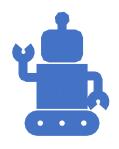


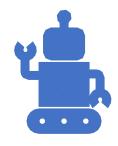
UiO University of Oslo

IN3050/IN4050, Lecture 2 Optimization and Search



- 1: Introduction
- 2: Exhaustive search
- 3: Greedy search and hill climbing
- 4: Exploration and exploitation
- 5: Simulated annealing
- 6: Continious optimization and gradient descent

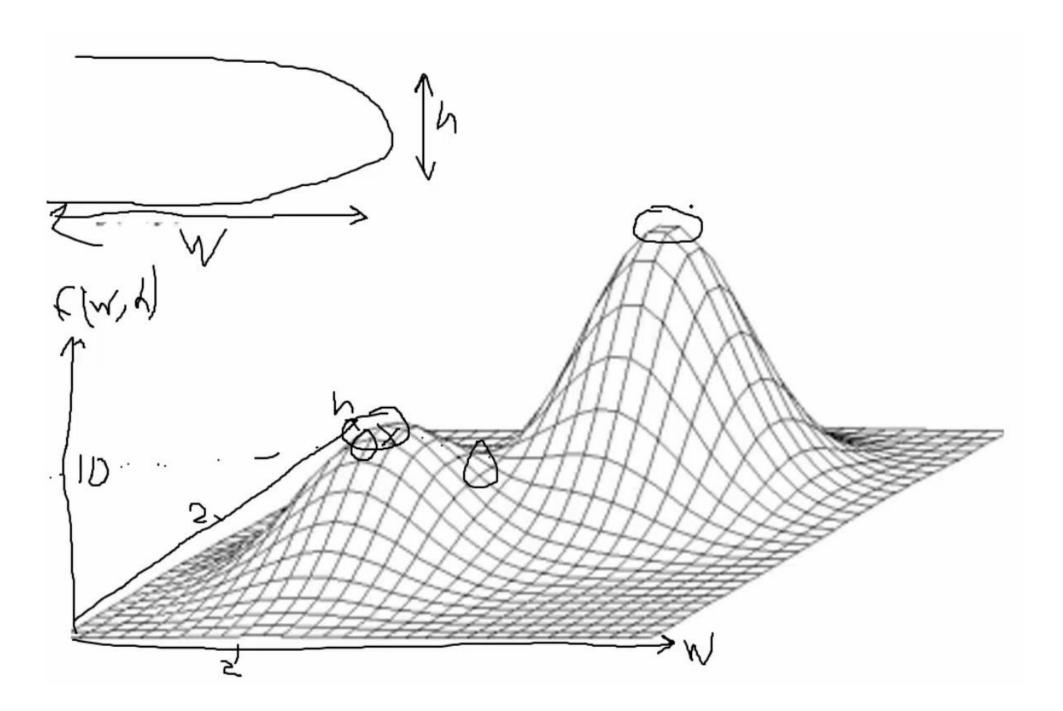
UiO: University of Oslo



IN3050/IN4050, Lecture 2 Optimization and Search

1: Introduction

Kai Olav Ellefsen



Optimization

We need

- A numerical representation x for all possible solutions to the problem
- A function f(x) that tells us how good solution x is
- A way of finding
 - $-\max_{x} f(x)$ if bigger f(x) is better (benefit)
 - $-\min_{x} f(x)$ if smaller f(x) is better (cost)

Optimisation and Search

- Continous Optimization is the mathematical discipline which is concerned with finding the maxima and minima of functions, possibly subject to constraints.
- Discrete Optimization is the activity of looking thoroughly in order to find an item with specified properties among a collection of items.

Discrete optimization

Chip design

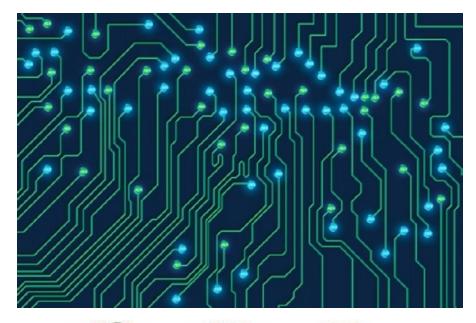
Routing tracks during chip layout design

Timetabling

• E.g.: Find a course time table with the minimum number of clashes for registered students

Travelling salesman problem

 Optimization of travel routes and similar logistics problems



Example: Travelling Salesman Problem (TSP)

• Given the coordinates of *n* cities, find the *shortest closed tour* which visits each *once and only once* (i.e. exactly once).

