
IN3020/4020 – Database Systems
Spring 2021, Week 18.1

Labeled Property Graphs (Neo4j)

Egor V. Kostylev (with M. Naci Akkøk)
Based upon slides by D. Roman from Spring 2019

(Labelled) graph databases
• For data that is natural to describe and traverse as graphs

– Each node has an inner structure describing its properties
– The edges indicate relationships between the nodes
– The edges can carry information in the same way as the nodes

• Can be schema-free
– New nodes and edges (with new inner structures) can be

introduced dynamically
– Existing nodes and edges can be expanded with new properties

• Search: Specify how the graph should be navigated
– The graph is traversed directly via pointers to neighboring nodes

(the traverse requires no indexes and no join operations)

2

Neo4j

• A native graph database
• “Whiteboard friendly”
• Schemaless – no need to define any structure in advance
• Query language: Cypher

– Declarative, pattern-based
• Transaction support
• Scalability (support for clusters)
• Examples use: eBay, HP
• Open-source under GPL

3

https://neo4j.com

https://neo4j.com/

Getting started with Neo4j

• Easiest to get started is via the Neo4j Sandbox:
https://neo4j.com/sandbox

• Alternatively, download and install locally the
Neo4j desktop:
https://neo4j.com/download/neo4j-desktop/

5

https://neo4j.com/sandbox/
https://neo4j.com/download/neo4j-desktop/

• Node
• Label: A type to a node

– A node can have none
or several labels

• Relationship:
– Directed edge between two nodes
– Each two nodes have have several relations

• Relationship type: Used to characterize a relationship
– Each relationship has exactly one type

• Property: Key-value pair
– Both nodes and relations can have properties
– The name is a character string
– The value is taken from a base datatype (int, char,…) or an array

over a base datatype (int[], char[],…)
6

Data model

Cypher Graph patterns
• The strength of the property graph lies in its ability to encode patterns of

connected nodes and relationships

• Cypher is strongly based on patterns
– Patterns are used to match desired graph structures
– A simple pattern, with a single relationship, connects a pair of nodes

a Person !"#$%&"' a City
– Complex patterns, using multiple relationships, can express arbitrarily

complex concepts
a Person !"#$%&"' a City is ()*+&,- a Country

• Cypher represents graph-related patterns using clauses and keywords, for
example MATCH, WHERE and DELETE are used to combine patterns and
specify desired actions

7

https://neo4j.com/docs/cypher-manual

https://neo4j.com/docs/cypher-manual

Node syntax

• Nodes are represented using a pair of
parentheses, e.g.: (), (foo)

8

Relationship syntax

• Undirected relationship uses a pair of dashes (--)
• Directed relationships have an arrowhead at one end

(<--, -->)
• Bracketed expressions ([…]) can be used to add details

9

Pattern syntax

• Patterns are expressed by combining the syntax
for nodes and relationships

10

Clauses

• Cypher statements typically have multiple
clauses, each of which performs a specific task,
for example:
– Create and match patterns in the graph
– Filter, project, sort, or paginate results
– Compose partial statements

11

Creating data

12

• The simplest clause is CREATE

• To return the created data the RETURN clause is used
(refers to the variable assigned to the pattern elements)

Creating data:
more complex structures

13

• We can create more complex structures

• But in most cases, we want to connect new data to
existing structures.

This requires that we know how to find existing patterns
in our graph data, which we will look at next.

Matching patterns
• Matching patterns is done using the MATCH statement, by passing

the patterns describing what to look for
• A MATCH statement will search for the specified patterns and return

one row per successful pattern match

• It is possible to attach structures to the graph by combining MATCH
and CREATE

14

Completing patterns

• MERGE checks for the existence of data first before
creating it
– Define a pattern to be found or created (can provide

additional properties to set ON CREATE)

• MERGE can also assert that a relationship is only
created once

15

Filtering results

• Filter conditions are expressed in a WHERE clause
– Allows to use any number of Boolean expressions

combined with AND, OR, XOR and NOT

16

Returning results
• The RETURN clause can return not only nodes and relations, but also

expressions
• Simple expressions:

– Values of Keys from Key-Value pairs: numbers, strings, arrays, etc.
– Function evaluations: length(array), toInteger("12"), etc.

• Can be composed and concatenated to form more complex expressions

• Can use "expression AS alias” to improve readability

• To indicate unique results the DISTINCT keyword is used after RETURN

17

Aggregating information

• Aggregation happens in the RETURN clause
while computing the final results
– Many common aggregation functions are

supported, e.g. count, sum, avg, min, and
max

18

Ordering and pagination, collecting
aggregation

• Ordering works with the clause
ORDER BY expression [ASC|DESC]

• Pagination works with the clause
SKIP {offset} LIMIT {count}

• A very helpful aggregation function is collect(): it collects
all aggregated values into a list

19

Composing large statements

• UNION is used to combine the results of two statements
that have the same result structure

• WITH is used to combine fragments of statements and
declare which data flows from one to the other
– WITH is very much like RETURN with the difference that it

doesn’t finish a query but prepares the input for the next part (the
only difference is that one must alias all columns as they would
otherwise not be accessible)

