
Graph Neural Networks for
Data Management

IN3020/4020 Database Systems
Egor V. Kostylev

April 30, 2021

University of Oslo

Fully Connected Feed-Forward Neural Networks (NNs)

x0

x1

x2

x3

y0

y1

y2

y3

y4

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

A fully connected neural network N

• Weight wn′→n between two consecutive neurons
• Compute left to right λ(n) := f (

∑
wn′→n × λ(n′))

• Goal: find the weights that “solve” your problem
(classification, clustering, regression, etc.)

1

Fully Connected Feed-Forward Neural Networks (NNs)

x0

x1

x2

x3

y0

y1

y2

y3

y4

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

A fully connected neural network N

• Weight wn′→n between two consecutive neurons

• Compute left to right λ(n) := f (
∑

wn′→n × λ(n′))
• Goal: find the weights that “solve” your problem

(classification, clustering, regression, etc.)

1

Fully Connected Feed-Forward Neural Networks (NNs)

x0

x1

x2

x3

y0

y1

y2

y3

y4

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

A fully connected neural network N

• Weight wn′→n between two consecutive neurons
• Compute left to right λ(n) := f (

∑
wn′→n × λ(n′))

• Goal: find the weights that “solve” your problem
(classification, clustering, regression, etc.)

1

Fully Connected Feed-Forward Neural Networks (NNs)

x0

x1

x2

x3

y0

y1

y2

y3

y4

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

. . .

input vector x
output vector
y = N (x)L layers of neurons

A fully connected neural network N

• Weight wn′→n between two consecutive neurons
• Compute left to right λ(n) := f (

∑
wn′→n × λ(n′))

• Goal: find the weights that “solve” your problem
(classification, clustering, regression, etc.) 1

Finding the weights

• Goal: find the weights that “solve” your problem

→ minimize Dist(N (x), g(x)), where g is what you want to learn

→ use backpropagation algorithms

• Problem: for fully connected NNs, when a layer has many
neurons there are a lot of weights. . .

→ example: input is a 250× 250 pixels image, and we want to
build a fully connected NN with 500 neurons per layer

→ between the first two layers we have
250× 250× 500 = 31, 250, 000 weights

2

Finding the weights

• Goal: find the weights that “solve” your problem

→ minimize Dist(N (x), g(x)), where g is what you want to learn

→ use backpropagation algorithms

• Problem: for fully connected NNs, when a layer has many
neurons there are a lot of weights. . .

→ example: input is a 250× 250 pixels image, and we want to
build a fully connected NN with 500 neurons per layer

→ between the first two layers we have
250× 250× 500 = 31, 250, 000 weights

2

Finding the weights

• Goal: find the weights that “solve” your problem

→ minimize Dist(N (x), g(x)), where g is what you want to learn

→ use backpropagation algorithms

• Problem: for fully connected NNs, when a layer has many
neurons there are a lot of weights. . .

→ example: input is a 250× 250 pixels image, and we want to
build a fully connected NN with 500 neurons per layer

→ between the first two layers we have
250× 250× 500 = 31, 250, 000 weights

2

Finding the weights

• Goal: find the weights that “solve” your problem

→ minimize Dist(N (x), g(x)), where g is what you want to learn

→ use backpropagation algorithms

• Problem: for fully connected NNs, when a layer has many
neurons there are a lot of weights. . .

→ example: input is a 250× 250 pixels image, and we want to
build a fully connected NN with 500 neurons per layer

→ between the first two layers we have
250× 250× 500 = 31, 250, 000 weights

2

Convolutional Neural Networks

.

input vector
(an image)

A convolutional neural network

• Idea: use the structure of the data (here, a grid)

→ fewer weights to learn (e.g, 500 ∗ 9 = 4, 500 for the first layer)
→ other advantage: recognize patterns that are local

3

Convolutional Neural Networks

.

input vector
(an image)

A convolutional neural network

• Idea: use the structure of the data (here, a grid)

→ fewer weights to learn (e.g, 500 ∗ 9 = 4, 500 for the first layer)
→ other advantage: recognize patterns that are local

3

Convolutional Neural Networks

.

input vector
(an image)

A convolutional neural network

• Idea: use the structure of the data (here, a grid)

