
! Information
Written Exam in IN3030/IN4330
2022 Spring Semester
Duration: 4 hours
Date: June 7th, 2022

General information:
• IN4330 students are given the same questions as IN3030 students but are expected to give
better and more in-depth answers.
• Your answer should reflect your own independent work and should be a result of your own
learning and work effort.
• Concerning Answers that involve Java Programming: the prime concern is what the program
does; it is a secondary concern that the program is entirely syntactically correct, so good
pseudo-code where boring or less relevant Java details are missing is acceptable: Spend your
time on getting the algorithms right rather than the syntax.

Support material:
All written materials.

The answer must be written with an academic standard.
Skoleeksamen IN3030/IN4330
Vår 2022
Varighet: 4 timer
Dato: 7. juni 2022

General information:
• IN4330 students are given the same questions as IN3030 students but are expected to give
better and more in-depth answers.

• Your answer should reflect your own independent work and should be a result of your own
learning and work effort.

Support material:
All written materials.

The answer must be written with an academic standard.

1 1.1 The Cache-friendliness of Bubblesort
// Bubble sort in Java
import java.util.Arrays;
class Main {
 // perform the bubble sort
 static void bubbleSort(int array[]) {
 int size = array.length;

IN3030/IN4330 v22 https://uio.inspera.no/static/player?viewMedia=print&printParams=...

1 of 8 6/21/22, 10:19 PM

 // loop to access each array element
 for (int i = 0; i < size - 1; i++)

 // loop to compare array elements
 for (int j = 0; j < size - i - 1; j++)
 // compare two adjacent elements
 // change > to < to sort in descending order
 if (array[j] > array[j + 1]) {
 // swapping occurs if elements
 // are not in the intended order
 int temp = array[j];
 array[j] = array[j + 1];
 array[j + 1] = temp;
 }
 }
 public static void main(String args[]) {

 int[] data = { -2, 45, 0, 11, -9 };

 // call method using class name
 Main.bubbleSort(data);

 System.out.println("Sorted Array in Ascending Order:");
 System.out.println(Arrays.toString(data));
 }
}

Below is a Java version of Bubblesort.
You are to discuss the cache-friendliness of the bubbleSort method.

Write your discussion here

IN3030/IN4330 v22 https://uio.inspera.no/static/player?viewMedia=print&printParams=...

2 of 8 6/21/22, 10:19 PM

Words: 0

Maks poeng: 13

2 1.2 Bubblesort Improvements
Suggest improvements to Bubblesort so that it becomes more cache-friendly. Your
improvements must respect the basic principle of Bubblesort including that it works by
comparing two adjacent elements and exchanging them, if they are out of order, thereafter
moving on one element further in the array and repeating. However, the individual comparisons
might be reordered to achieve better cache performance.

Write your suggested improvements here:

Maks poeng: 15

3 1.3 Programming a Cache-Friendly Bubblesort
Pick ONE of your suggested improvements of the bubbleSort method from the previous
question, OR describe a new one. Program the improved method in Java. Include your
description of the chosen improvement in the program as comments in the Java code.
Write the improved version of the method here

1

IN3030/IN4330 v22 https://uio.inspera.no/static/player?viewMedia=print&printParams=...

3 of 8 6/21/22, 10:19 PM

Maks poeng: 15

4 2.1 Parallel BubbleSort using a new type of
Synchronization
We can define a new synchronization method, let us call it NoPass, that works as follows:
Each thread involved in the synchronization is given a unique id, which is merely a non-
negative integer assigned consecutively from zero and up, so if there are N threads involved,
the ids will be from zero to N-1. When a thread calls the method NoPass(id), the thread gives
its id, and first NoPass checks whether or not there is a thread with an id of id+1 that is blocked
and has called NoPass FEWER times than the thread with id of id. If so, it unblocks that
thread. Second, the thread checks whether or not there is any thread with a lower id that has
called NoPass a FEWER OR THE SAME number of times than the thread with id of id. If so,
the thread with id of id blocks itself.
NoPass thus ensures that no thread with a higher id ever catches up with any thread that has
a lower id.
Assume that we have a class NoPassC that implements this type of synchronization. The
class has one public method, NoPass(id), as described above.

Describe an efficient, parallel version of BubbleSort that uses the NoPass synchronization
mechanism described previously.
Note: you do not need to incorporate the cache-friendly suggestions from question 1 into your
parallel version - here, merely focus on the parallelization and making that efficient.
Describe your parallel version using NoPass here

Maks poeng: 15

5 2.2 Implementation of Parallel BubbleSort
Write the Java code for the parallel version of BubbleSort that you described in the previous

IN3030/IN4330 v22 https://uio.inspera.no/static/player?viewMedia=print&printParams=...

4 of 8 6/21/22, 10:19 PM

question. You may freely copy the presented earlier and modify it instead of starting from
scratch. Include any descriptions in comments in the code.
Write the Java code for the method here

Maks poeng: 20

6 3.1 Speed of light in vacuum
What is the speed of light in vacuum? Choose the most precise answer.
Choose ONE alternative:

300 000 m/s

299 792 458 m/s

299 458 792 m/s

299 458 792 km/s

300 000 000 km/s

300 000 km/s

1

IN3030/IN4330 v22 https://uio.inspera.no/static/player?viewMedia=print&printParams=...

5 of 8 6/21/22, 10:19 PM

Maks poeng: 2

7 4.1 IVar Synchronization Class
An IVar is a concurrency controlled object that can be written to once, but read many times. A
feature is that you can ask to read the variable before you have written to is.
The IVar have the following two methods.
put (value) stores an integer value in the internal storage.
get returns the value that is stored in the IVar.
When the IVar receives the first `put` it saves the value to an internal variable and returns
`true`. The following `put` messages will not update the variable, but return `false`.
When the IVar receives a `get` it returns the stores variable. All `get`s should be blocking, until
the IVar has received the first `put`. Thus, a process sending a `get` before another process
send a `put` should block and wait until the IVar receives the first `put` and responds to all
waiting clients.
Implement a class IVar in Java using semaphores as the only synchronization. The class must
implement the above methods and the value can be any kind of type specified when the object
is created.

Write your IVar Java Class here:

Maks poeng: 7

1

IN3030/IN4330 v22 https://uio.inspera.no/static/player?viewMedia=print&printParams=...

6 of 8 6/21/22, 10:19 PM

8 4.2 IVar Synchronization Explanation
Give a brief explanation of your class from 4.1. Argue how and why the class ensures proper
and correct concurrent access to an IVar object.

Fill in your brief explanation here

Words: 0

Maks poeng: 8

9 4.3 Test Program for IVar
Write a Java test program that demonstrates a representative testing of your implemented IVar
from question 4.1. Ensure that the output of the test explains the steps of the execution.
Explain the test that you chose and why it gives good test coverage.
Write the Java test program below. Include, as comments, your explanations.
Write your Java test program here:

1

IN3030/IN4330 v22 https://uio.inspera.no/static/player?viewMedia=print&printParams=...

7 of 8 6/21/22, 10:19 PM

Maks poeng: 5

IN3030/IN4330 v22 https://uio.inspera.no/static/player?viewMedia=print&printParams=...

8 of 8 6/21/22, 10:19 PM