Constraint :

 all cities be visited, once and only once.

2021.01.16

Some Optimization Methods

- 1. Exhaustive search
- 2. Greedy search and hill climbing
- 3. Simulated annealing
- 4. Gradient descent/ascent
 - Not applicable for discrete optimization

UiO: University of Oslo



IN3050/IN4050, Lecture 2 Optimization and Search

2: Exhaustive search

Kai Olav Ellefsen

1. Exhaustive search (AKA brute-force search)

- Test all possible solutions, pick the best
- Guaranteed to find the optimal solution
- For TSP: Try every possible ordering of the cities.
 Need to evaluate N! different solutions
 - For 70 cities, $N! > 10^{100}$. That's more than the number of atoms in the universe.

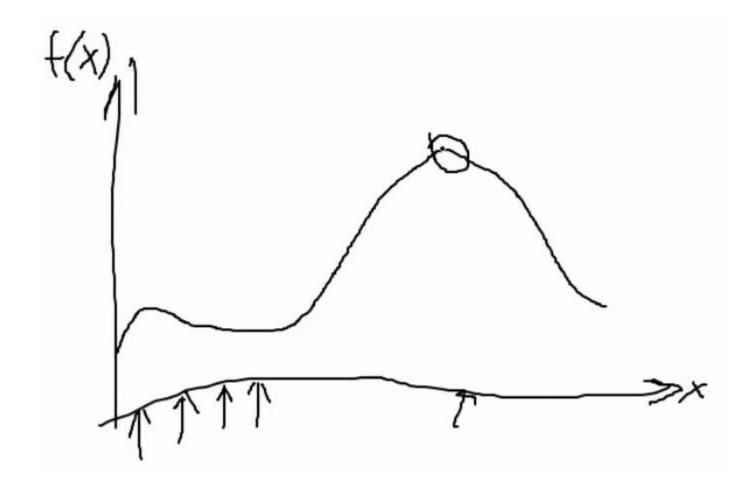
Exhaustive search

Only works for simple discrete problems, but can be approximated in continuous problems

 Sample the space at regular intervals (grid search)

• Sample the space randomly *N* times

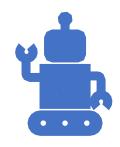
How can we be smarter than exhaustive search?



How can we be smarter than exhaustive search?

- Usually, search spaces have some local structure
- Similar solutions often have similar quality
- Making small changes to a solution, and measuring resulting quality, we can gradually move towards better solutions

UiO: University of Oslo



IN3050/IN4050, Lecture 2 Optimization and Search

3: Greedy search and hill climbing Kai Olav Ellefsen

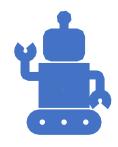
2. Greedy search

- Only generates and evaluates a single solution
- Makes several locally optimal choices, hoping the result will be near a global optimum
- Details depend on the problem being solved

Hill climbing

- Pick a solution as the current best (e.g. a random solution)
- Compare to neighbor solution(s)
 - If the neighbor is better, replace the current best
 - Repeat until we reach a certain number of evaluations

UiO: University of Oslo



IN3050/IN4050, Lecture 2 Optimization and Search

4: Exploitation and exploration Kai Olav Ellefsen

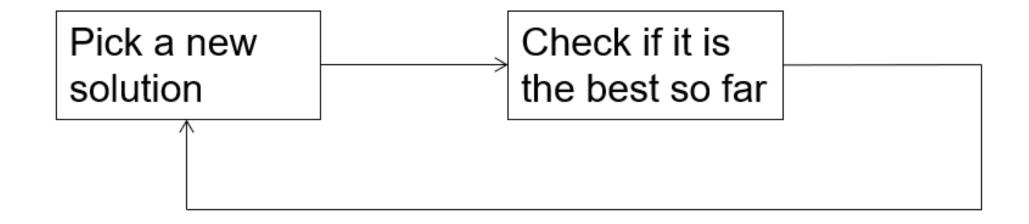
Exploitation and Exploration

Search methods should combine:

