
April 25th, 2024 

Oblig 5: Synchronization 
Mandatory Assignment 5 in IN3030 / IN4330 - v2024 
Eric Jul 
 
Deadline: May 2nd, 2024 23:59:00 
 
This oblig is about implementation of one synchronization primitive using another. 
 
You are to implement a variant of waitNext from last year’s exam. 
You are welcome to base your solution on the published WaitNextC.java. 
 
You are to write a program that implements a new synchronization primitive called 
waitAndSwap with the following semantics: 
When a thread makes the first call of waitAndSwap, it waits. When a second thread calls 
waitAndSwap, it does not wait. When a third thread calls waitAndSwap, it releases the first 
thread and then it waits. When a fourth thread calls waitAndSwap, it does not wait… and so 
forth, i.e., the effect is that the threads are released from waitAndSwap in the following call 
order: 2, 1, 4, 3, 6, 5, 8, 7, … 
We can say that the threads are “swapped” pair-wise. 
 
You are welcome to base your solution on the published WaitNextC.java. 
 
You are to write a test program that demonstrates that your waitAndSwap works. 
You are welcome to do this using the test output method debugPrintln and the variSpeed 
method from the WaitNextC.java program. 
 
Hand in the test program including the implementation of waitAndSwap and suitable output 
showing your synchronization method works as intended. Explain in a report that follows the 
report guidelines. 
 
NOTE: you are to use semaphores only for synchronization and you can use only the acquire 
and release methods except that you can use access methods such as availablePermits but 
only inside test output similar to the printSems method. 
 
 
IMPORTANT: there must be substantial amounts of code and a good deal of the report done 
before you can qualify for a second try. This means that if either the code or the report is 
missing, you will automatically fail with no offer of a second try. 
 


