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March 11, 2020

0.1 IN3050/IN4050 Mandatory Assignment 2: Supervised Learning
0.1.1 Rules

Before you begin the exercise, review the rules at this website:
https://www.uio.no/english/studies/examinations/compulsory-activities/mn-ifi-mandatory.html
(This is an individual assignment. You are not allowed to deliver together or copy/share
source-code/answers with others.) ### Delivering

Deadline: Wednesday, March 25, 2020, 23:59

Your submission should be delivered in Devilry. You may redeliver in Devilry before the deadline,
but include all files in the last delivery, as only the last delivery will be read. You are recommended
to upload preliminary versions hours (or days) before the final deadline.

0.1.2 What to deliver?

You are recommended to solve the exercise in a Jupyter notebook, but you might solve it in a
Python program if you prefer.

If you choose Jupyter, you should deliver the notebook. You should answer all questions and explain
what you are doing in Markdown. Still, the code should be properly commented. The notebook
should contain results of your runs. In addition, you should make a pdf of your solution. (If you
have problems making a pdf at your own machine, you can make it at the IFI linux cluster.)

If you prefer not to use notebooks, you should deliver the code, your run results, and a pdf-report
where you answer all the questions and explain your work.

Your report/notebook should contain your name and username.

Deliver one single zipped folder (.zip, .tgz or .tar.gz) which contains your complete solution.

Important: if you weren’t able to finish the assignment, use the PDF report/Markdown to elaborate
on what you’ve tried and what problems you encountered. Students who have made an effort and
attempted all parts of the assignment will get a second chance even if they fail initially. This
exercise will be graded PASS/FAIL.

0.1.3 Goals of the exercise

This exercise has three parts. The goal of the first part is to get some more experience with
supervised classification. We will use simple synthetic datasets and focus on the learning algorithms.

The goal of the second part is to consider the implementaion of the Multi-layer feed forward neural
network, often called Multi-layer perceptron (MLP).
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The third part, which is the smallest one, is dedicated to evaluation.

0.1.4 Tools

The aim of the exercises is to give you a look inside the learning algorithms. You may freely use
code from the weekly exercises and the published solutions. You should not use ML libraries like
scikit-learn or tensorflow.

You may use tools like NumPy and Pandas, which are not specific ML-tools.

0.1.5 Beware

This is a new assignment. There might occur typos or ambiguities. If anything is unclear, do not
hesitate to ask. Also, if you think some assumptions are missing, make your own and explain them!

0.1.6 Intialization

[ ]: import numpy as np
import matplotlib.pyplot as plt
import sklearn
from sklearn import datasets
import random

1 Part 1: Comparing classifiers
1.1 Datasets
We start by making a synthetic dataset of 1600 datapoints and three classes, with 800
individuals in one class and 400 in each of the two other classes. (See https://scikit-
learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html#sklearn.datasets.make_blobs
regarding how the data are generated.)

When we are doing experiments in supervised learning, and the data are not already split into
training and test sets, we should start by splitting the data. Sometimes there are natural ways to
split the data, say training on data from one year and testing on data from a later year, but if that
is not the case, we should shuffle the data randomly before splitting. (OK, that is not necessary
with this particular synthetic data set, since it is already shuffled by default by scikit, but that
will not be the case with real-world data.) We should split the data so that we keep the alignment
between X and t, which may be achieved by shuffling the indices. We split into 50% for training,
25% for validation, and 25% for final testing. The set for final testing must not be used till the and
of the assignment in part 3.

We fix the seed both for data set generation and for shuffling, so that we work on the same datasets
when we rerun the experiments.

[ ]: from sklearn.datasets import make_blobs
X, t = make_blobs(n_samples=[400,800,400], centers=[[0,0],[1,2],[2,3]],

n_features=2, random_state=2019)
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[ ]: indices = np.arange(X.shape[0])
random.seed(2020)
random.shuffle(indices)
indices[:10]

[ ]: X_train = X[indices[:800],:]
X_val = X[indices[800:1200],:]
X_test = X[indices[1200:],:]
t_train = t[indices[:800]]
t_val = t[indices[800:1200]]
t_test = t[indices[1200:]]

Next, we will make a second dataset by merging the two smaller classes in (X,t) and call the new
set (X, t2). This will be a binary set.