20

Constraints and indexes

• Constraints are used to guarantee uniqueness
of a certain property on nodes with a specific
label

• Indexes are mainly used to find the starting point
in the graph as fast as possible

21

Removing and modifying data
• DELETE is used to delete nodes, relationships or paths
• DETACH DELETE is used to delete a node and any relationship

going to or from it

• REMOVE is used to remove properties from nodes and
relationships, and to remove labels from nodes

• SET clause is used to update labels on nodes and properties on
nodes and relationships

22

Importing CSV files using
LOAD CSV

23

Neo4j Cypher Refcard

24

https://neo4j.com/docs/cypher-refcard

https://neo4j.com/docs/cypher-refcard

CREATE
(a:Person {name:"Ann", born:1997}),
(b:Person {name:"John", birthdate:191148}),
(c:Person {name:"Carl", status: "married",

interests:["ski", "diving"],
email:"carl@gmail.com"}),

(a)-[:RELATIVE {type:"daugther", status:"adopted"}]->(b),
(a)-[:RELATIVE {type:"niece"}]->(c)

MATCH (x:Person {name:"John"}), (y:Person {name:"Carl"})
CREATE (x)-[r:RELATIVE {type:"brother"}]->(y)
RETURN r

25

Examples: Creation of nodes and
edges

• Relatives of relatives of Ann:
MATCH (p:Person {name:"Ann"})-[:RELATIVE]-(s1),

(s1)-[:RELATIVE]-(s2)
RETURN s2

• Common relatives of Ann and Carl:
MATCH (pers1)-[:RELATIVE]-(rel),

(pers2)-[:RELATIVE]-(rel)
WHERE pers1.name = "Ann" AND pers2.name = "Carl"
RETURN rel

• (Undirected) Shortest path between Hilde and Geir (at most 5 relationships):
MATCH (p1:Person {name:"Hilde"}), (p2:Person {name:"Geir"}),

path = shortestPath((p1)-[*..5]-(p2))
RETURN path

• Number of relatives (when the direction on the relationship is important):
MATCH (a:Person)-[:RELATIVE]->(b:Person)
RETURN a.name, count(*)
ORDER BY count(*) DESC

26

Examples: Creation of nodes and
edges (cont’)

Graph model versus
other data models

• Graph model vs. Relational model:
– Traversing a graph is much cheaper than joins; uses direct pointers to

neighboring nodes
– Workload is shifted from query execution to data insertion and

maintenance
– “Dynamic” schema make it simpler to use for not-experts

27

Signs of managing highly-connected
data with a relational database

• Large number of JOINs
• Numerous self-JOINs (or recursive JOINs)
• Frequent schema changes
• Slow-running queries (despite extensive tuning)
• Pre-computing the results

28

29

From relational to graph (Neo4j)
https://neo4j.com/developer/graph-db-vs-rdbms/

Relational Graph

https://neo4j.com/developer/graph-db-vs-rdbms/

• Table to Node Label – each entity
table in the relational model becomes a
label on nodes in the graph model

• Row to Node – each row in a relational
entity table becomes a node in the
graph

• Column to Node Property – columns
(fields) on the relational tables become
node properties in the graph

• Business primary keys only – remove
technical primary keys, keep business
primary keys

• Add Constraints/Indexes – add unique
constraints for business primary keys,
add indexes for frequent lookup
attributes

30

• Foreign keys to Relationships –
replace foreign keys to the other table
with relationships, remove them
afterwards

• No defaults – remove data with default
values, no need to store those

• Clean up data – duplicate data in
denormalized tables might have to be
pulled out into separate nodes to get a
cleaner model

• Index Columns to Array – indexed
column names (like email1, email2,
email3) might indicate an array property

• Join tables to Relationships – join
tables are transformed into relationships,
columns on those tables become
relationship properties

From relational to graph (Neo4j)
Tips for data model transformation

https://neo4j.com/developer/relational-to-graph-modeling

https://neo4j.com/developer/relational-to-graph-modeling

31

Relational (ER) Graph (Neo4j)

From relational to graph (Neo4j)
Example

https://neo4j.com/developer/relational-to-graph-modeling

https://neo4j.com/developer/relational-to-graph-modeling

From relational to graph (Neo4j)
Example Query

• Retrieve the employees in the “IT Department”

32

!"#"$%&'()*+,-./0&1-*+,-./ 2345&6/)*78&
#"2%&94:,&;/<+=5/.>/)
4,&6/)*78?</)*78:@ A&;/<+=5/.>/)?</)*78:@
#"2%&94:,&;/<-)+./8+&
4,&;/<-)+./8+?@/<+:@ A&;/<+=5/.>/)?@/<+:@
BC"3"&;/<-)+./8+?@/<+,-./ A&D:%&;/<-)+./8+D

