IN3020/4020 — Database Systems
Spring 2021, Week 18.1

Labeled Property Graphs (Neo4))

Egor V. Kostylev (with M. Naci Akkgk)

Based upon slides by D. Roman from Spring 2019

(Labelled) graph databases

« For data that is natural to describe and traverse as graphs
— Each node has an inner structure describing its properties
— The edges indicate relationships between the nodes
— The edges can carry information in the same way as the nodes

« (Can be schema-free

— New nodes and edges (with new inner structures) can be
introduced dynamically

— Existing nodes and edges can be expanded with new properties

 Search: Specify how the graph should be navigated

— The graph is traversed directly via pointers to neighboring nodes
(the traverse requires no indexes and no join operations)

Neo4

https://neo4j.com

A native graph database
“Whiteboard friendly”
Schemaless — no need to define any structure in advance
Query language: Cypher
— Declarative, pattern-based
Transaction support
Scalability (support for clusters)
Examples use: eBay, HP
Open-source under GPL

https://neo4j.com/

Getting started with Neo4|

» Easiest to get started is via the Neo4] Sandbox:
https://neo4j.com/sandbox

 Alternatively, download and install locally the
Neo4| desktop:
https://neo4j.com/download/neo4j-desktop/

https://neo4j.com/sandbox/
https://neo4j.com/download/neo4j-desktop/

Data model

Node
Label: A type to a node

— A node can have none
or several labels

Relationship.:

— Directed edge between two nodes

— Each two nodes have have several relations
Relationship type: Used to characterize a relationship
— Each relationship has exactly one type

Property: Key-value pair

— Both nodes and relations can have properties

— The name is a character string

— The value is taken from a base datatype (int, char,...) or an array

over a base datatype (int[], char]],...) 3

Cypher Graph patterns

https://neo4j.com/docs/cypher-manual

« The strength of the property graph lies in its ability to encode patterns of
connected nodes and relationships

« Cypher is strongly based on patterns
— Patterns are used to match desired graph structures
— A simple pattern, with a single relationship, connects a pair of nodes
a Person LIVES_IN a City

— Complex patterns, using multiple relationships, can express arbitrarily
complex concepts

a Person LIVES_IN a City is PART_OF a Country

« Cypher represents graph-related patterns using clauses and keywords, for
example MATCH, WHERE and DELETE are used to combine patterns and
specify desired actions

https://neo4j.com/docs/cypher-manual

Node syntax

* Nodes are represented using a pair of
parentheses, e.g.: (), (foo)

()

(matrix)

(:Movie)

(matrix:Movie)

(matrix:Movie {title: "The Matrix"})

(matrix:Movie {title: "The Matrix", released: 1997})

Relationship syntax

« Undirected relationship uses a pair of dashes (--)

« Directed relationships have an arrowhead at one end
(<--, -->)

« Bracketed expressions ([...]) can be used to add details

-->

-[role]->

-[:ACTED_IN]->

-[role:ACTED_IN]->

-[role:ACTED_IN {roles: ["Neo"]}]->

Pattern syntax

» Patterns are expressed by combining the syntax
for nodes and relationships

(keanu:Person:Actor {name: "Keanu Reeves"})
-[role:ACTED_IN {roles: ["Neo"] }]->
(matrix:Movie {title: "The Matrix"})

10

Clauses

« Cypher statements typically have multiple
clauses, each of which performs a specific task,
for example:

— Create and match patterns in the graph
— Filter, project, sort, or paginate results
— Compose partial statements

11

Creating data

* The simplest clause is CREATE

CREATE (:Movie { title:"The Matrix",released:1997 })

Nodes created: 1
Properties set: 2
Labels added: 1

« To return the created data the RETURN clause is used
(refers to the variable assigned to the pattern elements)

CREATE (p:Person { name:"Keanu Reeves", born:1964 })
RETURN p

1 row

Nodes created: 1

Properties set: 2 12
Labels added: 1

Creating data:
more complex structures

 We can create more complex structures

CREATE (a:Person { name:"Tom Hanks",
born:1956 })-[r:ACTED_IN { roles: ["Forrest"]}]->(m:Movie { title:"Forrest Gump",released:1994 })

CREATE (d:Person { name:"Robert Zemeckis", born:1951 })-[:DIRECTED]->(m)
RETURN a,d,r,m

 Butin most cases, we want to connect new data to
existing structures.