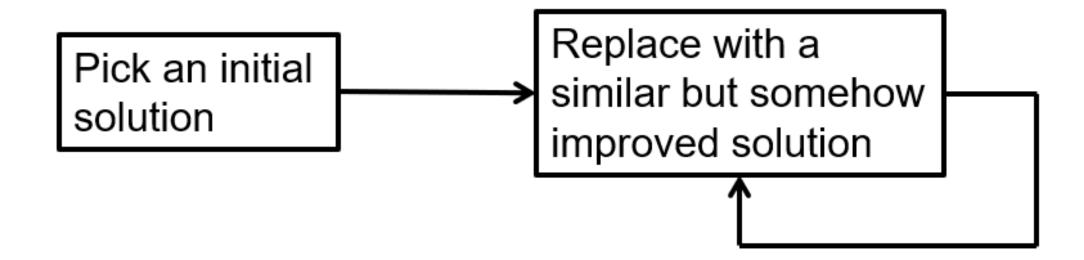
 Trying completely new solutions (like in exhaustive search) => Exploration

 Trying to improve the current best solution by local search => Exploitation

Exhaustive search – pure exploration



Hill Climbing – pure exploitation



Global optimization

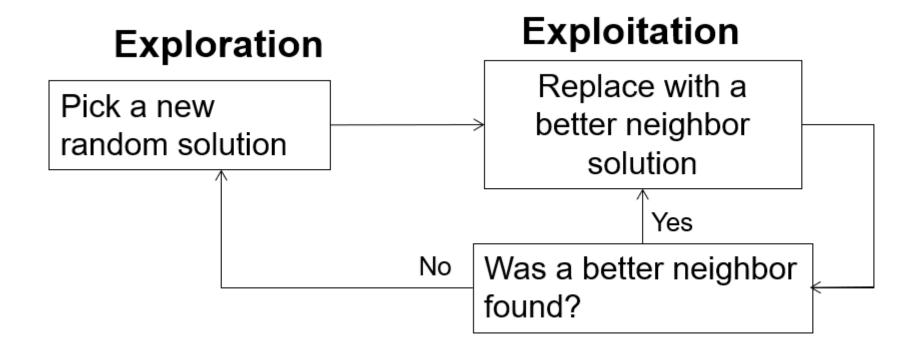
 Most of the time, we must expect the problem to have many local optima

Ideally, we want to find the best local optimum:
 the global optimum

 The best strategy is often to combine exploration and exploitation

How can we combine exploration and exploitation?

Mixed solution



Local optima

Algorithms like greedy search, hill climbing and gradient ascent/descent can only find local optima:

- They will only move through a strictly improving chain of neighbors
- Once they find a solution with no better neighbors they stop

Going the wrong way

What if we modified the hill climber to sometimes choose worse solutions?

- Goal: avoid getting stuck in a local optimum
- Always keep the new solution if it is better
- However, if it is worse, we'd still want to keep it sometimes, i.e. with some probability

UiO University of Oslo



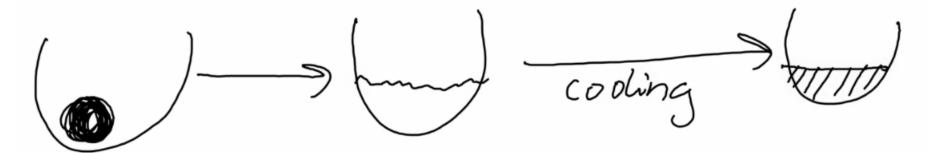
IN3050/IN4050, Lecture 2 Optimization and Search

