human>ñ

– rdfs:isDefinedBy
• A special kind of rdfs:seeAlso, e.g.

– á<ex:Person>,rdfs:isDefinedBy,<http://xmlns.com/wordnet/1.6/Human>ñ

55

RDFS entailment
• RDF Vocabulary is just a convention for usage of some URIs
• For a system working with it (e.g., SPARQL) they any other URIs
• RDFS Vocabulary is more: it allows to encode implicit knowledge
• For example, graph with

<John, rdf:type, #Student>
<#Student, rdfs:subClassOf, #Person>

implicitly contains
<John, rdf:type, #Person>

• Several RDFS entailment rules for the RDFS Vocabulary
(e.g., there is a rule saying
“if <A, rdf:type, C> and <C, rdfs:subClassOf, C’> are in a
graph then <A, rdf:type, C’> is implicitly in the graph)

• Systems (SPARQL, etc.) can be customised to work under RDFS
entailment regime (i.e., to take this implicit knowledge into account)56

OWL entailment
• RDFS entailment is rather simple
• OWL (Web Ontology Language) goes further in this direction
• It allows for complex entailment rules based on Description Logics
• For example, in DL syntax,

Student ⊓ HasIFIOffice ⊑ IFIStudent
“Everybody who is a student and has an IFI office is an IFI student”

• There is OWL vocabulary (with owl: prefix) that allows to encode
such entailments

• Entailments (called DL Reasoning) are may be complex
• Several systems: HermiT, ELK, KAON, etc.

57

Databases and RDF
• Relational databases are a well-established technology to store

information and provide query support (SQL)
• Relational database have been designed and implemented to store

concepts in a predefined (not frequently alterable) schema

• How can we store the following RDF data in a relational database?
<rdf:Description rdf:about="12345">

<rdf:type rdf:resource="&uni;lecturer"/>
<uni:name>Joe Doe</uni:name>
<uni:title>University Professor</uni:title>

</rdf:Description>

58

Databases and RDF
• Possible approach: Relational “Traditional” approach

• We can create a table “Lecturer” to store information about the “Lecturer”
RDF Class.

• Query: Find the names of all the lecturers
SELECT NAME FROM LECTURER

• Drawbacks: Every time we need to add new content we have to create a
new table -> Not scalable, not dynamic, not based on the RDF principles
(triples)

Lecturer

id name title

12345 Joe Doe University Professor

59

Databases and RDF
• Another possible approach: Relational “Triple” based approach

• We can create a table to maintain all the triples S P O (and distinguish
between URI objects and literals objects)

• Drawbacks: We are flexible w.r.t. adding new statements dynamically
without any change to the database structure…but what about querying?

– Query: Find the names of all the lecturers
– The query is quite complex: 5 JOINS!
– This require a lot of optimization specific for RDF and

triple data storage, that it is not included in the DB
– For achieving efficiency a layer on top of a database

is required
– SQL is not appropriate to extract RDF fragments

Resources

Id URI

101 21345

102 rdf:type

103 uni:lecturer

104 …

Statement

Subject Predicate ObjectURI ObjectLiteral

101 102 103 null

101 104 201

101 105 202

103 … … null

Literals

Id Value

201 Joe Doe

202 University Professor

203 …

… …

SELECT L.Value FROM Literals AS L
INNER JOIN Statement AS S ON S.ObjectLiteral=L.ID
INNER JOIN Resources AS R ON R.ID=S.Predicate
INNER JOIN Statement AS S1 ON
S1.Predicate=S.Predicate
INNER JOIN Resources AS R1 ON R1.ID=S1.Predicate
INNER JOIN Resources AS R2 ON R2.ID=S1.ObjectURI
WHERE R.URI = “uni:name”
AND R1.URI = “rdf:type”
AND R2.URI = “uni:lecturer”

60

SPARQL: RDF Query language
• SPARQL

– RDF Query language
– Uses SQL-like syntax

• Example:
PREFIX uni: <http://example.org/uni/>

SELECT ?name
FROM <http://example.org/personal>
WHERE { ?s uni:name ?name.
?s rdf:type uni:lecturer }

61

SPARQL Queries
PREFIX uni: <http://example.org/uni/>
SELECT ?name
FROM <http://example.org/personal>
WHERE { ?s uni:name ?name. ?s rdf:type uni:lecturer }

• PREFIX
– Prefix mechanism for abbreviating URIs

• SELECT
– Identifies the variables to be returned in the query answer
– SELECT DISTINCT
– SELECT REDUCED

• FROM
– Name of the graph to be queried
– FROM NAMED

• WHERE
– Query pattern as a list of triple patterns

• LIMIT
• OFFSET
• ORDER BY

62

SPARQL Query keywords
• PREFIX: based on namespaces

• DISTINCT: The DISTINCT solution modifier eliminates duplicate solutions.
Specifically, each solution that binds the same variables to the same RDF
terms as another solution is eliminated from the solution set.