This requires that we know how to find existing patterns
In our graph data, which we will look at next.

13

Matching patterns

Matching patterns is done using the MATCH statement, by passing
the patterns describing what to look for

A MATCH statement will search for the specified patterns and return
one row per successful pattern match

MATCH (p:Person { name:"Tom Hanks"™ })-[r:ACTED_IN]->(m:Movie)
RETURN m.title, r.roles

| m.title | r.roles |
T T +
| "Forrest Gump" | ["Forrest"] |
T Lt T T +
1 row

It is possible to attach structures to the graph by combining MATCH

and CREATE

MATCH (p:Person { name:"Tom Hanks" })
CREATE (m:Movie { title:"Cloud Atlas",released:2012 })

CREATE (p)-[r:ACTED_IN { roles: ['Zachry']}]->(m)
RETURN p,r,m 14

Completing patterns

MERGE checks for the existence of data first before

creating it

— Define a pattern to be found or created (can provide
additional properties to set ON CREATE)

MERGE (m:Movie { title:"Cloud Atlas"™ })
ON CREATE SET m.released = 2012
RETURN m

MERGE can also assert that a relationship is only
created once

MATCH (m:Movie { title:"Cloud Atlas" })
MATCH (p:Person { name:"Tom Hanks" })
MERGE (p)-[r:ACTED_IN]->(m)

ON CREATE SET r.roles =['Zachry']
RETURN p,r,m

15

Filtering results

 Filter conditions are expressed in a WWHERE clause

— Allows to use any number of Boolean expressions
combined with AND, OR, XOR and NOT

MATCH (p:Person)-[r:ACTED_IN]->(m:Movie)
WHERE p.name =~ "K.+" OR m.released > 2000 OR "Neo" IN r.roles
RETURN p,r,m

MATCH (p:Person)-[:ACTED_IN]->(m)
WHERE NOT (p)-[:DIRECTED]->()
RETURN p,m

16

Returning results

« The RETURN clause can return not only nodes and relations, but also
expressions

« Simple expressions:
— Values of Keys from Key-Value pairs: numbers, strings, arrays, etc.
— Function evaluations: length(array), tolnteger("12"), etc.

« Can be composed and concatenated to form more complex expressions
« Can use "expression AS alias” to improve readability

« To indicate unique results the DISTINCT keyword is used after RETURN

MATCH (p:Person)

RETURN p, p.name AS name, toUpper(p.name), coalesce(p.nickname,”n/a") AS nickname, { name: p.name,
label:head(labels(p))} AS person

17

Aggregating information

* Aggregation happens in the RETURN clause
while computing the final results

— Many common aggregation functions are
supported, e.g. count, sum, avg, min, and
max

MATCH (:Person)
RETURN count(*) AS people

18

Ordering and pagination, collecting
aggregation

* QOrdering works with the clause
ORDER BY expression [ASC|DESC]

« Pagination works with the clause
SKIP {offset} LIMIT {count}

MATCH (a:Person)-[:ACTED IN]->(m:Movie)
RETURN a,count(*) AS appearances
ORDER BY appearances DESC LIMIT 10;

* A very helpful aggregation function is collect(): it collects
all aggregated values into a list

MATCH (m:Movie)<-[:ACTED_IN]-(a:Person)
RETURN m.title AS movie, collect(a.name) AS cast, count(*) AS actors

19

Composing large statements

« UNION is used to combine the results of two statements
that have the same result structure

MATCH (actor:Person)-[r:ACTED_IN]->(movie:Movie)

