Graph Neural Networks for Data Management

IN3020/4020 Database Systems

Egor V. Kostylev

April 30, 2021

University of Oslo

A fully connected neural network ${\cal N}$

A fully connected neural network $\ensuremath{\mathcal{N}}$

• Weight $w_{n' \rightarrow n}$ between two consecutive neurons

A fully connected neural network ${\cal N}$

- Weight $w_{n' \rightarrow n}$ between two consecutive neurons
- Compute left to right $\lambda(n) := f(\sum w_{n' \to n} \times \lambda(n'))$

A fully connected neural network $\ensuremath{\mathcal{N}}$

- Weight $w_{n' \rightarrow n}$ between two consecutive neurons
- Compute left to right $\lambda(n) := f(\sum w_{n' \to n} \times \lambda(n'))$
- Goal: find the weights that "solve" your problem (classification, clustering, regression, etc.)

- Goal: find the weights that "solve" your problem
- $\rightarrow \mbox{ minimize } {\rm Dist}(\mathcal{N}(\overline{x}),g(\overline{x})),$ where g is what you want to learn

- Goal: find the weights that "solve" your problem
- $\rightarrow \mbox{ minimize } {\rm Dist}(\mathcal{N}(\overline{x}),g(\overline{x})),$ where g is what you want to learn
- $\rightarrow\,$ use backpropagation algorithms

- Goal: find the weights that "solve" your problem
- $\rightarrow \mbox{ minimize } {\rm Dist}(\mathcal{N}(\overline{x}),g(\overline{x})),$ where g is what you want to learn
- $\rightarrow\,$ use backpropagation algorithms
 - **Problem**: for fully connected NNs, when a layer has many neurons there are a lot of weights...

- Goal: find the weights that "solve" your problem
- $\rightarrow \mbox{ minimize } {\rm Dist}(\mathcal{N}(\overline{x}),g(\overline{x})),$ where g is what you want to learn
- \rightarrow use backpropagation algorithms
 - **Problem**: for fully connected NNs, when a layer has many neurons there are a lot of weights...
- $\rightarrow\,$ example: input is a 250 $\times\,$ 250 pixels image, and we want to build a fully connected NN with 500 neurons per layer
- $\rightarrow\,$ between the first two layers we have $250\times250\times500=31,250,000 \text{ weights}$

A convolutional neural network

- Idea: use the structure of the data (here, a grid)
- \rightarrow fewer weights to learn (e.g, 500 * 9 = 4,500 for the first layer)

A convolutional neural network

- Idea: use the structure of the data (here, a grid)
- \rightarrow fewer weights to learn (e.g, 500 * 9 = 4,500 for the first layer)
- $\rightarrow\,$ other advantage: recognize patterns that are local

- Idea: use the structure of the data
- $\rightarrow\,$ GNNs generalize this idea to allow any graph as input

- Idea: use the structure of the data
- $\rightarrow\,$ GNNs generalize this idea to allow any graph as input

- Idea: use the structure of the data
- $\rightarrow\,$ GNNs generalize this idea to allow any graph as input

- Idea: use the structure of the data
- $\rightarrow\,$ GNNs generalize this idea to allow any graph as input

- Idea: use the structure of the data
- $\rightarrow\,$ GNNs generalize this idea to allow any graph as input

- Idea: use the structure of the data
- $\rightarrow\,$ GNNs generalize this idea to allow any graph as input

• Simple, undirected, node-labeled graph $G = (V, E, \lambda)$, where $\lambda : V \to \mathbb{R}^d$

- Simple, undirected, node-labeled graph $G = (V, E, \lambda)$, where $\lambda : V \to \mathbb{R}^d$
- Run of a GNN with L layers on G: iteratively compute x⁽ⁱ⁾_u ∈ ℝ^d for 0 ≤ i ≤ L as

- Simple, undirected, node-labeled graph $G = (V, E, \lambda)$, where $\lambda : V \to \mathbb{R}^d$
- Run of a GNN with L layers on G: iteratively compute x⁽ⁱ⁾_u ∈ ℝ^d for 0 ≤ i ≤ L as

 $\rightarrow \mathbf{x}_{u}^{(0)} \coloneqq \lambda(u)$

- Simple, undirected, node-labeled graph G = (V, E, λ), where λ : V → ℝ^d
- Run of a GNN with *L* layers on *G*: iteratively compute $\mathbf{x}_{u}^{(i)} \in \mathbb{R}^{d}$ for $0 \le i \le L$ as

- where A_i and B_i are trainable matrices and c_i are such vectors
- ReLU is non-linearity function

