UiO ¢ University of Oslo 'c H

IN3050/IN4030, Lecture 2
Optimization and Search

1: Introduction
2: Exhaustive search

3: Greedy search and hill climbing

4. Exploration and exploitation

5: Simulated annealing

6: Continious optimization and gradient descent

. U10 ¢ University of Oslo ‘c E »

institutt for informatikk

IN3050/IN4050, Lecture 2
Optimization and Search

;

1: Introduction
Kal Olav Ellefsen

Optimization

We need

* A numerical representation x for all
possible solutions to the problem

A function f(x) that tells us how good
solution x Is

* A way of finding
- max f(x) if bigger f(x) is better (benefit)

- mxin f(x) if smaller f(x) is better (cost)

Optimisation and Search

« Continous Optimization s the
mathematical discipline which s
concerned with finding the maxima and
minima of functions, possibly subject to
constraints.

* Discrete Optimization Is the activity of
looking thoroughly In order to find an
item with specified properties among a
collection of items.

2021.01.16

Discrete optimization

* Chip design
* Routing tracks during chip layout design

* Timetabling
* E.g.: FInd a course time table with the minimum
number of clashes for registered students
* Travelling salesman problem

* Optimization of travel routes
and similar logistics problems

Example: Travelling Salesman Problem (TSP)

 Glven the coordinates of n
cities, find the shortest
closed tour which visits
each once and only once
(l.e. exactly once).

e Constraint :

- all cities be visited, once
and only once.

2021.01.16

some Optimization Methods

1. Exhaustive search

2. Greedy search and hill climbing
3. Simulated annealing

4. Gradient descent/ascent

* Not applicable for discrete optimization

UiO ¢ University of Oslo 'c H

institutt for informatikk

IN3050/IN4050, Lecture 2
Optimization and Search

2. Exhaustive search
Kal Olav Ellefsen

1. Exhaustive search (AKA brute-force
search)

* Test all possible solutions, pick the best
* Guaranteed to find the optimal solution

*For TSP: Try every possible ordering of the cities.
Need to evaluate N! different solutions

* For 70 cities, N! > 1019 That's more than the
number of atoms In the universe.

Exhaustive search

Only works for simple discrete problems, but can be approximated
IN continuous problems

* Sample the space at regular intervals
(grid search)

* Sample the space randomly N times

How can we be smarter than exhaustive
search?

{'(X)”

| m /]\ \F- =X

How can we be smarter than exhaustive
search?

* Usually, search spaces have some |ocal structure
* Similar solutions often have similar quality

* Making small changes to a solution, and measuring resulting
quality, we can gradually move towards better solutions

UiO ¢ University of Oslo 'c H

institutt for informatikk

IN3050/IN4050, Lecture 2
Optimization and Search

3. Greedy search and hill climbing
Kal Olav Ellefsen

2. Greedy search

* Only generates and evaluates a single solution

* Makes several locally optimal choices, hoping the result will be
near a global optimum

* Detalls depend on the problem being solved

Video from poprythm, at Youtube:
https://www.youtube.com/watch?v=SC5CX8drAtU

https://www.youtube.com/watch?v=SC5CX8drAtU

Hill climbing

* Pick a solution as the current best (e.g. a random solution)

* Compare to neighbor solution(s)
* If the neighbor Is better, replace the current best
* Repeat until we reach a certain number of evaluations

Video from poprythm, at Youtube:
https://www.youtube.com/watch?v=SC5CX8drAtU

https://www.youtube.com/watch?v=SC5CX8drAtU

UiO ¢ University of Oslo 'c H

institutt for informatikk

IN3050/IN4050, Lecture 2
Optimization and Search

4. Exploitation and exploration
Kal Olav Ellefsen

Exploitation and Exploration

* Search methods should combine;

* Trying completely new solutions (like In
exhaustive search) => Exploration

* Trying to improve the current best solution
by local search => Exploitation

20

-armed bandit

Example: n

https://www.flickr.com/photos/thomashawk/5154178426/
https://creativecommons.org/licenses/by-nc/3.0/

https://www.flickr.com/photos/thomashawk/5154178426/
https://creativecommons.org/licenses/by-nc/3.0/

Exhaustive search — pure exploration

Pick a new Check ifitis

W

solution the best so far

/M

Hill Climbing — pure exploitation

. . Replace with a
Pick an Initial o
. similar but somehow
solution . .
Improved solution

Global optimization

* Most of the time, we must expect the problem
to have many local optima

* |deally, we want to find the best local optimum:)
the global optimum /_

'.

* The best strategy Is often to combine ; ‘x

exploration and exploitation / [T

How can we combine exploration and
exploitation?

Mixed solution

Exploration Exploitation
Pick a new Replace _W|th a
- > better neighbor
random solution _
N solution
Yes

No | Was a better neighbor |
found?

