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Given a set of points P in a plane consisting of n (n >2) different points pi (i =0,1,2,…,n-1) 
with integer coordinates (i.e., no decimals), where we can assume that not all points are on 

the same line, find the Convex Hull of the set of points. The convex is a polygon consisting 

of a subset of the points in P and with lines between some of these points such that all the 

other points are on the inside of this polygon and also so that all inner angles of this polygon 

are ≤ 180. In simpler terms convex means that there is no inwards dent on the set of lines 

running around the set of points (fig1). 
 

 
Fig1: The Convex Hull of 100 arbitrary points in a plane (the same as used in the assignment). 



 
When finding such a convex hull, we start with an arbitrary point along the hull and jot down 
the following points that make up the hull counter-clockwise. In fig1, it could for instance be 
16, 55, 23, 50, 31, 60, 73, 5, 93, 95, 65, 1, 80, 78, 48, 94, 10, 99. Notice that if there are 
more points on a line (for instance, 31, 60, 73, 5, 93, and 95), all of those points should be 
included in the hull. You are in other words not allowed to go straight from point 31 to 95, 
you have to specify all the lines 31-60, 60-73, 73-5, 5-93 and 93-95. We thus require that all 
points in P that are on one of the lines of the polygon, are part of the hull. This makes the 
subset of points included in the convex hull unique. 
What point should you start with? Note that any point that has either the highest or lowest x 
or y value will always be on the hull, so any such point can be used as a starting point. For 
example points 31 or 55 in fig1. 

How do we find the Convex Hull of n points? 
We can start with two points that we can see are obviously on the convex hull: the point that 
has the lowest value for x and the point that has the highest value for x. If there are more 
points with the same values, just arbitrarily choose one of those with the lowest and one of 
those with the highest values for x (in the example, for example 16 and 5). The rest of the 
algorithm is based on simple geometry, which is reviewed below. 

Equation for a line 
Each line from a point p1 (x1, y1) to p2 (x2, y2) can be written as: 
 

ax + by + c = 0 
 

Where: a = y1 − y2, b = x2 − x1 and c = y2 ∗ x1 − y1 ∗ x2 
 
Notice that this is a straight line from p1 to p2. 
 

 
Fig2: A line from p1 (1,2) to p2 (7,4) has the line equation: 

(2 − 4)x + (7 − 1)y + (4 ∗ 1 − 2 ∗ 7) = 0; i.e. − 2x + 6y − 10 = 0 

 



The line equation means that all points on this line satisfy the equation. We can also say that 
this line splits the plane in two: the points to the left side seen from the direction of the line - 
from p1 to p2 - and the points on the right side in the direction from p1 to p2. 
 

The distance from the line to other points 
If we consider points that are not on the line p1-p2, we can see that all points, for example 
p3 (5,1) on the right side of the line gives a number <0 in the line equation ax + by + c, og all 
points to the left of the line, such as p4 (3,6) gives a number >0. 
 
The further from the line the points are, the larger negatives or positive values they will have. 
Generally speaking we can say that the distance perpendicular down from a point p (x,y) to a 
line ax + by + c is: 

 
 
 
 

 

 
Fig3: The distance from a point to a line. The line divides the plane in two; those points with negative distance (to 

the right) and those with positive distance (to the left) from the line. 
 

 
Consider two points in fig3: p3 (5,1) and p4 (3,6), we can calculate the distance from p4 to 
the line p1-p2 as: 

 
While the distance from p3 (5,1) to p1-p2 is: 

 
 
 



The Algorithm for the Convex Hull 
After making another observation, we can formulate the algorithm for the convex hull. 
Observation: The point that has the longest (largest) negative distance from a line pi-pj is 
itself a point on the convex hull (see fig4, point P and line I - A). 
 

 
Fig4: The start to finding the convex hull from max_x (I) to min_x (A). (“line-retning” 

translates to “direction of line” 
 

Convex Hull Algorithm: 
1. Draw a line between the two points we know are on the hull from max_x to min_x (I 

to A in fig4) 
2. Find the point with the largest negative distance (or 0) from the line (in fig4 it’s P). If 

multiple points have the same distance, just choose one arbitrarily. 
3. Draw a line from the two points on the line to this new point on the hull (in fig5: I-P 

and P-A) 
4. Continue recursively from the two new lines and for each of them find a new point on 

the hull with the largest non-positive distance (less than or equal to 0) 
5. Repeat step 3 and 4 until there are no more points on the outside of the lines 
6. Repeat steps 2-4 for the line min_x-max_x, and find all points on the hull under it. 