5: Simulated annealing Kai Olav Ellefsen

3. Annealing

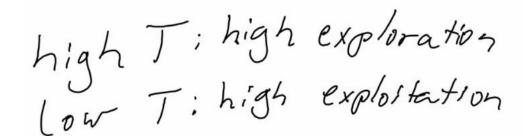
A thermal process for obtaining low energy states of a solid in a heat bath:

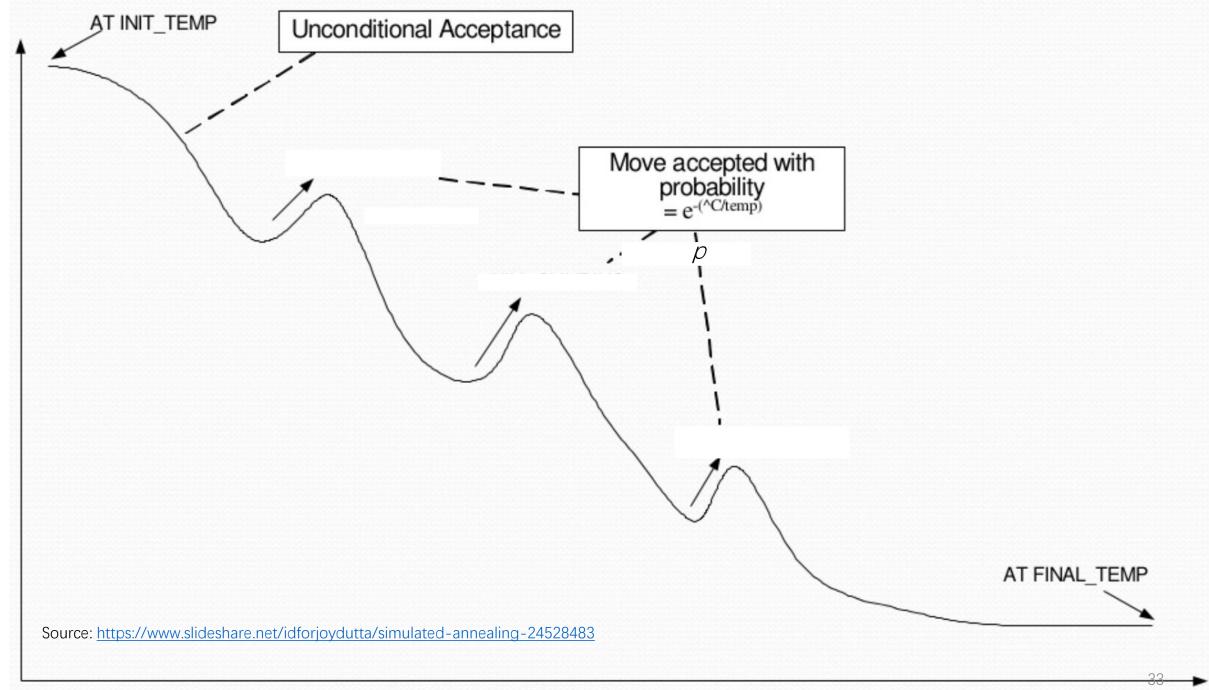
- Increase the temperature of the heat bath to a the point at which the solid melts
- Decrease the temperature slowly
- If done slowly enough, the particles arrange themselves in the minimum energy state



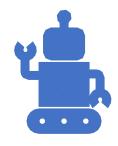
Simulated annealing

- Set an initial temperature T
- Pick an initial solution
- Repeat:
 - Pick a solution neighboring the current solution
 - If the new one is better, keep it
 - Otherwise, keep the new one with probability p
 - p depends on the difference in quality and the temperature. high temp -> high p
 (more randomness)
 - Reduce T





UiO: University of Oslo



IN3050/IN4050, Lecture 2 Optimization and Search

6: Continuous optimization and gradient descent Kai Olav Ellefsen

Continuous optimization

Mechanics

Optimized design of mechanical shapes etc.

Economics

 Portfolio selection, pricing risk management etc.