RETURN actor.name AS name, type(r) AS acted_in, movie.title AS title
UNION

MATCH (director:Person)-[r:DIRECTED]->(movie:Movie)
RETURN director.name AS name, type(r) AS acted_in, movie.title AS title

« WITH is used to combine fragments of statements and
declare which data flows from one to the other

— WITH is very much like RETURN with the difference that it
doesn’t finish a query but prepares the input for the next part (the
only difference is that one must alias all columns as they would
otherwise not be accessible)

MATCH (person:Person)-[:ACTED_IN]->(m:Movie)
WITH person, count(*) AS appearances, collect(m.title) AS movies
WHERE appearances > 1 20

RETURN person.name, appearances, movies

Constraints and indexes

« Constraints are used to guarantee unigueness
of a certain property on nodes with a specific
label

CREATE CONSTRAINT ON (movie:Movie) ASSERT movie.title IS UNIQUE

* Indexes are mainly used to find the starting point
in the graph as fast as possible

CREATE INDEX ON :Actor(name)

21

Removing and modifying data

DELETE is used to delete nodes, relationships or paths

DETACH DELETE is used to delete a node and any relationship
going to or from it

MATCH (n:Person { name: 'UNKNOWN' }) MATCH (n { name: "Andy’ })
ELETE n DETACH DELETE n

MATCH (n { name: 'Andy' })-[r:KNOWS]->()
DELETE r

REMOVE is used to remove properties from nodes and
relationships, and to remove labels from nodes

MATCH (a { name: 'Andy’' }) MATCH (n { name: 'Peter’ })
REMOVE a.age REMOVE n:German
RETURN a.name, a.age RETURN n.name, labels(n)

SET clause is used to update labels on nodes and properties on
nodes and relationships

MATCH (n { name: '"Andy' }) MATCH (n { name: 'George' })
SET n.surname = 'Taylor’ SET n:Swedish:Bossman
RETURN n.name, n.surname RETURN n.name, labels(n) AS labels

22

Importing CSV files using
PErsons.csv. LO AD CSV

id,name

1,Charlie Sheen
2,0liver Stone
3,Michael Douglas
4 ,Martin Sheen
5,Morgan Freeman

LOAD CSV WITH HEADERS FROM "https://neo4j.com/docs/developer-manual/3.4/csv/import/persons.csv” AS csvlLine
CREATE (p:Person { id: toInteger(csvLine.id), name: csvLine.name })

movies.csv.

Yds iTletcountry yesn CREATE INDEX ON :Country(name)

1,Wall Street,USA,1987
2,The American President,USA,1995
3,The Shawshank Redemption,USA,1994

LOAD CSV WITH HEADERS FROM "https://neo4j.com/docs/developer-manual/3.4/csv/import/movies.csv" AS csvLine
MERGE (country:Country { name: csvLine.country })

CREATE (movie:Movie { id: toInteger(csvLine.id), title: csvLine.title, year:toInteger(csvLine.year)})
CREATE (movie)-[:MADE_IN]->(country)

roles.csv.

Ser<onTd sovield role CREATE CONSTRAINT ON (person:Person) ASSERT person.id IS UNIQUE

i:i:g:gnggx CREATE CONSTRAINT ON (movie:Movie) ASSERT movie.id IS UNIQUE
3:1:Gordon Gekko

4,2,A.]J. MacInerney

3,2,President Andrew Shepherd

5,3,E1lis Boyd 'Red' Redding
USING PERIODIC COMMIT 500

LOAD CSV WITH HEADERS FROM "https://neo4j.com/docs/developer-manual/3.4/csv/import/roles.csv" AS csvlLine
MATCH (person:Person { id: toInteger(csvLine.personld)}),
(movie:Movie { id: toInteger(csvLine.movield)})
CREATE (person)-[:PLAYED { role: csvLine.role }]->(movie)