Local optima

Algorithms like greedy search, hill climbing and gradient
ascent/descent can only find local optima:

* They will only move through a strictly improving chain of
neighbors

* Once they find a solution with no better neighbors they stop

Going the wrong way

What if we modified the hill climber to sometimes choose worse
solutions?

* Goal: avoid getting stuck in a local optimum
* Always keep the new solution If it Is better

* However, If It Is worse, we'd still want to keep 1t sometimes, I1.e.
with some probability

UiO ¢ University of Oslo 'c H

institutt for informatikk

IN3050/IN4050, Lecture 2
Optimization and Search

5. Simulated annealing
Kal Olav Ellefsen

3. Annealing

A thermal process for obtaining low energy states of a solid in a
heat bath:

* Increase the temperature of the heat bath to a the point at which the
solid melts

* Decrease the temperature slowly
 |If done slowly enough, the particles arrange themselves in the

minimum energy state
Co 0(»1/)5 W

Simulated annealin |
g 1/){3/1 7/,- }1'6;1 CXU’/ﬂra,ﬁbﬁ

* Set an initial temperature T [giar T high Explot ot om

* Pick an initial solution

* Repeat:
* Pick a solution neighboring the current solution
* [f the new one Is better, keep It

* Otherwise, keep the new one with probability p
* pdepends on the difference in quality and the temperature. high temp -> high p

(more randomness)

* Reduce T

32

T INIT_TEMP nditional A
- / Unconditional Acceptance

Move accepted with
e probability

= e AChemp)

AT FINAL_TEMP

e

Source: https:.//www.slideshare.net/idforjoydutta/simulated-annealing-24528483

qo
qo

NUMBER OF ITERATIONS

https://www.slideshare.net/idforjoydutta/simulated-annealing-24528483

UiO ¢ University of Oslo 'c H

institutt for informatikk

IN3050/IN4050, Lecture 2
Optimization and Search

6: Continuous optimization and gradient descent
Kal Olav Ellefsen

Continuous optimization

* Mechanics =
* Optimized design of mechanical shapes etc.

* Economics

* Portfolio selection, pricing
risk management etc.

* Control engineering
* Process engineering, robotics etc.

4. Gradient ascent / descent

In continuous optimization we may be able to

calculate the gradient of f(x):
Of (x)7
0Xg

Sf (x)
7f(x) = | 0%

Sf .(x)

OXy
The gradient tells us in which direction f(x)
Increases the most

Source: Wikipedia

37

4. Gradient ascent / descent

‘ \\ \\ *.- NS
—_——" - \’ DR ..
- -'_' - df‘é‘t&'f ‘: "Ry & “l\\\\\ ’,' zfrﬁ,,’-‘ vi'—gl =y ,“‘: - T;.; - V' r

N .#
g

38

Gradient ascent

Starting from x(°), we can iteratively find higher
f(x*+1V) by adding a value proportional to the

gradient to x():

Gradient Descent: Algorithm

Start with a point (guess) f

Repeat |
Determine a descent direction 3l
Choose a step 1 Direction: downhill
Update :

Until stopping criterion is satisfied fim L .

Figure from 40
http://bayen.eecs.berkeley.edu/sites/default/files//webfm/uploads/class_assets/ce191/lecture10v01_descent?2.pdf

FIGURE 9.3 Left: In an ideal world we would know how to go to the minimum directly. In
practice, we don't, so we have to approximate it by something like right: moving in the
direction of steepest descent at each stage.

Source: Marsland
41

Gradient Descent: Algorithm

Start with a point (guess)
Repeat
Determine a descent direction

Choose a step (using gradient) 1
Update fim)

Until stopping criterion is satisfied

Figure from 42
http://bayen.eecs.berkeley.edu/sites/default/files//webfm/uploads/class_assets/ce191/lecture10v01_descent?2.pdf

Gradient Descent: Algorithm

Start with a point (guess) f
Repeat o |

Determine a descent direction |
Choose a step st | — Now you are here
Update !

Until stopping criterion is satisfied

fim) . |

Figure from 43
http://bayen.eecs.berkeley.edu/sites/default/files//webfm/uploads/class_assets/ce191/lecture10v01_descent?2.pdf

Gradient Descent: Algorithm

Start with a point (guess)
Repeat

Determine a descent direction
Stop when “close”

Choose a step from minimum

Update
Until stopping criterion is satisfied

to

Figure from 44
http://bayen.eecs.berkeley.edu/sites/default/files//webfm/uploads/class_assets/ce191/lecture10v01_descent?2.pdf

‘No Free Lunch” Theorem

* No search method iIs best for all problems

* Choose the method and search operators that suits your
problem

* There are however some algorithms that aim to do well across a
range of problems

* Evolutionary algorithms are one example

Performance of methods on problems

Special, problem tailored method

Evolutionary algorithm

anm
Ny Y
Emgn

Random search

'lll--.--h

~ > 4

Scale of “all” problems