Control engineering

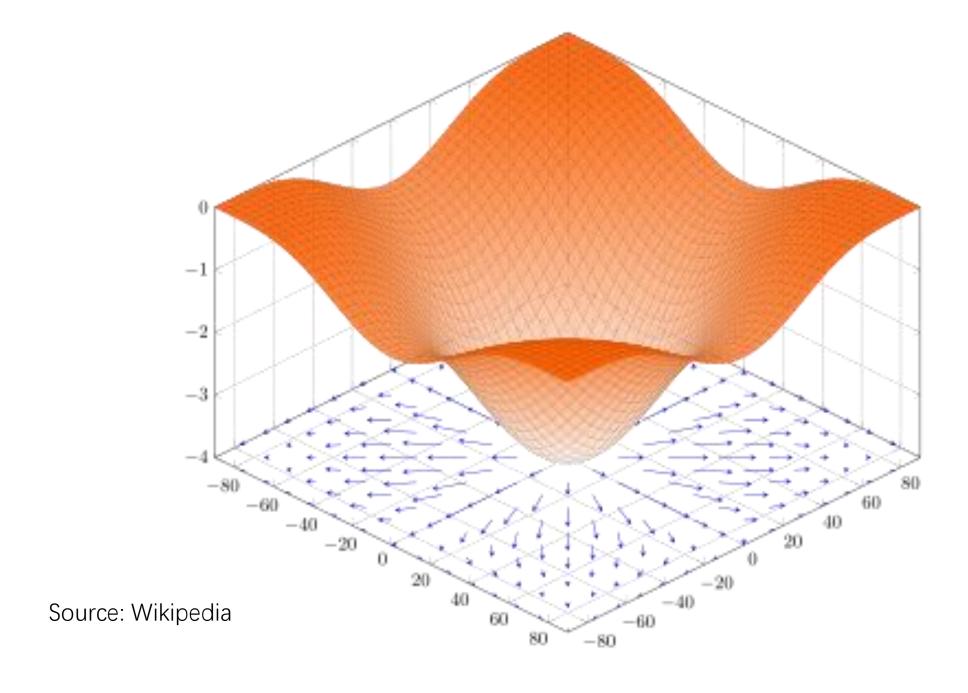
• Process engineering, robotics etc.

4. Gradient ascent / descent

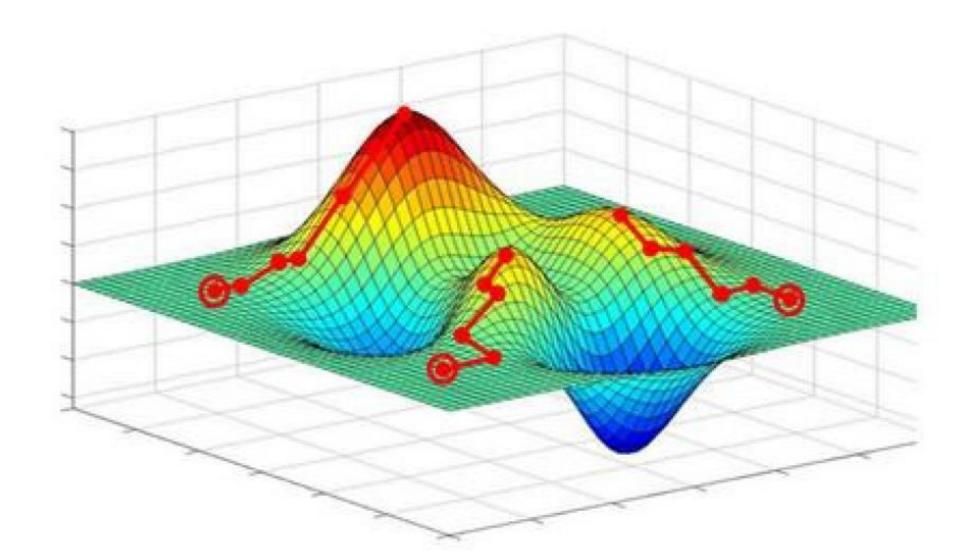
In continuous optimization we may be able to calculate the gradient of f(x):

$$\nabla f(x) = \begin{bmatrix} \frac{\delta f(x)}{\delta x_0} \\ \frac{\delta f(x)}{\delta x_1} \\ \vdots \\ \frac{\delta f(x)}{\delta x_n} \end{bmatrix}$$