[ ]: t2_train = t_train == 1
t2_train = t2_train.astype('int')
t2_val = (t_val == 1).astype('int')
t2_test = (t_test == 1).astype('int')

Plot the two training sets.

[ ]: # Your solution

1.2 Binary classifiers
1.2.1 Linear regression

We see that that set (X, t2) is far from linearly separable, and we will explore how various classifiers
are able to handle this. We start with linear regression. You may use the implementation from
exercise set week07 or make your own. You should make one improvement. The implementation
week07 runs for a set number of epochs. You provide the number of epochs with a parameter to
the fit-method. However, you do not know what a reasonable number of epochs is. Add one more
argument to the fit-method diff (with defualt value e.g. 0.001). The training should stop when the
update is less than diff. The diff will save training time, but it may also be wise to not set it too
small – and not run training for too long – to avoid overfitting.

Train the classifier on (X_train, t2_train) and test for accuracy on (X_val, t2_val) for various
values of diff. Choose what you think is optimal diff. Report accuracy and save it for later.

1.2.2 Logistic regression

Do the same for logistic regression, i.e., add the diff, tune it, report accuracy, and store it for later.

1.2.3 k-nearest neighbors (kNN)

We will now compare to the k-nearest neighbors classifier. You may use the implementation from
the week05 exercise set. Beware, though, that we represented the data differently from what we
do here, using Python lists instead of numpy arrays. You therefore have to either modify the
representation of the data or the code a little.
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Train on (X_train, t2_train) and test on (X2_val, x2_val) for various values of k. Choose the
best k, report accuracy and store for later.

1.2.4 Simple perceptron

Finally, run the simple perceptron (week05) on the same set, and report and store accuracy.

1.2.5 Summary

Report the accuracies for the four classifiers in a table.

Write a couple of sentences where you comment on what you see. Are the results as you expected?

1.3 Multi-class classifiers
We now turn to the task of classifying when there are more than two classes, and the task is to
ascribe one class to each input. We will now use the set (X, t).

1.3.1 kNN

One of the classifiers can handle multiple classes without modifications: the k-nearest neighbors
classifier. Train it on (X_train, t_train), test it on (X_val, t_val) for various values of k. Choose
the one you find best and report the accuracy.

1.3.2 Logistic regression “one-vs-rest”

We saw in the lecture how a logistic regression classifier can be turned into a multi-class classifier
using the one-vs-rest approach. We train one classifier for each class and assign the class which
ascribes the highest probability.

Extend the logisitc regression classifier to a multi-class classifier. To do this, you must modify the
target values from scalars to arrays. Train the resulting classifier on (X_train, t_train), test it on
(X_val, t_val), and report the accuracy.

Discuss the results in a couple of sentences, addressing questions like

• How do the two classfiers compare?
• How do the results on the three-class classification task compare to the results on the binary

task?
• What do you think are the reasons for the differences?

1.4 Adding non-linear features
We are returning to the binary classifier and the set (X, t2). As we see, some of the classifiers are
not doing too well on the (X, t2) set. It is easy to see from the plot that this data set is not well
suited for linear classifiers. There are several possible options for trying to learn on such a set.
One is to construct new features from the original features to get better discriminants. This works
e.g. on the XOR-problem. The current classifiers use two features: x1 and x2 (and a bias term x0).
Try to add three additional features of the form x1

2, x22, x1 ∗ x2 to the original features and see
what the accuracies are now. Compare to the results for the original features in a 4x2 table.
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Explain in a couple of sentences what effect the non-linear features have on the various classifiers.
(By the way, some of the classifiers could probably achieve better results if we scaled the data, but
we postpone scaling to part 2 of the assignment.)

2 Part II
2.1 Multi-layer neural networks
We will now implement the Multi-layer feed forward network (MLP, Marsland sec. 4.2.1). We will
do it in two steps. In the first step, we will work concretely with the dataset (X, t). We will
initailize the network and run a first round of training, i.e. one pass throught the algorithm at p. 78
in Marsland.

In the second step, we will turn this code into a more general classifier. We can train and test this
on (X, t), but also on other datasets.

First of all, you should scale the X.