Neo4| Cypher Refcard

https://neo4j.com/docs/cypher-refcard

Neo4j Cypher Refcard 4.0

Legend o Opereos 7)
RETURN * General DISTINCT, _, [] CREATE (n:Person {name: $value})
Return the value of all variables. . Create a node with label and property.
— o
RETURN n AS columnName) MERGE (n:Person {name: $value})
_ Use alias for result column name. Comparison ;OTN;L z SIS MLL A Matches or creates unique node(s) with the label and
RETURN DISTINCT n property.
2 Boolean AND, OR, XOR, NOT
Return unique rows. SET n:Spouse:Parent:Employee
ORDER BY n_property String + Add label(s) to a node.
ORDER BY n.property DESC Regular Expression o Matches nodes labeled person.
Sort the result in descending order. 7 ‘ MATCH (n:Person)
Multidatabase String matching STARTS WITH, ENDS WITH, WHERE n.name = $value
SKIP $skipNumber CONTAINS 3 i
; Matches nodes labeled person with the given name.
o WHERE (n:Person)
i e “ Checks the existence of the label on the node.
Syntax Limit the number of results.
o s labels(n
SKIP $skipNumber LIMIT $limitNumber * nullis used to represent missing/undefined values. e 1()fth "
Skip results at the top and limit the number of * null is not equal to null. Not knowing two values S kit i
Read Query Structure results. does not imply that they are the same value. So the REMOVE n:Person
[MATCH WHERE] pre=rz = expression null = null yields null and not tree. To Remove the label from the node.
count(* . . .
L A CHIMIERE] : 2 check if an expression is null, use 1s NULL.
[WITH [ORDER BY] [SKIP] [LIMIT]] The number of matching rows. See Aggregating : 3 ; : g

calls (except coalesce) will return nutl if any Tane: SRTTESizsage: 55

argument 1s null. address: {city: 'London', residential: true}}
An attempt to access a missing elementinalistora Literal maps are declared in curly braces much like

MATCH (&' WITH (2

MATCH (n:Person)-[:KNOWS]->(m:Person)

WHERE n_name = 'Alice® :ﬁ;;: l(j :Zirr)‘;;:fl;:g;;(friend) property that doesn’t exist yields null. property maps. Lists are supported.
; ; : 3 o In opTIONAL MATCH clauses, nulls will be used for
Node patterns can contain labels and properties. WITH user, count(friend) AS friends Sy i WITH {person: {name: 'Anne', age: 25}} AS p
WHERE friends > 10 missing pans of the pattem. RETURN p.person.name

MATCH (n)-->(m)

. RETURN user
Any pattern can be used in MaTCH.

Tha urtu evmtav ic cimilar tn ocTion T canaratac rmiarr

Access the property of a nested map.

24

https://neo4j.com/docs/cypher-refcard

Examples: Creation of nodes and
edges

CREATE
(a:Person {name:"Ann", born:1997}),
(b:Person {name:"John", birthdate:191148}),

(c:Person {name:"Carl", status: "married",
interests:["ski", "diving"],
email:"carl@gmail.com"}),

(a)-[:RELATIVE {type:"daugther", status:"adopted"}]->(b),
(a)-[:RELATIVE {type:"niece"}]1->(c)

MATCH (x:Person {name:"John"}), (y:Person {name:"Carl"})
CREATE (x)-[r:RELATIVE {type:"brother"}]->(y)
RETURN r

25

Examples: Creation of nodes and
edges (cont’)

Relatives of relatives of Ann;

MATCH (p:Person {name:"Ann"})-[:RELATIVE]-(sl),
(sl)-[:RELATIVE]-(s2)

RETURN s2

Common relatives of Ann and Carl:

MATCH (persl)-[:RELATIVE]-(rel),
(pers2)-[:RELATIVE]-(rel)

WHERE persl.name = "Ann" AND pers2.name = "Carl"

RETURN rel

(Undirected) Shortest path between Hilde and Geir (at most 5 relationships):
MATCH (pl:Person {name:"Hilde"}), (p2:Person {name:"Geir"}),

path = shortestPath((pl)-[*..5]-(p2))
RETURN path

Number of relatives (when the direction on the relationship is important):
MATCH (a:Person)-[:RELATIVE]->(b:Person)