→ fewer weights to learn (e.g, 500 ∗ 9 = 4, 500 for the first layer)
→ other advantage: recognize patterns that are local

3

Convolutional Neural Networks

.

input vector
(an image)

A convolutional neural network

• Idea: use the structure of the data (here, a grid)

→ fewer weights to learn (e.g, 500 ∗ 9 = 4, 500 for the first layer)
→ other advantage: recognize patterns that are local

3

Convolutional Neural Networks

.

input vector
(an image)

A convolutional neural network

• Idea: use the structure of the data (here, a grid)

→ fewer weights to learn (e.g, 500 ∗ 9 = 4, 500 for the first layer)
→ other advantage: recognize patterns that are local

3

Convolutional Neural Networks

.

input vector
(an image)

A convolutional neural network

• Idea: use the structure of the data (here, a grid)
→ fewer weights to learn (e.g, 500 ∗ 9 = 4, 500 for the first layer)

→ other advantage: recognize patterns that are local

3

Convolutional Neural Networks

.

input vector
(an image)

A convolutional neural network

• Idea: use the structure of the data (here, a grid)
→ fewer weights to learn (e.g, 500 ∗ 9 = 4, 500 for the first layer)
→ other advantage: recognize patterns that are local

3

Graph Neural Networks (GNNs)

.

input vector
(a molecule)

output:
is it poisonous? (e.g., [?])

A (convolutional) graph neural network

• Idea: use the structure of the data
→ GNNs generalize this idea to allow any graph as input

4

Graph Neural Networks (GNNs)

.

input vector
(a molecule)

output:
is it poisonous? (e.g., [?])

A (convolutional) graph neural network

• Idea: use the structure of the data
→ GNNs generalize this idea to allow any graph as input

4

Graph Neural Networks (GNNs)

.

input vector
(a molecule)

output:
is it poisonous? (e.g., [?])

A (convolutional) graph neural network

• Idea: use the structure of the data
→ GNNs generalize this idea to allow any graph as input

4

Graph Neural Networks (GNNs)

.

input vector
(a molecule)

output:
is it poisonous? (e.g., [?])

A (convolutional) graph neural network

• Idea: use the structure of the data
→ GNNs generalize this idea to allow any graph as input

4

Graph Neural Networks (GNNs)

.

input vector
(a molecule)

output:
is it poisonous? (e.g., [?])

A (convolutional) graph neural network

• Idea: use the structure of the data
→ GNNs generalize this idea to allow any graph as input

4

Graph Neural Networks (GNNs)

.

input vector
(a molecule)

output:
is it poisonous? (e.g., [?])

A (convolutional) graph neural network

• Idea: use the structure of the data
→ GNNs generalize this idea to allow any graph as input

4

Basic GNNs Formalisation

• Simple, undirected, node-labeled graph G = (V ,E , λ),
where λ : V → Rd

• Run of a GNN with L layers on G :
iteratively compute x (i)

u ∈ Rd for 0 ≤ i ≤ L as

→ x (0)
u := λ(u)

→ x (i+1)
u := ReLU(Aix

(i)
u + Bi

∑
v∈NG (u)

x (i)
v + ci)

• where Ai and Bi are trainable matrices and ci are such vectors

• ReLU is non-linearity function

• Generalisation to ordered graphs with different types of edges
is straightforward

• Knowledge graphs (RDF, Neo4j)?

5

Basic GNNs Formalisation

• Simple, undirected, node-labeled graph G = (V ,E , λ),
where λ : V → Rd

• Run of a GNN with L layers on G :
iteratively compute x (i)

u ∈ Rd for 0 ≤ i ≤ L as

→ x (0)
u := λ(u)

→ x (i+1)
u := ReLU(Aix

(i)
u + Bi

∑
v∈NG (u)

x (i)
v + ci)

• where Ai and Bi are trainable matrices and ci are such vectors

• ReLU is non-linearity function

• Generalisation to ordered graphs with different types of edges
is straightforward

• Knowledge graphs (RDF, Neo4j)?