 
This process is illustrated in fig5. You can see the process of finding the points on the hull 
above the line I-A. Expect to find about 1.4 * sqrt(n) elements in the convex hull from n 
randomly chosen points on the plane, although all values from 3 to n are possible (we get n, 
if all points are on a circle or a triangle or a rectangle or any convex polygon). 
 



 
Fig5: We recursively find the point P on the hull from the line I-A (that with the largest negative distance from 

max_x-min_x), then C from P-I, R from I-C and lastly Q from I-R. 
 

 
First, you are supposed to program this recursive algorithm sequentially, and then make a 
parallel version and measure speedups for n=100, 1000, 10 000, …, 10 million. 
 

On generating n different points 
a) The data structure for your n points should be two int arrays x and y, each of them 

with length = n. 

 
In order to fill these arrays with x and y values that does not create equal points, you 
will use the pre-written class NPunkter which you will find in the Oblig5 file. 

b) For each value of n in your program, you should first create an object of the class 
NPunkter (NPunkter translates to NPoints): 

 
and then fill x[] and y[] with a call to the method in the object p: 

  
(“fyllArrayer” translates to “fillArrays) 
 
The reason why you must use this class, which you must not alter, is that all the 
deliveries for a given value of n should have the same points. Then it will be much 
easier for the correctors to correct the obligs (additionally, it is not easy to relatively 
quickly generate up to 10 million random points that you are certain are not equal, 
but that task is not a part of Oblig5). 

c) The process of generating n points should be excluded from the reported execution 
times of the algorithm. 

 



Efficiency 
a) We are not really interested in the actual distance from a point to a line, it is just used 

as a relative measure to see which point “wins”, i.e., is furthest away from the line. 
The formula for the distance d can as such be simplified by avoiding the division. 

b) It will be time-consuming if you have to run through the entire set of points P all the 
time to find the few points that are on the outside of a line. That is why you should let 
your program test on smaller and smaller sets of points 

c) Remember to be critical regarding using threads instead of recursion (think “layers”, 
like quicksort). Threads should only be used at the top of the recursive tree. 

d) Is ArrayList<Integer> fast enough to hold large sets of points, or should you use 
the class IntList with the “same” methods you need, and where the integers you are 
supposed to store resides in a simple integer-array? 

 

The Assignment 
In Oblig 5 you must: 

● Program a sequential version of the algorithm described above. 
● Parallelize the sequential implementation preferably using one of the two methods 

that will be described in the course lectures: either method 1 or 2. 
● Use the precode NPunkter17.java and Oblig5Precode.java published separately. You 

must use the drawGraph()to draw the graph. 
● It must be possible to specify the seed for the precode on the command line when 

starting the program. 
● The program should be able to print the resulting convex hull to a file using the  

writeHullPoints() in the precode for n < 10000. 
● Write a report on your findings. Report recommendations are on the course web. 
● IN4330 students must in addition: run the Java Benchmarking Harness multiple 

times, and comment on what improvements you make to your code, and what the 
harness shows as empiric evidence of improvement. 

 

Requirements 
Oblig 5 Devilry deadline: May 11th 2023 23:59:00. The delivery should consist of: 

a) The code for both the sequential and parallel solution, wrapped in a .zip file. 
b) An output of the convex hull for n = 1000. 
c) A report with both a table and a curve showing speedup as a function of n (= 100, 

1000, … 10 million) and your assessment as to why your runtimes are as low as they 
are, and why you get the speedups you get. NOTE: runtime for n = 100 milion should 
be less than 14s and n = 10 million should be less than 2s. Include specifics of the 
computer you ran your tests on (modell, clock frequency, number of cores) and the 
size of the main memory, and if possible the size of the caches and delay (run the 
program latency.exe if you are on a Windows computer) and gladly a picture created 
by TegnUt when n=100. 

 
Oblig 5 report recommendations have been published on the course page. 
 



Tips 
The following points are not requirements but describe areas where you might run into some 
trouble. 