• REDUCED: While the DISTINCT modifier ensures that duplicate solutions
are eliminated from the solution set, REDUCED simply permits them to be
eliminated. The cardinality of any set of variable bindings in an REDUCED
solution set is at least one and not more than the cardinality of the solution
set with no DISTINCT or REDUCED modifier.

• LIMIT: The LIMIT clause puts an upper bound on the number of solutions
returned. If the number of actual solutions is greater than the limit, then at
most the limit number of solutions will be returned.

63

SPARQL Query keywords
• OFFSET: OFFSET causes the solutions generated to start after the

specified number of solutions. An OFFSET of zero has no effect.

• ORDER BY: The ORDER BY clause establishes the order of a
solution sequence.

• Following the ORDER BY clause is a sequence of order
comparators, composed of an expression and an optional order
modifier (either ASC() or DESC()). Each ordering comparator is
either ascending (indicated by the ASC() modifier or by no modifier)
or descending (indicated by the DESC() modifier).

64

Example RDF Graph
<http://example.org/#john> <http://.../vcard-rdf/3.0#FN> "John Smith"

<http://example.org/#john> <http://.../vcard-rdf/3.0#N> :_X1
_:X1 <http://.../vcard-rdf/3.0#Given> "John"
_:X1 <http://.../vcard-rdf/3.0#Family> "Smith"

<http://example.org/#john> <http://example.org/#hasAge> "32"

<http://example.org/#john> <http://example.org/#marriedTo> <#mary>

<http://example.org/#mary> <http://.../vcard-rdf/3.0#FN> "Mary Smith"

<http://example.org/#mary> <http://.../vcard-rdf/3.0#N> :_X2
_:X2 <http://.../vcard-rdf/3.0#Given> "Mary"
_:X2 <http://.../vcard-rdf/3.0#Family> "Smith"

<http://example.org/#mary> <http://example.org/#hasAge> "29"

65

SPARQL Queries: All Full
Names

“Return the full names of all people in the graph”

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
SELECT ?fullName
WHERE {?x vCard:FN ?fullName}

result:

fullName
=================
"John Smith"
"Mary Smith"

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

66

SPARQL Queries: Properties
“Return the relation between John and Mary”

PREFIX ex: <http://example.org/#>
SELECT ?p
WHERE {ex:john ?p ex:mary}

result:

p
=================
<http://example.org/#marriedTo>

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

67

SPARQL Queries: Complex
Patterns

“Return the spouse of a person by the name of John Smith”

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
PREFIX ex: <http://example.org/#>
SELECT ?y

WHERE {?x vCard:FN "John Smith".
?x ex:marriedTo ?y}

result:

y
=================
<http://example.org/#mary>

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

68

SPARQL Queries: Complex
Patterns

“Return the spouse of a person by the name of John Smith”

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
PREFIX ex: <http://example.org/#>
SELECT ?y

WHERE {?x vCard:FN "John Smith".
?x ex:marriedTo ?y}

result:

y
=================
<http://example.org/#mary>

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

69

SPARQL Queries: Blank Nodes
“Return the first name of all people in the KB”

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
SELECT ?name, ?firstName
WHERE {?x vCard:N ?name .

?name vCard:Given ?firstName}

result:

name firstName
=================
_:a "John"
_:b "Mary"

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

70

SPARQL Queries: Blank Nodes
“Return the first name of all people in the KB”

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
SELECT ?name, ?firstName
WHERE {?x vCard:N ?name .

?name vCard:Given ?firstName}

result:

name firstName
=================
_:a "John"
_:b "Mary"

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

71

SPARQL Queries:
Testing if the Solution Exists

“Are there any married persons in the KB?”

PREFIX ex: <http://example.org/#>
ASK { ?person ex:marriedTo ?spouse }

result:

yes
=================

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

72

SPARQL Queries: Constraints
(Filters)

“Return all people over 30 in the KB”

PREFIX ex: <http://example.org/#>
SELECT ?x
WHERE {?x hasAge ?age .
FILTER(?age > 30)}

result:

x
=================
<http://example.org/#john>

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john
vcard:FN "John Smith" ;
vcard:N [
vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [
vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

73

SPARQL Queries: Optional
Patterns

“Return all people and (optionally) their spouse”

PREFIX ex: <http://example.org/#>
SELECT ?person, ?spouse
WHERE {?person ex:hasAge ?age .
OPTIONAL { ?person ex:marriedTo ?spouse } }

result:

?person ?spouse
=============================
<http://example.org/#mary>
<http://example.org/#john> <http://example.org/#mary>

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john
vcard:FN "John Smith" ;
vcard:N [
vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [
vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

74

SPARQL Queries: Optional
Patterns

“Return all people and (optionally) their spouse”