The gradient tells us in which direction f(x) increases the most



4. Gradient ascent / descent



Gradient ascent / descent (subtract)

Starting from $x^{(0)}$, we can iteratively find higher $f(x^{(k+1)})$ by adding a value proportional to the gradient to $x^{(k)}$:

$$x^{(k+1)} = x^{(k)} + \gamma \nabla f(x^{(k)})$$

Start with a point (guess)

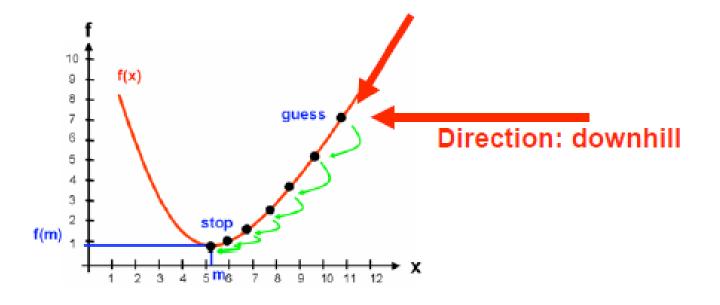
Repeat

Determine a descent direction

Choose a step

Update

Until stopping criterion is satisfied



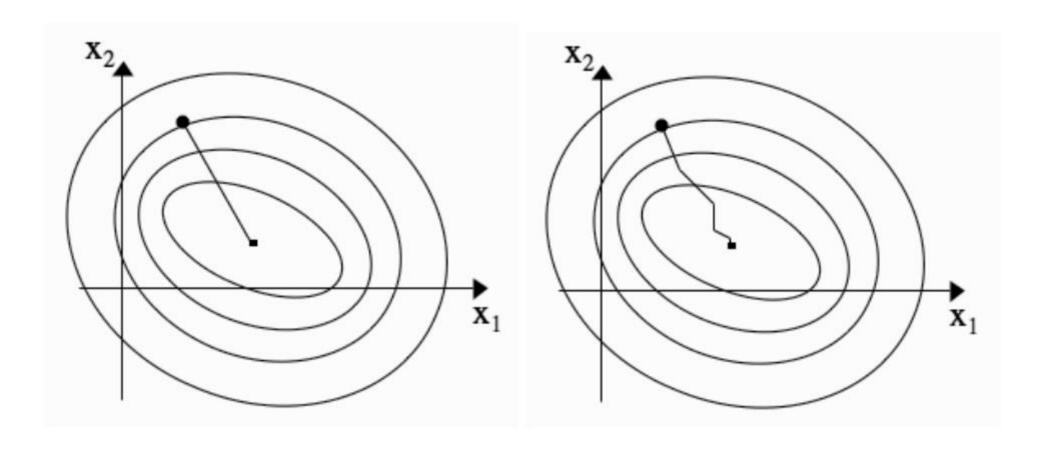


FIGURE 9.3 Left: In an ideal world we would know how to go to the minimum directly. In practice, we don't, so we have to approximate it by something like *right*: moving in the direction of steepest descent at each stage.

Source: Marsland

Start with a point (guess)

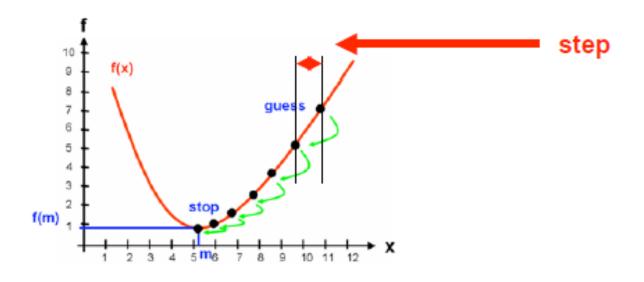
Repeat

Determine a descent direction

Choose a step (using gradient)

Update

Until stopping criterion is satisfied



Start with a point (guess)