- Simple, undirected, node-labeled graph G = (V, E, λ), where λ : V → ℝ^d
- Run of a GNN with L layers on G: iteratively compute x⁽ⁱ⁾_u ∈ ℝ^d for 0 ≤ i ≤ L as → x⁽⁰⁾_u := λ(u)

$$\rightarrow \mathbf{x}_{u}^{(i+1)} \coloneqq \frac{\mathsf{ReLU}(\mathsf{A}_{i}\mathbf{x}_{u}^{(i)} + \mathsf{B}_{i}\sum_{v\in\mathcal{N}_{G}(u)}\mathbf{x}_{v}^{(i)} + \mathbf{c}_{i})}{\mathsf{ReLU}(\mathsf{A}_{i}\mathbf{x}_{u}^{(i)} + \mathsf{B}_{i}\sum_{v\in\mathcal{N}_{G}(u)}\mathbf{x}_{v}^{(i)} + \mathbf{c}_{i})}$$

- where A_i and B_i are trainable matrices and c_i are such vectors
- ReLU is non-linearity function
- Generalisation to ordered graphs with different types of edges is straightforward
- Knowledge graphs (RDF, Neo4j)?

Question: Can we make use of GNNs in data management?

One problem: Supervised learning queries from examples

- Input:
 - set of positive examples (G, v) (graph-node pairs)
 - set of negative examples (G, v) (graph-node pairs)
- Question:
 - give me a simple query (SPARQL, Cypher) that mostly give these answers

- Input:
 - set of positive examples (G, v) (graph-node pairs)
 - set of negative examples (G, v) (graph-node pairs)
- Question:
 - give me a simple query (SPARQL, Cypher) that mostly give these answers
- Mostly, because input may be noisy
- Query (not a NN or other algorithm), because we want efficient evaluation on big graphs
- Simple, because we need something understandable (explainable!)

- high complexity
- unclear what to do with noise

- high complexity
- unclear what to do with noise
- Standard feed-forward NNs?

- high complexity
- unclear what to do with noise
- Standard feed-forward NNs?
 - assume input of fixed size, but KGs may be arbitrarily big
 - unclear how to extract a query from a trained NN

- Logic-based methods? (Symbolic AI)
 - high complexity
 - unclear what to do with noise
- Standard feed-forward NNs?
 - assume input of fixed size, but KGs may be arbitrarily big
 - unclear how to extract a query from a trained NN
- RNNs? (Recurrent NNs, used a lot for NLP)

- Logic-based methods? (Symbolic AI)
 - high complexity
 - unclear what to do with noise
- Standard feed-forward NNs?
 - assume input of fixed size, but KGs may be arbitrarily big
 - unclear how to extract a query from a trained NN
- RNNs? (Recurrent NNs, used a lot for NLP)
 - may be applied to some encodings of KGs as strings, but will depend of the exact encoding
 - "destroy" the structure
 - unclear how to extract a query from a trained RNN

- Logic-based methods? (Symbolic AI)
 - high complexity
 - unclear what to do with noise
- Standard feed-forward NNs?
 - assume input of fixed size, but KGs may be arbitrarily big
 - unclear how to extract a query from a trained NN
- RNNs? (Recurrent NNs, used a lot for NLP)
 - may be applied to some encodings of KGs as strings, but will depend of the exact encoding
 - "destroy" the structure
 - unclear how to extract a query from a trained RNN

GNNs for query learning

• GNNs have potential to overcome these problems:

- can process inputs of various size
- work directly on graph structures
- noise-tolerant

GNNs for query learning

• GNNs have potential to overcome these problems:

- can process inputs of various size
- work directly on graph structures
- noise-tolerant
- Question: How to translate a (trained) GNN to a (SPARQL) query?
 - much less hopeless than for usual NNs
 - GNNs "keep" a lot of structure
 - some GNN architectures may be easier to translate than others

GNNs for data and knowledge management

- There are two paradigms for data and knowledge management
 - Symbolic (logic-based) methods (SQL, SPARQL, OWL)
 - Syb-Symbolic (statistic-based) methods (NNs)
- Both have strengths and weaknesses
- A major challenge is to deeply integrate these paradigms

GNNs for data and knowledge management

- There are two paradigms for data and knowledge management
 - Symbolic (logic-based) methods (SQL, SPARQL, OWL)
 - Syb-Symbolic (statistic-based) methods (NNs)
- Both have strengths and weaknesses
- A major challenge is to deeply integrate these paradigms
- I believe that GNNs can be a bridge between these paradigms
 - work on structured data of varying size
 - have a neural capabilities

GNNs for data and knowledge management

- There are two paradigms for data and knowledge management
 - Symbolic (logic-based) methods (SQL, SPARQL, OWL)
 - Syb-Symbolic (statistic-based) methods (NNs)
- Both have strengths and weaknesses
- A major challenge is to deeply integrate these paradigms
- I believe that GNNs can be a bridge between these paradigms
 - work on structured data of varying size
 - have a neural capabilities
- Can be potentially used to solve many problems as above:
 - incorporating logical knowledge into network-based models
 - knowledge graph completion
 - query answering over incomplete knowledge graphs
 - ontology learning
 - etc.