
IN3030/IN4330 Spring 2020 Training Exam 
Eric Jul, May 2020 
 

Question 1.1: Java Threads Startup 
In a Java, there are two main ways to start a thread. Provide sample 
code of them both. The code must be your own. You may use code 
that you have used in the obligs as a basis. 
 

Question 1.2: Java Threads Execution on 
Multicore 
Explain why multiple threads executing on a machine with eight 
cores may be executing at different speed despite all cores running at 
the same clock frequency. 
 

Question 1.3 Java Synchronized 
Explain an alternative to using the Java keyword synchronized. 
That is an alternative way to synchronize that achieves the same 
effect. Give a short explanation of how your alternative works. 
  



Question 2: Join using Cyclic Barriers 
 

Question 2.1 Join Replacement 
You are to achieve the effect of join, but instead of using join, 
you should use a CyclicBarrier. The idea is to modify the JoinP Java 
program given below to NOT use join, but instead use a single 
CyclicBarrier. Below is a program, JoinP, and a modified version of 
the program, called CyclicBarrierJoinP-XXX, that achieves 
this, albeit there are parts missing - indicated by XXXX in the 
program. Your task is now to write a version of 
CyclicBarrierJoinPXXX where you have replaced all the XXXX 
with some Java code that makes the program work like the original 
JoinP program. You are welcome to copy the 
CyclicBarrierJoinP-XXX program and then modify it directly. 
 
Provide the resulting program. 
Here is the JoinP program: 
 
import java.util.concurrent.*;  
class JoinP { 
 
   public static void main(String[] args) { 
      int numberofthreads = 10; 
      Thread[] t = new Thread[numberofthreads]; 
 
      for (int j = 0; j < numberofthreads; j++) { 
         (t[j] = new Thread( new ExThread() )).start(); 
      } 
 
      try { 
         for (int k = 0; k < numberofthreads; k++) t[k].join(); 
      } catch (Exception e) { return; } 
 
   } 
 
   static class ExThread implements Runnable { 
 
      public void run() { 
         try { 
            TimeUnit.SECONDS.sleep(10); 
         } catch (Exception e) { return;}; 
      } 
 
   } 
 
} 
	  



Here is the CyclicBarrierJoinP-XXX  program: 
 
import java.util.concurrent.*; 
class CyclicBarrierJoinP { 
   static CyclicBarrier cb; 
      public static void done() { 
         XXXX 
      } 
   public static void main(String[] args) { 
      int numberofthreads = 10; 
      Thread[] t = new Thread[numberofthreads]; 
      cb = XXXX; 
      for (int j = 0; j < numberofthreads; j++) { 
         (t[j] = new Thread( new ExThread() )).start(); 
      } 
      // try { 
      // for (int k = 0; k < numberofthreads; k++) t[k].join(); 
      // } catch (Exception e) { return; } 
      XXXX; 
   } 
   static class ExThread implements Runnable { 
      public void run() { 
         try { 
            TimeUnit.SECONDS.sleep(10); 
         } catch (Exception e) { return;}; 
         done(); 
      } 
   } 
} 

 

Question 2.2 Test Case 
 
You are to write a Java program that demonstrates a test case for the 
program that you wrote in 2.1. Explain the test that you chose and 
why you think it shows that your program from 2.1 works – at least 
for your chosen test case (it does not have to be comprehensive – 
just show a typical case). Each thread could, for illustration, print 
what it does at each step – be sure to include an id of the thread 
doing the printing. 
 
Hint: You can “schedule” when threads reach the barrier by delaying 
them using, e.g., TimeUnit.SECONDS.sleep(10); 
 
Provide the program and its output and any comments that you 
might have. 
  



Question 3: Insertion Sort 
Insertion Sort is a sorting algorithm that sorts, e.g., an integer array 
A, by dividing an array of integer elements to be sorted into two 
parts: a sorted part and an unsorted part. Initially, the sorted part is 
merely composed of the first element in the array and the remaining 
elements of the array are the unsorted part. The algorithm sorts by 
repeatedly taking the first element of the unsorted part and then 
inserting that element into its place in the sorted part – thus making 
room for it by shifting the elements larger than or equal to the 
chosen element one position. 
 
A sequential insertionsort of an integer array is given below: 
 
 
   public static void insertsort (int a[], int left, int right) { 
      int i,k,t; 
      for (k = left+1; k <= right; k++) { 
        t = a[k]; 
        i = k; 
        while (a[i-1] > t) { 
           a[i] = a[i-1]; 
           if (--i == left) break; 
        } 
        a[i] = t; 
      } // end k 
   } // end insertsort 

 
 

Question 3.1 Parallelizing Insertion 
How can insertionsort be parallelized? Describe the design of a 
solution that MUST be loyal to the algorithm, i.e., splitting the array 
into k parts that are then merge sorted is not loyal as much of the 
speedup is gained by using merging, which is much more efficient 
than insertion sort for large arrays. 
 
Hint: spend time on describing the parallelization as this is central to 
the course. 
 

  



Question 3.2: Parallel Insertionsort 
Write a Java program implementing your design of a parallel version 
of insertionsort from Question 3.1. Strive to have a speedup 
over the sequential version. Put any added explanation that you have 
as comments in the code. 
Run the program, and document your speedup. 
Submit the program and its output. 
 

Question 4.1 The Speed of Light in Vacuum 
The speed of light in vacuum is: 
Select one alternative: 

1. Approximately 300,000 km/s 
2. Approximately 300,000 km/h 
3. Approximately 300,000 m/s 
4. Approximately 300,000,000 km/s 

 
Question 4.2 The Speed of Electricity in 
Copper 
The speed of electricity in copper cables is related to the speed of 
light in vacuum. What is the approximate speed of electricity in 
copper cables? 
Select one alternative: 

1. The same as the speed of light in vacuum 
2. Roughly 60% of the speed of light in vacuum 
3. Roughly 80% of the speed of light in vacuum 

 

Question 5.1 Caching 
Forty years ago, computers had a single CPU and a physically separate 
memory. Why was a cache subsequently introduced between the CPU 
and the memory? 
Hint: Include Moore’s law in your answer. 
 

END OF EXAM 


