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Optimisation and Search

• Continous Optimization is the

mathematical discipline which is

concerned with finding the maxima and

minima of functions, possibly subject to

constraints.

• Discrete Optimization is the activity of

looking thoroughly in order to find an

item with specified properties among a

collection of items.



Discrete optimization

• Chip design
• Routing tracks during chip layout design

• Timetabling
• E.g.: Find a course time table with the minimum 

number of clashes for registered students

• Travelling salesman problem
• Optimization of travel routes                               

and similar logistics problems
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Example: Travelling Salesman Problem (TSP)

• Given the coordinates of n
cities, find the shortest
closed tour which visits
each once and only once
(i.e. exactly once).

• Constraint :

• all cities be visited, once
and only once.



Some Optimization Methods

1. Exhaustive search

2. Greedy search and hill climbing

3. Simulated annealing

4. Gradient descent/ascent

• Not applicable for discrete optimization
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1. Exhaustive search (AKA brute-force 
search)

•Test all possible solutions, pick the best

•Guaranteed to find the optimal solution

• For TSP: Try every possible ordering of the cities. 
Need to evaluate N! different solutions
• For 70 cities, N! > 10100 . That’s more than the 

number of atoms in the universe.

10



Exhaustive search

Only works for simple discrete problems, but can be approximated 
in continuous problems

• Sample the space at regular intervals 
(grid search)

• Sample the space randomly 𝑁 times
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How can we be smarter than exhaustive 
search?
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How can we be smarter than exhaustive 
search?
• Usually, search spaces have some local structure

• Similar solutions often have similar quality

• Making small changes to a solution, and measuring resulting 
quality, we can gradually move towards better solutions
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2. Greedy search

• Only generates and evaluates a single solution

• Makes several locally optimal choices, hoping the result will be 
near a global optimum

• Details depend on the problem being solved

15



16Video from poprythm, at Youtube: 
https://www.youtube.com/watch?v=SC5CX8drAtU

https://www.youtube.com/watch?v=SC5CX8drAtU


Hill climbing

• Pick a solution as the current best (e.g. a random solution)

• Compare to neighbor solution(s)
• If the neighbor is better, replace the current best
• Repeat until we reach a certain number of evaluations
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18Video from poprythm, at Youtube: 
https://www.youtube.com/watch?v=SC5CX8drAtU
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Exploitation and Exploration

•Search methods should combine:
• Trying completely new solutions (like in 

exhaustive search) => Exploration
• Trying to improve the current best solution 

by local search => Exploitation
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Example: n-armed bandit

https://www.flickr.com/photos/thomashawk/5154178426/
https://creativecommons.org/licenses/by-nc/3.0/
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https://www.flickr.com/photos/thomashawk/5154178426/
https://creativecommons.org/licenses/by-nc/3.0/


Exhaustive search – pure exploration
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Hill Climbing – pure exploitation



Global optimization

• Most of the time, we must expect the problem 
to have many local optima

• Ideally, we want to find the best local optimum: 
the global optimum

• The best strategy is often to combine 
exploration and  exploitation



How can we combine exploration and 
exploitation?
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Mixed solution
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Local optima

Algorithms like greedy search, hill climbing and gradient 
ascent/descent can only find local optima:

• They will only move through a strictly improving chain of 
neighbors

• Once they find a solution with no better neighbors they stop
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Going the wrong way

What if we modified the hill climber to sometimes choose worse 
solutions?

• Goal: avoid getting stuck in a local optimum

• Always keep the new solution if it is better

• However, if it is worse, we’d still want to keep it sometimes, i.e.
with some probability
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3. Annealing

A thermal process for obtaining low energy states of a solid in a
heat bath:

• Increase the temperature of the heat bath to a the point at which the
solid melts

• Decrease the temperature slowly

• If done slowly enough, the particles arrange themselves in the
minimum energy state
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Simulated annealing

• Set an initial temperature T

• Pick an initial solution

• Repeat:
• Pick a solution neighboring the current solution
• If the new one is better, keep it
• Otherwise, keep the new one with probability p

• p depends on the difference in quality and the temperature. high temp -> high p 
(more randomness)

• Reduce T
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Source: https://www.slideshare.net/idforjoydutta/simulated-annealing-24528483

p

https://www.slideshare.net/idforjoydutta/simulated-annealing-24528483
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Continuous optimization

• Mechanics
• Optimized design of mechanical shapes etc.

• Economics
• Portfolio selection, pricing                            options, 

risk management etc.

• Control engineering
• Process engineering, robotics etc.
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4. Gradient ascent / descent
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Source: Wikipedia



4. Gradient ascent / descent
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Gradient ascent / descent (subtract)
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Gradient Descent: Algorithm

Start with a point (guess)

Repeat

Determine a descent direction

Choose a step

Update

Until stopping criterion is satisfied

Figure from
http://bayen.eecs.berkeley.edu/sites/default/files//webfm/uploads/class_assets/ce191/lecture10v01_descent2.pdf
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Source: Marsland
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Gradient Descent: Algorithm

Start with a point (guess)

Repeat

Determine a descent direction

Choose a step (using gradient)

Update

Until stopping criterion is satisfied

Figure from
http://bayen.eecs.berkeley.edu/sites/default/files//webfm/uploads/class_assets/ce191/lecture10v01_descent2.pdf
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Start with a point (guess)

Repeat

Determine a descent direction

Choose a step

Update

Until stopping criterion is satisfied

Figure from
http://bayen.eecs.berkeley.edu/sites/default/files//webfm/uploads/class_assets/ce191/lecture10v01_descent2.pdf

Gradient Descent: Algorithm
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Start with a point (guess)

Repeat

Determine a descent direction

Choose a step

Update

Until stopping criterion is satisfied

Gradient Descent: Algorithm

Figure from
http://bayen.eecs.berkeley.edu/sites/default/files//webfm/uploads/class_assets/ce191/lecture10v01_descent2.pdf

to



“No Free Lunch” Theorem

• No search method is best for all problems

• Choose the method and search operators that suits your 
problem

• There are however some algorithms that aim to do well across a 
range of problems
• Evolutionary algorithms are one example
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