5E%$C&F<G6/)*78HIJKGB43L!=243MJF@G;/<-)+./8+H&
BC"3"&@?8-./&A&D:%&;/<-)+./8+D&
3"%N3,&<?'()*+,-./0<?1-*+,-./

https://neo4j.com/developer/graph-db-vs-rdbms

SQL Cypher

https://neo4j.com/developer/graph-db-vs-rdbms

From relational to graph (Neo4j)
A More Extreme Query Example

33

Cypher SQL

https://neo4j.com/blog/sql-vs-cypher-query-languages

https://neo4j.com/blog/sql-vs-cypher-query-languages

Graph Algorithms

• Used to compute metrics for graphs, nodes, or
relationships

• Provide insights on relevant entities in the graph
(centralities, ranking), or inherent structures like
communities (community-detection, graph-partitioning,
clustering)

• Many of the approaches have high algorithmic
complexity
– Iterative approaches that frequently traverse the graph for the

computation using random walks, breadth-first or depth-first
searches, or pattern matching

– Optimized algorithms utilize certain structures of the graph, recall
already explored parts, and parallelize operations

34

Neo4j graph algorithms

• Centralities: determine the importance of distinct nodes
in a network (PageRank, Betweenness Centrality, Closeness Centrality)

• Community detection: evaluate how a group is
clustered or partitioned, as well as its tendency to
strengthen or break apart (Louvain, Label Propagation, Connected
Components, Connected Components, Triangle Count / Clustering
Coefficient)

• Path finding: find the shortest path or evaluate the
availability and quality of routes (Minimum Weight Spanning
Tree, All Pairs- and Single Source - Shortest Path, A* Algorithm, Yen’s K-
Shortest Paths, Random Walk)

35

https://neo4j.com/docs/graph-data-science/current/algorithms

https://neo4j.com/docs/graph-data-science/current/algorithms

Example: PageRank

• Measures the transitive influence or connectivity of nodes

36

Example: Louvain

• Used for detecting communities in networks
• Evaluates how much more densely connected the nodes

within a community are, compared to how connected
they would be in a random network

37

Example: Shortest Path

• Calculates the shortest (weighted) path between
a pair of nodes (Dijkstra’s algorithm is the most
well known)

38

Replication in Neo4j

• Causal Clustering architecture
– Cores Replicas
– Read Replicas

39

https://neo4j.com/docs/operations-manual/current/clustering/

• Safety: Core Replicas provide a
fault tolerant platform for
transaction processing

• Scale: Read Replicas provide a
scalable platform for graph
queries

• Causal consistency: when
invoked, a client application is
guaranteed to read at least its
own writes.

https://neo4j.com/docs/operations-manual/current/clustering/

Sharding in Neo4j
• The more data is connected, the more complicated it is to shard
• Neo4j Fabric: allows users to split a larger graph down into

individual, smaller graphs and store them in separate databases
• The fabric database is a virtual database

40

https://neo4j.com/docs/operations-manual/current/fabric/

https://neo4j.com/docs/operations-manual/current/fabric/

Neo4j references
• Neo4j: https://neo4j.com
• Neo4j Cypher Refcard: https://neo4j.com/docs/cypher-

refcard/current
• Neo4j documentation: https://neo4j.com/docs

– Getting started: https://neo4j.com/docs/getting-started/current
– Cypher Manual: https://neo4j.com/docs/cypher-manual/current
– RDBMS to Graph: https://neo4j.com/developer/get-

started/graph-db-vs-rdbms
– Graph Data Science (incl graph algorithms):

https://neo4j.com/docs/graph-data-science

41

https://neo4j.com/
https://neo4j.com/docs/cypher-refcard/current/
https://neo4j.com/docs/
https://neo4j.com/docs/getting-started/current
https://neo4j.com/docs/cypher-manual/current
https://neo4j.com/developer/get-started/graph-db-vs-rdbms
https://neo4j.com/docs/graph-data-science/

Polyglot persistence
• Polyglot persistence: a variety of different database systems for different kinds of

data

• Complexity cost
– Each data storage mechanism introduces a new interface to be learned for each

new data storage mechanism
– Storage is usually a performance bottleneck
– Multiple data silos
– More complicated deployment, more frequent upgrades
– Data consistency and duplication issues 42

Picture taken from https://martinfowler.com/bliki/PolyglotPersistence.html

Multi-model databases
• A database that consists of different data storage mechanisms (e.g.

relational, document, key/value, graph database):
– All in one database engine
– With a unifying query language and API
– That cover all data models and even allow for mixing them in a

single query

• Next evolution of NoSQL technologies

• Multi-model vs Multi-modal
– Multi-model: relational, key-value, document, graph, tree, etc.
– Multi-modal: video, audio, image, text, etc.

43

Examples

• ArangoDB – document (JSON), graph, key-value
• Cosmos DB – document, table, key-value, JSON, SQL
• CouchBase – relational (SQL), document
• CrateDB – relational (SQL), document (Lucene)
• MarkLogic – document (XML and JSON), graph (RDF

with OWL/RDFS), text, geospatial, binary, SQL
• OrientDB – document (JSON), graph, key-value, text,

geospatial, binary, reactive, SQL
• Datastax – key-value, tabular, graph
• …

44

Hot topics in multi-model
databases

• Benchmarking
• Extensions of existing query languages
• Cross-model schema languages and evolution
• Query processing

– Cross-model complex joins
– New index structures

• Model mapping
• Cross-model transaction and consistency

45