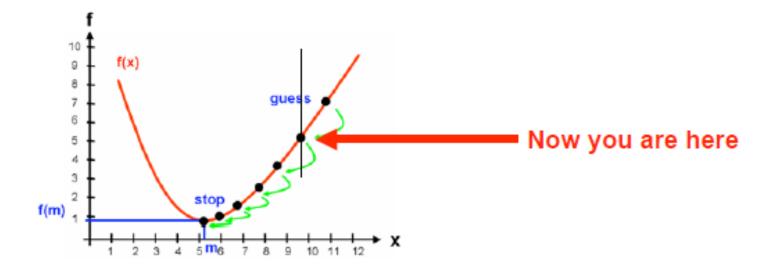
Repeat

Determine a descent direction

Choose a step

Update

Until stopping criterion is satisfied



Start with a point (guess)

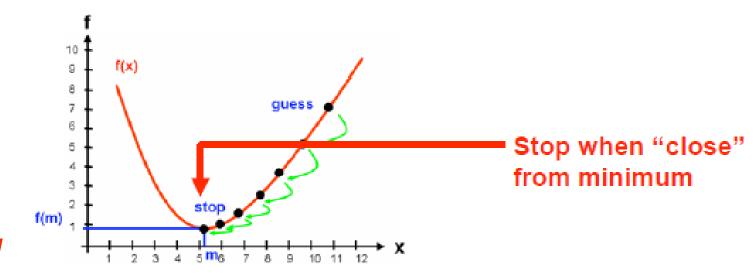
Repeat

Determine a descent direction

Choose a step

Update

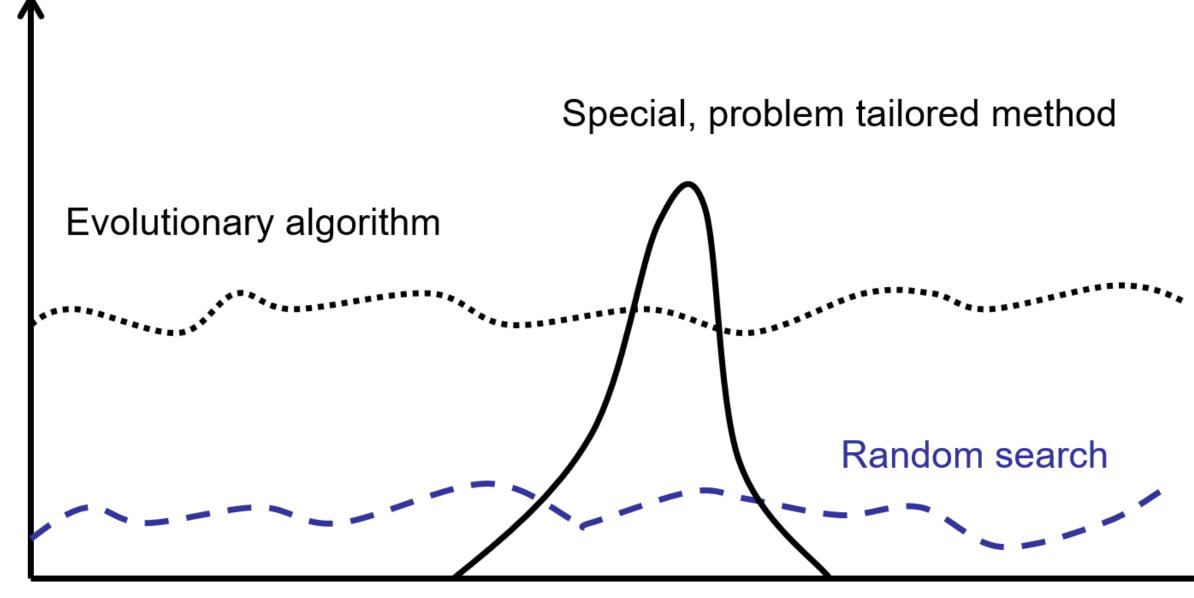
Until stopping criterion is satisfied



to

"No Free Lunch" Theorem

- No search method is best for all problems
- Choose the method and search operators that suits your problem
- There are however some algorithms that aim to do well across a range of problems
 - Evolutionary algorithms are one example



Scale of "all" problems