RETURN a.name, count(¥*)

ORDER BY count(*) DESC

26

Graph model versus
other data models

Graph model vs. Relational model:

— Traversing a graph is much cheaper than joins; uses direct pointers to
neighboring nodes

— Workload is shifted from query execution to data insertion and
maintenance

— “Dynamic” schema make it simpler to use for not-experts

27

Signs of managing highly-connected
data with a relational database

Large number of JOINs

Numerous self-JOINs (or recursive JOINSs)
Frequent schema changes

Slow-running queries (despite extensive tuning)
Pre-computing the results

28

From relational to graph (Neo4;)

https://neo4j.com/developer/graph-db-vs-rdbms/

Relational

Employees Dept_Members Departments

815 Alice e——— B e — 11 qgepivRE

BUSE O ——

— 119 p081>

815 TN — 181 AA2

Associative Entity,
JOIN Table,
or Lookup Table

:Person
Alice

Graph

:Department
gL oNGS T 4FUTURE
:BELONGS_TO :Department

> P0815
.'BELO
NGs_ To :Department
A42

29

https://neo4j.com/developer/graph-db-vs-rdbms/

From relational to graph (Neo4))
Tips for data model transformation

https://neo4j.com/developer/relational-to-graph-modeling

Table to Node Label — each entity
table in the relational model becomes a
label on nodes in the graph model

Row to Node — each row in a relational
entity table becomes a node in the
graph

Column to Node Property — columns
(fields) on the relational tables become
node properties in the graph

Business primary keys only — remove
technical primary keys, keep business
primary keys

Add Constraints/Indexes — add unique
constraints for business primary keys,
add indexes for frequent lookup
attributes

Foreign keys to Relationships —
replace foreign keys to the other table
with relationships, remove them
afterwards

No defaults — remove data with default
values, no need to store those

Clean up data — duplicate data in
denormalized tables might have to be
pulled out into separate nodes to get a
cleaner model

Index Columns to Array — indexed
column names (like email1, email2,
email3) might indicate an array property

Join tables to Relationships — join
tables are transformed into relationships,
columns on those tables become

relationship properties
30

https://neo4j.com/developer/relational-to-graph-modeling

From relational to graph (Neo4j)
Example

https://neo4j.com/developer/relational-to-graph-modeling

Department
deptID

| deptName
"] parentDeptID (FK)
leadPersonID (FK)

‘Departmen

OWNED_BY

[deptiD: 00001
"\ deptName: Dept1

Project_Member Dept_Member
projectID (FK) deptID (FK)
personlD (FK) personID (FK)
role

DEDICATED_TO

role: member1

CONTAINS

Dept_Member

Organization
personlD (FK) orglD
orglD (FK) r taxID
orgName

Relational (ER)

Graph (Neo4j)

31

https://neo4j.com/developer/relational-to-graph-modeling

From relational to graph (Neo4))
Example Query

https://neo4j.com/developer/graph-db-vs-rdbms

* Retrieve the employees in the “IT Department”

SQL Cypher
SELECT firstName, lastName FROM Person MATCH (p:Person)<-[:WORKS_FOR]-(d:Department)
LEFT JOIN Dept_Member WHERE d.name ="IT Department"

ON Person.personld = Dept_Member.personid RETURN p.firstName,p.lastName

LEFT JOIN Department

ON Department.deptld = Dept_Member.deptld
WHERE Department.deptName = "IT Department”

32

https://neo4j.com/developer/graph-db-vs-rdbms

From relational to graph (Neo4))
A More Extreme Query Example

https://neo4j.com/blog/sql-vs-cypher-query-languages

Cypher

MATCH (u:Customer {customer id:’customer-one’})-
[:BOUGHT] -> (p:Product)<- [:BOUGHT]- (peer:Customer) -
[:BOUGHT] -> (reco: Product)

WHERE not (u)-[:BOUGHT]->(reco)
RETURN reco as Recommendation, count(*) as Frequency

