
Oblig 1 in IN3030/IN4330 – v2024 
Find the k largest numbers in a large array  
 
January 25th, 2024 
 
One problem for web search programs such as Google, Bing and DuckDuckGo is that a search can generate millions or 
even billions of answers (if you searched for “football” in Google using Chrome today, I got 3.5 billion answers!) – more 
or less relevant to the one who requested the search. She / he will never be able to look at all the answers, but will merely 
like to look at the most relevant. 
Each page (of the many billions of hits) has a relevance score, which we can assume is an integer so that the 
the larger this number is, the more relevant the page is. The problem then is to select the most relevant answers. 
 
Let us help DuckDuckGo parallelize the solution to this problem. Suppose you have n answers and that 
the relevance score is stored in the integer array a[0..n-1]. A simple sequential solution A1 in Java is to use Javas 
built-in sort algorithm (Arrays.sort (int [] a)) to sort the entire array and then pick out the k largest numbers as a[0..k-1]. 
But this takes way too long because the sorting is typically 𝒪(n∙log n). 
 
A faster algorithm A2 is the following: 

1. We first note that the first k numbers in a[0..k-1] are, obviously, the largest of the first k numbers in a[]. We then 
insert-sort a[0..k-1] in descending order (you must trivially rewrite the normal insert-sort (given below) to sort 
in descending order – i.e., with the largest first). 

2. Then we know that the smallest number of the first k numbers in a[] is in a[k-1]. Then we compare a[k-1] in turn 
with each element in the rest of the array a[k..n-1]. If we find an element a[j] where a [j]> a [k-1], then we do the 
following: 
a. Replace a [k-1] with a[j]. 
b. Insert-sort the new element into a[0 .. k-2] in descending order (remember that the code to sorting only one 

item is easier than full insertion sorting). 
3. When step 2 is done, the k largest numbers are in [0.. k-1] and none of the other numbers has been overwritten 

or broken. 
 
Task 1 - Sequential Algorithm 
Implement the sequential algorithm A2 above. Test it for these different values of n = 1000, 10,000, …, 100 million by 
creating an array of pseudo-random numbers (java.util.random) and for each of these values, you test for two values of k 
= 20 and k = 100. Furthermore, test that you get the correct answer by sorting the same numbers Arrays.sort (int [] a) and 
compare your answers (descending order) with the corresponding k places in a[] after you have use Arrays.sort () to 
check that it is correct. 
(Note to get the same 'random' numbers in the array when the Random class if you want to redo the run several times, the 
constructor of the Random class must get a starting number that is the same as previous runs – e.g., Random r = new 
Random (7363); Then we will get the same number sequence when we say: r.nextInt (n) in the loop that gets the next 
number between 0 and n-1). The numbers n and k are included as parameters when you start your program, e.g., as: 
 
   java myprog <n> <k> 
 
Write two tables, one for k = 20, one for 100, showing the time the two different methods A1: Arrays.sort and A2: Insert 
method uses for different values of n (n = 1000, 10,000, ..., 100 million). You should also produce  two curves, one for k 
= 20 and one for k = 100 showing the results. The times reported must be the median of 7 calls on both methods as 
shown in the lecture week2. Submit your code to A2 and the table with your comments.  
 
Optionally, you are welcome to explain why A2 is faster than A1 – even to give the asymptotic behavior of A1 and A2. 

 
 
Task 2 - Parallel Algorithm 
You should parallelize A2 as best you can with the p cores you have on your machine. Use an IfI machine, if necessary 
to have at least 4 cores. Take, for example, the starting point the parallelization of the FinnMax problem. You may then 
be left with a small sequential phase after that most of the calculations are done (as in FinnMax). 
 
 



 
Submission 
Write a report with two tables, one for k = 20 and one for k = 100, showing the times that Arrays.sort (), sequential and 
parallel insertion method A2 uses for different values of n (n = 1,000, 10,000, …, 100 million). 
In addition, a graph with two curves is also preferred, one for k = 20 and one for k = 100, showing speedup as a function 
of n. The times reported here should be the median of 7 calls on both methods as shown in one of the lectures. Submit 
your code to both the sequential and parallel solution and the report. 
 
The report should include what type of CPU (name and speed in GHz and the number of cores that it has, and, if 
available, the make and model of the CPU chip) you used; as well as comments on what value of n you observe that the 
parallel code gives speedup > 1, or why it does not achieve a speedup > 1 for that value of k. Also comment on how the 
execution times change for the two choices of k. 
 
Submissions in IN3030/IN4330 are done thru Devilry. For this oblig, the requirements for IN4330 are the same as for 
IN3030. 
 
Oblig1 must be done individually and submitted no later than 
 

Wednesday February 7th 2024 at 23:59:00 (NOT 23:59:59) 
 
NOTE: you can submit multiple times – only the last submission will be considered, so we ENCOURAGE you to 
submit one or more versions early so that you are sure that you do not miss the deadline – the deadline is HARD! 
 
For IfI’s general rules including if you get sick, see here:  
 

https://www.uio.no/studier/eksamen/obligatoriske-aktiviteter/mn-ifi-obliger-retningslinjer.html 
 
Tips 
1) You might get an error message when you try to run your program for n = 100 million saying that you have too little 
memory. If so, you can start the program with an option for increased memory. To request 6 GB for the program use: 
  java myprog –Xmx6000m 100000000 <+ other parameters> 
If you do not have 64-bit Java, this does not work, max is then 1000m that you can ask for. If necessary, use a machine at 
IfI – or download 64-bit Java 8 to your machine from: 
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html 
 
 
 
Appendix: Code for insert-sort a[0.. k-1];  
 
a) Note: This sort is in ascending order – you have to rewrite it yourself and have it sorted in descending order: 
 
  /** This sorts a [v..h] in ascending order with the insertion algorithm */ 
  void insertSort (int [] a, int v, int h) { 
    int i, t; 
    for (int k = v; k < h; k++) { 
      // invariant: a [v..k] is now sorted ascending (smallest first) 
      t = a[k + 1]; 
      i = k; 
      while (i> = v && a[i]> t) { 
        a[i + 1] = a[i]; 
        i--; 
      } 
      a[i + 1] = t; 
    } // than for k 
  } // end insertSort 
 
b) Note: To insert a new item at place a[k-1] you need a simpler version of the code above because the first k -1 elements 
in a[0 .. k-2] have already been sorted into descending order.  
 

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