[ ]: # Your code

2.2 Step1: One round of training
2.2.1 Intializing

We will only use one hidden layer. The number of nodes in the hidden layer will be a hyper-
parameter provided by the user; let’s call it dim_hidden. (dim_hidden is called M by Marsland.)
Initially, we will set it to 6. This is a hyper-parameter where other values may give better results,
and the hyper-parameter could be tuned.

Another hyper-parameter set by the user is the learning rate. We set the initial value to 0.01, but
also this may need tuning.

[ ]: eta = 0.01 #Learning rate
dim_hidden = 6

We assume that the input X_train (after scaling) is a matrix of dimension P x dim_in, where P is
the number of training instances, and dim_in is the number of features in the training instances
(L in Marsland). Hence we can read dim_in off from X_train. Similarly, we can read dim_out off
from y_train. Beware that y_train must be given the form of P x dim_out at some point, cf. the
“one-vs-all” exercise above.

[ ]: dim_in = 0 # Calculate the correct value from the input data
dim_out = 0 # Calculate the correct value from the input data

We need two sets of weights: weights1 between the input and the hidden layer, and weights2,
between the hidden layer and the output. Make the weight matrices and initialize them to small
random numbers. Make sure that you take the bias terms into consideration and get the correct
dimensions.

[ ]: # Your code
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2.2.2 Forwards phase

We will run the first step in the training, and start with the forward phase. Calculate the activations
after the hidden layer and after the output layer. We will follow Marsland and use the logistic
(sigmoid) activation function in both layers. Inspect whether the results seem reasonable with
respect to format and values.

[ ]: # Your code
# hidden_activations =

[ ]: # Your code
# output_activations =

2.2.3 Backwards phase

Calculate the delta terms at the output. We assume, like Marsland, that we use sums of squared
errors. (This amounts to the same as using the mean square error).

[ ]: # Your code

Calculate the error in the hidden layer.

[ ]: # Your code

Update the weights. Check that they have changed.

2.3 Step 2: A Multi-layer neural network classifier
You want to train and test a classifier on (X, t). You could have put some parts of the code in
the last step into a loop and run it through some iterations. But instead of copying code for every
network we want to train, we will build a general Multi-layer neural network classfier as a class.
This class will have some of the same structure as the classifiers we made for linear and logistic
regression. The task consists mainly in copying in parts from what you did in step 1 into the
template below. Remember to add the self - prefix where needed, and be careful in your use of
variable names.

[ ]: class MNNClassifier():
"""A multi-layer neural network with one hidden layer"""

def __init__(self,eta = 0.001, dim_hidden = 6):
"""Intialize the hyperparameters"""
self.eta = eta
self.dim_hidden = dim_hidden

# Should you put additional code here?

def fit(self, X_train, t_train, epochs = 100):
"""Intialize the weights. Train *epochs* many epochs."""
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# Initilaization
# Fill in code for initalization

for e in range(epochs):
# Run one epoch of forward-backward
#Fill in the code
pass

def forward(self, X):
"""Perform one forward step.
Return a pair consisting of the outputs of the hidden_layer
and the outputs on the final layer"""
#Fill in the code

def accuracy(self, X_test, t_test):
"""Calculate the accuracy of the classifier on the pair (X_test, t_test)
Return the accuracy"""
#Fill in the code

Train the network on (X_train, t_train) (after scaling), and test on (X_val, t_val). Adjust
hyperparameters or number of epochs if you are not content with the result.

2.4 For master’s students: Early stopping
There is a danger of overfitting if we run too many epochs of training. One way to control that
is to use early stopping. We can use (X_val, t_val) as valuation set when training on (X_train,
t_train).

Let e=50 or e=10 (You may try both or choose some other number) After e number of epochs,
calculate the loss for both the training set (X_train, t_train) and the validation set (X_val, t_val),
and plot them as in figure 4.11 in Marsland.

Modify the code so that the training stops if the loss on the validation set is not reduced by more
than t after e many epochs, where t is a threshold you provide as a parameter.

3 Part III: Final testing
Take the best classifiers that you found for the training sets (X, t) and (X, t2) and test them on
(X_test, t_test) and (X_test, t2_test), respectively. Compute accuracy, the confusion matrix,
precision and recall. Answer in 2-3 sentences: How do the accuracies compare to the results on the
validation sets?
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