
An Introduction to
Java Microbenchmark Harness (JMH)

IN3030

Michael Kirkedal Thomsen

michakt@ifi.uio.no

Spring, Mar 8 2023

mailto:michakt@ifi.uio.no

Me!

Associate Professor, arrived in June 2021

Danish

Previously at University of Copenhagen and University of Bremen

Background in programming languages, domain specific languages, logic design

Works with

security and reliability in decentralised systems and models

security and communication in the maritime sector

energy of computations

What is Java Microbenchmark Harness (JMH)?

A framework for building, running and analysing benchmarks written in Java

Microbenchmarks are performance metrics on the lowest level.

You can compare them to unit tests, which means they invoke single methods or execute

small pieces of business logic without “more (cross-cutting) stuff” around.

JHM have many similarities to JUnit

Creating your benchmark

Easy with Maven...

mvn archetype:generate \
-DinteractiveMode=false \
-DarchetypeGroupId=org.openjdk.jmh \
-DarchetypeArtifactId=jmh-java-benchmark-archetype \
-DgroupId=com.benchmark \
-DartifactId=myBenchmark \
-Dversion=1.0

To build run mvn clean install -- You can omit the clean

To run java -jar target/benchmarks.jar

What!!!!!

Warmup: 5 iterations, 10 s each
Measurement: 5 iterations, 10 s each
Timeout: 10 min per iteration
Threads: 1 thread, will synchronize iterations
Benchmark mode: Throughput, ops/time
Benchmark: com.benchmark.MyBenchmark.testMethod

Run progress: 0.00% complete, ETA 00:08:20
Fork: 1 of 5
Warmup Iteration 1: 2508409993.172 ops/s
Warmup Iteration 2: 2446156719.550 ops/s
...

Runs 5 tests, where each test runs 5 times with 5 warmups. Waiting 10 seconds in

between...

Benchmark Setup

Add @Benchmark before your method to make it a benchmark. The alternative to JUnit

@Test .

@Fork(1) - number of runs

@Warmup(iterations = 2) - warmup iterations

@Measurement(iterations = 3) - number of measurements in each run

Why warm-up runs?

Why warm-up runs?

First runs can by erroneous.

Make sure

the program is in memory / cache,

that JIT compiler have done its optimization,

that data have been read from disk - Virtual Memory can swap it,

that data have been though memory / cache.

Blackholes

Use Blackhole class of JMH can avoid deal code elimination by JVM.

If you pass the calculated results to blackhole.consume() , it would trick the JVM.
JVM will never drop the code, thinking that consume() method uses the result.

Alternatively, your benchmarks can return the value

What!!!! -- a Result

Result "com.benchmark.MyBenchmark.testMethod":
 2449662660.070 ±(99.9%) 59785993.182 ops/s [Average]
 (min, avg, max) = (2108656264.402, 2449662660.070, 2498643339.455), stdev = 79812590.406
 CI (99.9%): [2389876666.888, 2509448653.251] (assumes normal distribution)

Run complete. Total time: 00:08:21

....

Benchmark Mode Cnt Score Error Units
MyBenchmark.testMethod thrpt 25 2449662660.070 ± 59785993.182 ops/s

2.4 GHz Quad-Core (hyper threaded) Intel Core i5.

8 GB RAM

What does this all mean?

Benchmarks are only interesting when we consider and discuss the result.

Benchmark Modes

Throughput("thrpt", "Throughput, ops/time")
It will calculate the number of times your method can be executed with in a

second

AverageTime("avgt", "Average time, time/op")
It will calculate the average time in seconds to execute the test method

SampleTime("sample", "Sampling time")
It randomly samples the time spent in the test method calls

SingleShotTime("ss", "Single shot invocation time")
It works on single invocation of the method and is useful in calculating cold

performance

All("all", "All benchmark modes")
Calculates all the above

What about mean time?

Warm-up runs help removing artificial outliers

Mean time can be a selective method.
Less scientific as we should not remove bad data...

These are deterministic programs. How about non-determinism?

We are still reporting the standard derivation.

NB!

With simple (home-made) testing mean time can be more correct. With the right setup of a

harness average time is better.

Time Measurement

Use @OutputTimeUnit annotation to set the preferred time from

java.util.concurrent.TimeUnit

@OutputTimeUnit(TimeUnit.SECONDS)

The TimeUnit enum has the following values:

NANOSECONDS
MICROSECONDS
MILLISECONDS
SECONDS
MINUTES
HOURS
DAYS

Let's test Fib

 @Benchmark
 @Fork(1)
 @Warmup(iterations = 1)
 @Measurement(iterations = 3)
 public int testfib() {
 return fib(25);
 }

 public int fib(int n) {
 if (n < 2) {
 return 0;
 }
 else {
 return fib(n-1) + fib(n-2);
 }
 }

How do we parallelise Fib?

Methods?
Spawn for each of the two recursions

What is the result?

Benchmark: com.benchmark.MyBenchmark.testMethodFib

Iteration 1: 2.482 ops/s
Iteration 2: 2.491 ops/s
Iteration 3: 2.167 ops/s

Result "com.benchmark.MyBenchmark.testMethodFib":
 2.380 ±(99.9%) 3.364 ops/s [Average]
 (min, avg, max) = (2.167, 2.380, 2.491), stdev = 0.184
 CI (99.9%): [≈ 0, 5.744] (assumes normal distribution)

Benchmark: com.benchmark.MyBenchmark.testMethodPar

Iteration 1: 5.297 ops/s
Iteration 2: 5.708 ops/s
Iteration 3: 5.706 ops/s

Result "com.benchmark.MyBenchmark.testMethodPar":
 5.570 ±(99.9%) 4.314 ops/s [Average]
 (min, avg, max) = (5.297, 5.570, 5.708), stdev = 0.236
 CI (99.9%): [1.256, 9.885] (assumes normal distribution)

Run complete. Total time: 00:01:21

Benchmark Mode Cnt Score Error Units
MyBenchmark.testMethodFib thrpt 3 2.380 ± 3.364 ops/s
MyBenchmark.testMethodPar thrpt 3 5.570 ± 4.314 ops/s

Running Matrix Mult

Benchmark Mode Cnt Score Error Units
MyBenchmark.test_ijk avgt 2 2.053 s/op
MyBenchmark.test_ikj avgt 2 0.228 s/op
MyBenchmark.test_kji avgt 2 9.866 s/op

perf

perf: it can instrument CPU performance
counters, tracepoints, kprobes, and uprobes

(dynamic tracing). It is capable of lightweight
profiling. It is also included in the Linux kernel,

under tools/perf, and is frequently updated and
enhanced.

To run with cache java -jar target/benchmarks.jar -prof perf

Resources

[1] http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-

samples/src/main/java/org/openjdk/jmh/samples

[2] https://dzone.com/articles/java-microbenchmark-harness-jmh

[3] https://perf.wiki.kernel.org/index.php/Main_Page

http://hg.openjdk.java.net/code-tools/jmh/file/tip/jmh-samples/src/main/java/org/openjdk/jmh/samples
https://dzone.com/articles/java-microbenchmark-harness-jmh
https://perf.wiki.kernel.org/index.php/Main_Page