ORDER BY Frequency DESC LIMIT 5;

SQL

SELECT product.product name as Recommendation, count(l) as Frequency
FROM product, customer product mapping, (SELECT cpm3.product id,
cpm3.customer id
FROM Customer product mapping cpm, Customer product mapping cpm2,
Customer product mapping cpm3
WHERE cpm.customer id = ‘customer-one’
and cpm.product _id = cpm2.product_id
and cpm2.customer_id != ‘customer-one’
and cpm3.customer id = cpm2.customer id
and cpm3.product_id not in (select distinct product_id
FROM Customer product mapping cpm
WHERE cpm.customer id = ‘customer-one’)
) recommended products
WHERE customer product mapping.product id = product.product id
and customer product mapping.product id in recommended products.product_ id
and customer product mapping.customer id = recommended products.customer id
GROUP BY product.product name
ORDER BY Frequency desc

33

https://neo4j.com/blog/sql-vs-cypher-query-languages

Graph Algorithms

« Used to compute metrics for graphs, nodes, or
relationships

* Provide insights on relevant entities in the graph
(centralities, ranking), or inherent structures like
communities (community-detection, graph-partitioning,
clustering)

« Many of the approaches have high algorithmic
complexity

— lterative approaches that frequently traverse the graph for the
computation using random walks, breadth-first or depth-first
searches, or pattern matching

— Optimized algorithms utilize certain structures of the graph, recall

already explored parts, and parallelize operations o

Neo4] graph algorithms

https://neo4|.com/docs/graph-data-science/current/algorithms

« Centralities: determine the importance of distinct nodes
In @ network (PageRank, Betweenness Centrality, Closeness Centrality)

« Community detection: evaluate how a group is
clustered or partitioned, as well as its tendency to

strengthen or break apart (Louvain, Label Propagation, Connected

Components, Connected Components, Triangle Count / Clustering
Coefficient)

« Path finding: find the shortest path or evaluate the

availability and quality of routes (Minimum Weight Spanning
Tree, All Pairs- and Single Source - Shortest Path, A* Algorithm, Yen's K-
Shortest Paths, Random Walk)

35

https://neo4j.com/docs/graph-data-science/current/algorithms

Example: PageRank

« Measures the transitive influence or connectivity of nodes

page score

"Home" 3.236201617214829
"Product” 1.0611098274122923
"Links" 1.0611098274122923
"About” 1.0611098274122923
"Site A” 0.32922589540248737
"Site B" 0.32922589540248737

"Site C" 0.32922589540248737
"Site D" 0.32922589540248737

CALL algo.pageRank.stream('Page’', 'LINKS', {iterations:20, dampingFactor:0.85})
YIELD nodeld, score

MATCH (node) WHERE id(node) = nodeld

RETURN node.name AS page,score
ORDER BY score DESC

Example: Louvain

« Used for detecting communities in networks

« Evaluates how much more densely connected the nodes
within a community are, compared to how connected
they would be in a random network

user community
Al 0
A)
Sy o n
% & o a
;1 6\4/0 QQN\ % Brid get U
- o "Michael 0
o FRIEND
3 K, "Charles'
?R.&ND Q,fg‘..l o Charles 1
"Doug” 1

"Mark’ 1

CALL algo.louvain.stream('User', 'FRIEND', {})
YIELD nodeIld, community

MATCH (user:User) WHERE id(user) = nodeld

RETURN user.id AS user, community
ORDER BY community; 37

Example: Shortest Path

Calculates the shortest (weighted) path between
a pair of nodes (Dijkstra’s algorithm is the most

\A/EBII knO\Nn) MATCH (start:Loc{name:'A'}), (end:Loc{name:'F'})

CALL algo.shortestPath.stream(start, end, 'cost')

YIELD nodeld, cost
MATCH (other:Loc) WHERE id(other) = nodeld

ROAD
RETURN other.name AS name, cost
g 0 -
7T name cost
ROAD "A 0.0
"B")
i B g)
£)
0 8 o
v 00 5 e

