
Computing Huge Histograms on the GPU
Project in ‘Programming Massively Parallel Hardware’

In collaboration with:
Christian K. Larsen,
Henrik G. Jensen
Mathias Grymer

Joachim Tilsted Kristensen
April 12. 2023

What are histograms?

It is a way to visualize data frequencies.

A histogram is a density measure.

Normalized, it is a discrete probability distribution over a
continuous variable.

A way to define numeric similarity between continuous
datasets, e.g. images or more complex data.

2D Histogram

1D Histogram

The challenge with histograms

Histogram pros:

➢ Easy to compute
➢ Trivially parallelizable
➢ Built over a fully parallel loop

Histogram cons:

➢ Array indexing is unpredictable for unsorted data

So what? Don’t we have fast shared memory per block on the
GPU?

Well ..
2D histograms quickly become too large for individual blocks. And
inter-block communication is bad.

Histogram pseudocode

for(i=0; i<size(data); i++)
 idx = f(data[i])
 // Must be atomic
 hist[idx] += 1

Optimizing For Memory Performance

● As the number of bins increase the range of possible
memory addresses increase as well

● The increased random accesses to global memory
 in turn increases the probability of cache misses
(expensive)

How do we fix this?

● Partially sort indices in order to make global memory
accesses more coalesced to improve cache performance.

● Additionally, minimize the number of writes to global
memory by local histograms (working on shared
memory)

● Case : The histogram fits in shared memory (Trivial).
● Case : The histogram does not fit into shared memory.

○ Successive writes to the global histogram are not
guaranteed to fall into the same memory block

○ This means, unnecessarily evicting blocks all the
time.

○ Partially sort the input data, into segments, where
each segment consists of elements which go to the
same sub histogram which is smaller than shared
memory.

● Pros :
○ When a block is evicted from cache, it is no longer

needed.
○ Cache misses are minimized

● Cons :
○ Introduces significant amount of bookkeeping
○ Sorting is very expensive.

Eliminating random memory access

Algorithm for small histograms (the trivial case)

● The histogram fits into shared memory.
○ Shared memory is pr. block, 4096 or 8192 words
○ Each CUDA block works on a local histogram of this size

● To fully utilize the hardware, we distribute the total workload
into evenly sized chunks.

● Each CUDA block atomically commits its local histogram to the
global histogram.

An algorithm for larger histograms
● Prelude :

○ Map f onto the data input array
○ Partially sort the index array
○ Compute information about segments

● Actual algorithm :
○ Distribute the work into evenly sized chunks
○ Each thread jumps with a stride of block_size
○ At a segment split. Commit back the segment related

sub-histogram.

Finding segment offsets

● Pass through the index array.

● For each thread, iff. inds[gid-1] is in a different segment,
seg_offsets[this_segment] = gid.

Data flow on the GPU

Benchmarks (Small histograms)

● Remarkably similar characteristics
● The optimised version is a bit faster
● Slow for few bins because of synchronisation

Benchmarks (Larger histograms)

Benchmarks (Larger histograms) cont.

● Our version is better from around 300k to 400k bins
● This is not good
● Profiling of 10M elements 350k bins (nvprof)
● Radix sort is expensive
● Our kernel is much faster than the naive one
● The hardware caches efficiently
● Memory copying took 22ms

Kernel Optimised (µs) Naïve (µs)

Index and boundary calculation 537 537

Segment offsets 417 -

Radix sort 1228 -

Histogram kernel 446 1433

Total 2628 1970

Streaming

● We would like to compute histograms from data that
does not fit on GPU

● Copying is expensive

● We would like to compute histograms while copying

● CUDA streams to the rescue

● Additional pipelined steps can be added

cudaStreamCreate(stream);
cudaMemcpyAsync(..., stream);
kernel<<<blocks, blocksz, sh_mem, stream>>>(...);

Results (Nvidia Visual Profiler)

● Memory copying is sequential (non-overlapping)
● Pipelining success is limited by the amount of work in the

other stream

CPU (without any copying) 9.6s

GPU, 1 stream 4.9s

GPU, 2 streams 4.8s

Conclusion

● Is it possible to make a memory efficient histogram
computation, that is also scalable?

● It is possible to implement an algorithm for histograms,
that ensure memory efficiency as the number of bins
increase.

● The overhead of radix sort and general bookkeeping
makes the approach viable later than expected.

● Copying is still the most expensive part.

● Streaming makes it possible to have more computation
while copying the data.

Fusing segment offset into kernel

● A fusion will eliminate one passover of the sorted
histogram index array

● Segment offsets are simple to compute

● Starting segment for a block workload found easily

● Introduces thread communication and race conditions

From 1D to n-dimensional histograms

● The input data changes from floats to n-dimensional
vectors

● Indices (the result of applying f) are then n-dimensional
vectors as well

● Convert n-dimensional indices to 1D indices (linear
indexing)

● Reuse existing histogram algorithm

● Convert 1D indices to n-dimensional