5

Basic GNNs Formalisation

• Simple, undirected, node-labeled graph G = (V ,E , λ),
where λ : V → Rd

• Run of a GNN with L layers on G :
iteratively compute x (i)

u ∈ Rd for 0 ≤ i ≤ L as

→ x (0)
u := λ(u)

→ x (i+1)
u := ReLU(Aix

(i)
u + Bi

∑
v∈NG (u)

x (i)
v + ci)

• where Ai and Bi are trainable matrices and ci are such vectors

• ReLU is non-linearity function

• Generalisation to ordered graphs with different types of edges
is straightforward

• Knowledge graphs (RDF, Neo4j)?

5

Basic GNNs Formalisation

• Simple, undirected, node-labeled graph G = (V ,E , λ),
where λ : V → Rd

• Run of a GNN with L layers on G :
iteratively compute x (i)

u ∈ Rd for 0 ≤ i ≤ L as

→ x (0)
u := λ(u)

→ x (i+1)
u := ReLU(Aix

(i)
u + Bi

∑
v∈NG (u)

x (i)
v + ci)

• where Ai and Bi are trainable matrices and ci are such vectors

• ReLU is non-linearity function

• Generalisation to ordered graphs with different types of edges
is straightforward

• Knowledge graphs (RDF, Neo4j)?

5

Basic GNNs Formalisation

• Simple, undirected, node-labeled graph G = (V ,E , λ),
where λ : V → Rd

• Run of a GNN with L layers on G :
iteratively compute x (i)

u ∈ Rd for 0 ≤ i ≤ L as

→ x (0)
u := λ(u)

→ x (i+1)
u := ReLU(Aix

(i)
u + Bi

∑
v∈NG (u)

x (i)
v + ci)

• where Ai and Bi are trainable matrices and ci are such vectors

• ReLU is non-linearity function

• Generalisation to ordered graphs with different types of edges
is straightforward

• Knowledge graphs (RDF, Neo4j)?

5

Question:
Can we make use of GNNs in
data management?

One problem: Supervised learning queries from examples

• Input:
• set of positive examples (G , v) (graph-node pairs)
• set of negative examples (G , v) (graph-node pairs)

• Question:
• give me a simple query (SPARQL, Cypher) that mostly give

these answers

• Mostly, because input may be noisy

• Query (not a NN or other algorithm), because we want
efficient evaluation on big graphs

• Simple, because we need something understandable
(explainable!)

6

One problem: Supervised learning queries from examples

• Input:
• set of positive examples (G , v) (graph-node pairs)
• set of negative examples (G , v) (graph-node pairs)

• Question:
• give me a simple query (SPARQL, Cypher) that mostly give

these answers

• Mostly, because input may be noisy

• Query (not a NN or other algorithm), because we want
efficient evaluation on big graphs

• Simple, because we need something understandable
(explainable!)

6

What can we use for query learning?

• Logic-based methods? (Symbolic AI)

• high complexity
• unclear what to do with noise

• Standard feed-forward NNs?
• assume input of fixed size, but KGs may be arbitrarily big
• unclear how to extract a query from a trained NN

• RNNs? (Recurrent NNs, used a lot for NLP)
• may be applied to some encodings of KGs as strings, but will

depend of the exact encoding
• "destroy" the structure
• unclear how to extract a query from a trained RNN

7

What can we use for query learning?

• Logic-based methods? (Symbolic AI)
• high complexity
• unclear what to do with noise

• Standard feed-forward NNs?
• assume input of fixed size, but KGs may be arbitrarily big
• unclear how to extract a query from a trained NN

• RNNs? (Recurrent NNs, used a lot for NLP)
• may be applied to some encodings of KGs as strings, but will

depend of the exact encoding
• "destroy" the structure
• unclear how to extract a query from a trained RNN

7

What can we use for query learning?

• Logic-based methods? (Symbolic AI)
• high complexity
• unclear what to do with noise

• Standard feed-forward NNs?

• assume input of fixed size, but KGs may be arbitrarily big
• unclear how to extract a query from a trained NN

• RNNs? (Recurrent NNs, used a lot for NLP)
• may be applied to some encodings of KGs as strings, but will

depend of the exact encoding
• "destroy" the structure
• unclear how to extract a query from a trained RNN

7

What can we use for query learning?