PREFIX ex: <http://example.org/#>
SELECT ?person, ?spouse
WHERE {?person ex:hasAge ?age .
OPTIONAL { ?person ex:marriedTo ?spouse } }

result:

?person ?spouse
=============================
<http://example.org/#mary>
<http://example.org/#john> <http://example.org/#mary>

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john
vcard:FN "John Smith" ;
vcard:N [
vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [
vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

75

SPARQL WHERE clause
• One big self-join, represented by “.” (no need to mention table

names)
• FILTER similar to conditions in SQL
• OPTIONAL does not have a direct analogue in SQL, but can be

expressed using negation

• There are also
– UNION (slightly different from SQL)
– aggregates (similar)
– Property paths (reachability in a graph, difficult to express in

SQL)
– Etc.

76

SPARQL Queries: Building RDF
Graph

“Rewrite the naming information in original graph
by using the foaf:name”

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT { ?x foaf:name ?name }
WHERE { ?x vCard:FN ?name }

result:
#john foaf:name “John Smith"
#marry foaf:name “Marry Smith"

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

77

SPARQL Queries: Building RDF
Graph

“Rewrite the naming information in original graph
by using the foaf:name”

PREFIX vCard: <http://www.w3.org/2001/vcard-rdf/3.0#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT { ?x foaf:name ?name }
WHERE { ?x vCard:FN ?name }

result:
#john foaf:name “John Smith"
#marry foaf:name “Marry Smith"

@prefix ex: <http://example.org/#> .
@prefix vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> .
ex:john

vcard:FN "John Smith" ;
vcard:N [

vcard:Given "John" ;
vcard:Family "Smith"] ;

ex:hasAge 32 ;
ex:marriedTo :mary .

ex:mary
vcard:FN "Mary Smith" ;
vcard:N [

vcard:Given "Mary" ;
vcard:Family "Smith"] ;

ex:hasAge 29 .

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/“
xmlns:ex="http://example.org“>

<rdf:Description rdf:about=ex:john>
<foaf:name>John Smith</foaf:name>

</rdf:Description>
<rdf:Description rdf:about=ex:marry>

<foaf:name>Marry Smith</foaf:name>
</rdf:Description>

</rdf:RDF>

78

A RDF Graph Modeling Movies

movie1

movie:Movie

“Edward ScissorHands”

“1990”

rdf:type

movie:title

movie:year

movie:Genre

movie:Romance
movie:Comedy

rdf:type rdf:type

movie:genre

movie:genre

movie:Role

“Edward ScissorHands”

r1

actor1movie:playedBy

movie:characterName

rdf:typemovie:hasPart

[http://www.openrdf.org/conferences/eswc2006/Sesame-tutorial-eswc2006.ppt] 79

Example Query 1
• Select the movies that has a character called

“Edward Scissorhands”

PREFIX movie: <http://example.org/movies/>

SELECT DISTINCT ?x ?t
WHERE {

?x movie:title ?t ;
movie:hasPart ?y .
?y movie:characterName ?z .
FILTER (?z = “Edward Scissorhands”@en)

}

80

Example Query 1
PREFIX movie: <http://example.org/movies/>

SELECT DISTINCT ?x ?t
WHERE {

?x movie:title ?t ;
movie:hasPart ?y .
?y movie:characterName ?z .
FILTER (?z = “Edward Scissorhands”@en)

}

• Note the use of “;” This allows to create triples referring to the
previous triple pattern (extended version would be ?x
movie:hasPart ?y)

• Note as well the use of the language speciation in the filter @en

81

Example Query 2
• Create a graph of actors and relate them to the movies they play in (through a

new ‘playsInMovie’ relation)

PREFIX movie: <http://example.org/movies/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

CONSTRUCT {
?x foaf:firstName ?fname.
?x foaf:lastName ?lname.
?x movie:playInMovie ?m
}

WHERE {
?m movie:title ?t ;
movie:hasPart ?y .
?y movie:playedBy ?x .
?x foaf:firstName ?fname.
?x foaf:lastName ?lname.

}

82

Example Query 3
• Find all movies which share at least one genre

with “Gone with the Wind”

PREFIX movie: <http://example.org/movies/>

SELECT DISTINCT ?x2 ?t2
WHERE {

?x1 movie:title ?t1.
?x1 movie:genre ?g1.
?x2 movie:genre ?g2.
?x2 movie:title ?t2.
FILTER (?t1 = “Gone with the Wind”@en &&
?x1!=?x2 && ?g1=?g2)

}

83

Examples RDF stores
(a.k.a. triplestores)

• AllegroGraph, OpenLink Virtuoso, GraphDB,
Jena, Oracle Spatial and Graph, etc.

• See details related to scalability of triplestores at
https://www.w3.org/wiki/LargeTripleStores

84

https://www.w3.org/wiki/LargeTripleStores