ROAD

38

<id>:6 cost: 30

Replication in Neo4j

https://neodj.com/docs/operations-manual/current/clustering/

» Causal Clustering architecture
— Cores Replicas

— Read Replicas

Read Replica
Reporting and
Analysis

Read
Replica

Read
Replica

Replica Servers
Query, View

Read
Replica

Read-
Write

Read
Replica

Read
Replica

Read
Replica Read
Replica

Read

Core Servers Replica fond
Synced Cluster Replica

Read-
Write

Read
Replica

Read-

Write
Read

Replica

Read
Replica

Read Replica
Reporting and
Analysis

Safety. Core Replicas provide a
fault tolerant platform for
transaction processing

Scale: Read Replicas provide a
scalable platform for graph
queries

Causal consistency: when
invoked, a client application is
guaranteed to read at least its
own writes.

39

https://neo4j.com/docs/operations-manual/current/clustering/

Sharding in Neo4j

https://neodj.com/docs/operations-manual/current/fabric/

The more data is connected, the more complicated it is to shard

Neo4j Fabric: allows users to split a larger graph down into
individual, smaller graphs and store them in separate databases

The fabric database is a virtual database

Europe /, P g

(\—' : { America /

C
™
|
\

- South
- America

\ Australia /

o @
@ 40

https://neo4j.com/docs/operations-manual/current/fabric/

Neo4| references

Neodj: hitps://neod|.com

Neo4j Cypher Refcard: hiips://neo4j.com/docs/cypher-
refcard/current

Neo4j documentation: https://neo4j.com/docs
— Getting started: htips://neod|.com/docs/getting-started/current
— Cypher Manual: hitps://neo4j.com/docs/cypher-manual/current

— RDBMS to Graph: https://neo4|.com/developer/get-
started/graph-db-vs-rdbms

— Graph Data Science (incl graph algorithms):
https://neo4j.com/docs/graph-data-science

41

https://neo4j.com/
https://neo4j.com/docs/cypher-refcard/current/
https://neo4j.com/docs/
https://neo4j.com/docs/getting-started/current
https://neo4j.com/docs/cypher-manual/current
https://neo4j.com/developer/get-started/graph-db-vs-rdbms
https://neo4j.com/docs/graph-data-science/

Polyglot persistence

Polyglot persistence: a variety of different database systems for different kinds of
data

Speculative Retailers Web Application

Recommendations

n Financial Data Shopping Cart
Product Catalog Reporting Analytics User activity logs

Picture taken from https://martinfowler.com/bliki/PolyglotPersistence.html
Complexity cost

— Each data storage mechanism introduces a new interface to be learned for each
new data storage mechanism

— Storage is usually a performance bottleneck

— Multiple data silos

— More complicated deployment, more frequent upgrades

— Data consistency and duplication issues 42

Multi-model databases

A database that consists of different data storage mechanisms (e.g.
relational, document, key/value, graph database):

— All in one database engine
— With a unifying query language and API
— That cover all data models and even allow for mixing them in a

single query

Next evolution of NoSQL technologies

Multi-model vs Multi-modal

— Multi-model: relational, key-value, document, graph, tree, etc.
— Multi-modal: video, audio, image, text, etc.

43

Examples

ArangoDB — document (JSON), graph, key-value
Cosmos DB — document, table, key-value, JSON, SQL
CouchBase — relational (SQL), document

CrateDB - relational (SQL), document (Lucene)

MarkLogic — document (XML and JSON), graph (RDF
with OWL/RDFS), text, geospatial, binary, SQL

OrientDB — document (JSON), graph, key-value, text,
geospatial, binary, reactive, SQL

Datastax — key-value, tabular, graph

44

Hot topics in multi-model
databases

Benchmarking

Extensions of existing query languages
Cross-model schema languages and evolution
Query processing

— Cross-model complex joins

— New index structures

Model mapping

Cross-model transaction and consistency

45