1) The Sequential solution 
a) How to represent a point 

Use the index in x[] and y[] - the contents of those will not change during 
runtime; they are only read. 

b) Debugging 
Very few, if any, manage to get their code right on the first run. We need to 
debug the code and that might be difficult on a graphical problem like this 
one. You can for instance use TegnUt to draw your lines and use a small 
number for n while debugging (n < 200). The call to TegnUt is made as such: 
 

TegnUt tu = new TegnUt (this, koHyll); 
 
The first line is to draw the points and the convex hull that is expected to be 
added in to an IntList coHull. 
 

c) Find points on the convex hull in the correct order 
Tip: you are using two methods for the sequential solution (assuming here 
that you are using ArrayList, but this can trivially be changed by swapping it 
with a faster IntList): 
 
seqMethod() which finds min_x, max_x, and starts the recursion. If you start 
on max_x-min_x, add max_x to the list of hull points (but not min_x yet), and 
start your recursion with two calls to the recursive method: 
 
seqRec(int p2, int p2, int p3, ArrayList m, ArrayList koHyll) which receives a 
set of points m (containing all points above or below the line p1-p2) and p3 
that has already been found as the point with the largest negative or positive 
distance from p1-p2. koHyll is the set to which you should add the points from 
the convex hull in the correct order. 
 
Notice that you first “do a recursion” on the right side (line I-P in fig5) and then 
on the left side (line P-A) because we want the points to be added in a 
counter-clockwise order. 
 
You can let each call to seqRec add one point: p3 to the list of points on the 
hull, but where in your code should you do so? When do you add min_x to the 
list? 
 

 
 



d) Include all points on the hull in cases where multiple points are on the 
same line (distance = 0), such as on the right side in fig6, and in correct 
order. 
Remember that if you find that the largest negative 
distance == 0, there is no need to include p1 or p2 as 
possible new points (they have already been found). 
Say that you have found p1=35 and p2=5 and you want 
to find all the points on the line between p1 and p2 (60 
and 73) and you then have to test if a new point p3 has 
both x and y coordinates corresponding to those of p1 
and p2. Then you can find one of the points with a call to 
seqRec above the line p1-p2 (31-5). Repeat recursively 
until there no longer are any points between the new p1 
and p2. 
The other points on the line (for instance, 5-95) will be 
found recursively similarly to 60 and 73. 
 

2) The parallel solution 
a) You could consider dividing the parallel case in two 

methods. The first parallel call from the main-thread 
(between the two lines where you time the parallel 
implementation). It will then find out how far down the call 
tree we should use threads. If we have k cores on our 
computer, it might be reasonable to move down to a 
layer in the call tree where there are approximately k nodes horizontally in the 
tree. Example: if we have 8 cores, a call the top of the tree level 1, then level 
4 will have 8 nodes. Up until this level new threads will replace recursive calls, 
and from that level regular recursive calls can be used from each of the 
threads we started. 

b) The first parallel method called from and being run from the main-method 
creates two threads. The following threads are born from these two threads 
and their offspring-threads. These are started in the parallel method, which is 
called from the run()-methods. 

c) The other parallel method has the same parameters as the sequential one: 
p1, p2, p3, and the set of points to look within in addition to two more: the 
level of the tree and the set (IntList) of points on the hull that the thread has 
found. 

d) The other parallel, recursive method decides whether to keep on creating 
threads or if we are going to start using recursive calls. Prior to that, we have 
found the point that has the largest negative distance and the set of points for 
the next call and we have also declared and generated to sets; one for each 
of those to recursions that are supposed to hold the convex hull that particular 
call finds. 

e) This method strongly resembles the sequential method, and after we have 
reached the level where we seize to make new threads, we can actually just 
use the sequential recursive method. 



f) Remember that when we start threads we have to first create both of them, 
and then wait (for instance by using join()) for them. If we do not, we do not 
get paralyzation. 

 
Finding the points of the convex hull in the correct order (parallel solution) 
 
Another problem you will face is adding points in the correct order. While it is pretty clear 
when to add points to the convex hull in the sequential solution, it is not as predictable in the 
parallel solution. A way to solve this is to use: 

1. Threads started at the top of the recursion tree only traverse down to a certain level 
for all nodes of the tree (the level depends on the number of cores at our disposal).. 

2. After we can no longer start new threads, each thread moves on to the sequential 
solution (on its side of data) 

3. From each of these sequential executions we will get the points in the correct order 
(counter-clockwise) 

4. The problem then is to join these sets of points that are individually in the correct 
order. Do this: add first the points the right-hand thread has produced, then the point 
found by the node itself, and then the points from the left-hand thread. 

5. Point 4 is then executed (upon return after finding its points) upwards until we reach 
the top and is done. 


