
IN3030/IN4330 Spring 2021 Exam
Eric Jul, May 2021

Question 1: Caching and the Speed of Light

Question 1.1: Speed of Light (1 point)
What is the exact speed of light in vacuum in m/s?

Question 1.2: Caching (9 points)
Explain, in 100 words or less, how the speed of light affects the
access time of memory.

Question 2: Variable Cyclic Barriers using
Semaphores

Question 2.1 Variable Cyclic Buffer
Replacement (10 points)
You are to achieve the effect of a cyclic barrier, but instead of using
the Java class CyclicBarrier, you must write a Java class
SemCyclicBarrier that has the functionality of CyclicBarrier.

Submit the program and a brief explanation of it.

Question 2.2 Test Case (10 points)

You are to write a Java program that demonstrates a single,
representative test case for the program that you wrote in 2.1.
Explain the test that you chose and why you think it shows that your
program from 2.1 works – at least for your chosen test case (it does

not have to be comprehensive – just show a typical case). Each
thread could, for illustration, print what it does at each step – be sure
to include an id of the thread doing the printing.

Hint: You can “schedule” when threads reach the barrier by delaying
them using, e.g., TimeUnit.SECONDS.sleep(10);

Submit the program and its output and any comments that you might
have.

Question 3: Recursive Mergesort
Mergesort is a sorting algorithm that sorts, e.g., an integer array A,
by dividing an array of integer elements to be sorted into two parts: a
first part and a second part, recursively sorting each part, and then
merging the two parts into one sorted array.

A sketch of a sequential mergesort of an integer array is given
below:

class mergesorting {

 public static void merge(int[] left_arr,int[] right_arr, int[] arr,int left_size, int right_size){

 int i=0;
 int l = 0;
 int r = 0;
 //The while loops check the conditions for merging
 while (l<left_size && r<right_size){

 if(left_arr[l]<right_arr[r]){
 arr[i++] = left_arr[l++];
 }
 else {
 arr[i++] = right_arr[r++];
 }
 }
 while (l<left_size) {
 arr[i++] = left_arr[l++];
 }
 while (r<right_size) {
 arr[i++] = right_arr[r++];
 }
 }

 public static void mergeSort(int [] arr, int len){
 if (len < 2) {return;}

 int mid = len / 2;
 int [] left_arr = new int[mid];
 int [] right_arr = new int[len-mid];

 //Dividing array into two and copying into two separate arrays
 int k = 0;

 for (int i = 0;i<len;++i) {
 if (i<mid) {
 left_arr[i] = arr[i];
 }
 else {
 right_arr[k] = arr[i];
 k = k+1;
 }
 }
 // Recursively calling the function to divide the subarrays further
 mergeSort(left_arr,mid);
 mergeSort(right_arr,len-mid);
 // Calling the merge method on each subdivision
 merge(left_arr,right_arr,arr,mid,len-mid);
 }

 public static void main(String args[]) {
 int [] array = {120,1,101,503,57,158,451};
 mergeSort(array,array.length);
 for (int i =0; i< array.length;++i) {
 System.out.print(array[i]+ " ");
 }
 }
}

Question 3.1 Parallelizing MergeSort (30
points)
How can mergesort be parallelized? Describe the design of a
solution that MUST be loyal to the algorithm, e.g., it must still be
recursive.

Hint: spend time on describing the parallelization as this is central to
the course.

Submit your description.

Question 3.2: Parallel Mergesort (30 points)
Write a Java program implementing your design of a parallel version
of mergesort from Question 3.1. Strive to have a speedup over the
sequential version. Put any added explanation that you have as
comments in the code.
Submit the program and its output.

Question 3.3: Parallel Mergesort test case (10
points)
Write a Java program testing your parallel version of mergesort.
Run the program and document your speedup.
You should sort at least 10 million integers. Generate a random
content.
Submit the test program and its output.

END OF EXAM