• Logic-based methods? (Symbolic AI)
• high complexity
• unclear what to do with noise

• Standard feed-forward NNs?
• assume input of fixed size, but KGs may be arbitrarily big
• unclear how to extract a query from a trained NN

• RNNs? (Recurrent NNs, used a lot for NLP)
• may be applied to some encodings of KGs as strings, but will

depend of the exact encoding
• "destroy" the structure
• unclear how to extract a query from a trained RNN

7

What can we use for query learning?

• Logic-based methods? (Symbolic AI)
• high complexity
• unclear what to do with noise

• Standard feed-forward NNs?
• assume input of fixed size, but KGs may be arbitrarily big
• unclear how to extract a query from a trained NN

• RNNs? (Recurrent NNs, used a lot for NLP)

• may be applied to some encodings of KGs as strings, but will
depend of the exact encoding

• "destroy" the structure
• unclear how to extract a query from a trained RNN

7

What can we use for query learning?

• Logic-based methods? (Symbolic AI)
• high complexity
• unclear what to do with noise

• Standard feed-forward NNs?
• assume input of fixed size, but KGs may be arbitrarily big
• unclear how to extract a query from a trained NN

• RNNs? (Recurrent NNs, used a lot for NLP)
• may be applied to some encodings of KGs as strings, but will

depend of the exact encoding
• "destroy" the structure
• unclear how to extract a query from a trained RNN

7

What can we use for query learning?

• Logic-based methods? (Symbolic AI)
• high complexity
• unclear what to do with noise

• Standard feed-forward NNs?
• assume input of fixed size, but KGs may be arbitrarily big
• unclear how to extract a query from a trained NN

• RNNs? (Recurrent NNs, used a lot for NLP)
• may be applied to some encodings of KGs as strings, but will

depend of the exact encoding
• "destroy" the structure
• unclear how to extract a query from a trained RNN

7

GNNs for query learning

• GNNs have potential to overcome these problems:
• can process inputs of various size
• work directly on graph structures
• noise-tolerant

• Question: How to translate a (trained) GNN to a (SPARQL)
query?

• much less hopeless than for usual NNs
• GNNs "keep" a lot of structure
• some GNN architectures may be easier to translate than others

8

GNNs for query learning

• GNNs have potential to overcome these problems:
• can process inputs of various size
• work directly on graph structures
• noise-tolerant

• Question: How to translate a (trained) GNN to a (SPARQL)
query?

• much less hopeless than for usual NNs
• GNNs "keep" a lot of structure
• some GNN architectures may be easier to translate than others

8

GNNs for data and knowledge management

• There are two paradigms for data and knowledge management
• Symbolic (logic-based) methods (SQL, SPARQL, OWL)
• Syb-Symbolic (statistic-based) methods (NNs)

• Both have strengths and weaknesses
• A major challenge is to deeply integrate these paradigms

• I believe that GNNs can be a bridge between these paradigms
• work on structured data of varying size
• have a neural capabilities

• Can be potentially used to solve many problems as above:
• incorporating logical knowledge into network-based models
• knowledge graph completion
• query answering over incomplete knowledge graphs
• ontology learning
• etc.

9

GNNs for data and knowledge management

• There are two paradigms for data and knowledge management
• Symbolic (logic-based) methods (SQL, SPARQL, OWL)
• Syb-Symbolic (statistic-based) methods (NNs)

• Both have strengths and weaknesses
• A major challenge is to deeply integrate these paradigms

• I believe that GNNs can be a bridge between these paradigms
• work on structured data of varying size
• have a neural capabilities

• Can be potentially used to solve many problems as above:
• incorporating logical knowledge into network-based models
• knowledge graph completion
• query answering over incomplete knowledge graphs
• ontology learning
• etc.

9

GNNs for data and knowledge management

• There are two paradigms for data and knowledge management
• Symbolic (logic-based) methods (SQL, SPARQL, OWL)
• Syb-Symbolic (statistic-based) methods (NNs)

• Both have strengths and weaknesses
• A major challenge is to deeply integrate these paradigms

• I believe that GNNs can be a bridge between these paradigms
• work on structured data of varying size
• have a neural capabilities

• Can be potentially used to solve many problems as above:
• incorporating logical knowledge into network-based models
• knowledge graph completion
• query answering over incomplete knowledge graphs
• ontology learning
• etc.

9

	Question: Can we make use of GNNs in data management?

