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Next video: Evolutionary algorithms
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Draw Inspiration from Evolution?




Video from https://www.youtube.com/watch?v=g0TaYh|pOfo



https://www.youtube.com/watch?v=g0TaYhjpOfo




Video from https://www.youtube.com/watch?v=T-c17RKh3uE



https://www.youtube.com/watch?v=T-c17RKh3uE




Evolution \Q

 Biological evolution: [
- Lifeforms adapt to a particular environment over successive
generations.

- Combinations of traits that are better adapted tend to increase
representation in population.

- Mechanisms: Variation (Crossover, Mutation) and Selection (Survival of
the fittest).

« Evolutionary Computing (EC):

« Mimic the biological evolution to optimize solutions to a wide variety of
complex problems.

 In every new generation, a new set of solutions is created using bits
and pieces of the fittest of the old.
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Next video: Components of an evolutionary algorithm
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EA scheme In pseudo-code

BEGIN
INITIALISE population with random candidate solutions;
EVALUATE each candidate;
REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO
1 SELECT parents;
2 RECOMEINFE pairs of parents;
3 MUTATE the resulting offspring;
4 FEVALUATE new candidates;
5 SELECT individuals for the next generation;
oD
END




Scheme of an EA:

Two pillars of evolution

There are two competing forces
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Representation: EA terms - %)1
Woh—>

ﬁ( ’)W”/f‘(

Locus: the position of a gene

N
0, e/ @
Genotype: a set of gene values

ene: one element ]

jo of the array Phenotype: what could be
built/developed based on the

genotype

Allele= Qor 1 (what vAlues a gene can have)
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Next video: Binary, integer and real-valued representations



Main EA components:
valuation (fitness) function

* Represents the task to
solve

Ni~|
Aol

* Enables selection (provides
basis for comparison)

* Assigns a single real-
valued fitness to each
phenotype

LA




General scheme of EAS
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Main EA components:
Population

* The candidate solutions (individuals) of the problem

* Population is the basic unit of evolution, 1.e., the
population is evolving, not the individuals

* Selection operators act on population level
* Variation operators act on individual level



General scheme of EAS

Parent selection
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Main EA components:
Selection mechanisms

* |dentify individuals
* to become parents
* to survive

* Pushes population towards higher fitness

* Parent selection Is usually probabilistic

* high quality solutions more likely to be selected than low quality, but
not guaranteed

* This stochastic nature can aid escape from local optima
* More on selection next week!



General scheme of EAS

Parent selection
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Main EA components:
Variation operators

* Role: to generate new candidate solutions

* Usually divided into two types according to their arity
(number of Inputs to the variation operator):
* Arity 1 : mutation operators
* Arity >1 : recombination operators
* Arity = 2 typically called crossover
* Arity > 2 Is formally possible, seldom used in EC



Main EA components:
Mutation

* Role: cause small, random
variance to a genotype

before

* Element of randomness is
essential and differentiates
It from other unary

heuristic operators after

1111111

1110111




Why do we do Random
Mutation?

C
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Main EA components:
Recombination (1/2)

* Role: merges information from parents into offspring

* Choice of what information to merge Is stochastic

* Hope Is that some offspring are better by combining elements of genotypes
that lead to good traits




AR

Main EA components:
Recombination (2/2)

P Parents fl)
/ kcut cut
1 1[4 14 1 qooi)o,oo

I/ k 7

17110000 0001111

Offspring

31



Crossover and/or mutation?

* Crossover Is explorative, it makes a b/g jump to an area
somewhere “In between” two (parent) areas

* Mutation is exploitative, it creates random smal/
diversions, thereby staying near (in the area of) the parent

AV



General scheme of EAS

Parent selection
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Main EA components:
nitialisation / Termination

* Initialisation usually done at random,
* Need to ensure even spread and mixture of possible allele values

* Can include existing solutions, or use problem-specific heuristics, to “seed” the
population

* Termination condition checked every generation
* Reaching some (known/hoped for) fitness
* Reaching some maximum allowed number of generations
* Reaching some minimum level of diversity
* Reaching some specified number of generations without fitness improvement



ypical EA behaviour: Stages

Stages In optimising on a 1-dimensional fitness landscape

Early stage:
guasi-random population distribution

Mid-stage:
population arranged around/on hills

3

Late stage:
population concentrated on high hills
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Chapter 4: Representation, Mutation, and

—

Recombination NT (w,5)
—] &*)

* Role of representation and variation operators

* Most common representation of genomes:
* Binary

* Integer

* Real-Valued or Floating-Point

* Permutation

* Tree




Role of representation and variation
operators

* First stage of building an EA and most difficult one:
choose right representation for the problem

* Type of variation operators needed depends on
chosen representation



Binary Representation

N
* One of the earliest representations

* Genotype consists of a string of binary digits

Phenotype space Genotype space =

Encoding {0,1}- /.
(representation) S /1001000,/

DU
Decoding

10010010
1

010001001

1110100

(inverse representation)

44



Binary Representation:
Mutation

* Alter each gene independently with a probability p,,
* p,, IS called the mutation rate

parent 1111111111011 1

child O11040(110]1({1(010(0{1]0(1/1]0




Binary Representation:
1-point crossover

* Choose a random point on the two parents
* Split parents at this crossover point
* Create children by exchanging tails

parents

children




Binary Representation:
N-point crossover

* Choose n random crossover points
* Split along those points
* Glue parts, alternating between parents

parents

children




Binary Representation:
Jniform crossover

Assign 'heads’ to one parent, 'tails’ to the other
Flip a coin for each gene of the first child

Make an inverse copy of the gene for the second child
* Breaks more “links” in the genome

0/o|jo|jojojo|jo|jo0o|jO|OjOO|O|O|O|O(O]|O

parents

A 0 A O o 0

children




Integer Representation 1,97 .~ 2]

* Some problems naturally have integer variables, 6 |00
* e.g.image processing parameters

slve ,bloe,blve, Pk
* Others take categorical values from a fixed set E_ / s8¢t r

* e.g. {blue, green, yellow, pink} E) | ) "/J
] 2 d g

* N-point / uniform crossover operators work

—

. Extend bit-flipping mutation to make:
* “creep” i.e. more likely to move to similar val®
* Adding a small (positive or negative) value to each gene with probability p
* Random resetting (esp. categorical variables)
* With probability p,, a new value is chosen at random




Real-Valued or Floatmg Point Representat|on

Uniform Mutation C__ C“’/L') (L0, 2.9)
@ e

* General scheme of floating point mutations

X=(X, X)X —Qx ...,x] ng 05)

x,x e|LB ,UB]

* Uniform Mutation: X/ drawn randoml¥ (uniform) from [LB,UB |

* Analogous to bit-flipping (binary) or random resetting (integers)



Real-Valued or Floating-Point
Representation: Nonuniform Mutation

* Non-uniform mutations:

* Most common method Is to add random deviate to each variable
separately, taken from N(O, o) Gaussian distribution and then curtall to
range

X', = x; + N(0,0)
* Standard deviation o, mutation step size, controls amount of change
(2/3 of drawings will lie In range (- o to + ©))




Real-Valued or Floating-Point jBepresentatlonc
Crossover operators ' BET )

= c,_

* Discrete recombination:

* each allele value in offspring z co from one of its parents (x,y) with equal probability:
z, = X;0ry, 0.1,0-3

* Could use n-point or uniform
i 053]0-2 ]
C

* [ntermediate recombination:

* exploits idea of creating children “between” parents (hence a.k.a. grithmetic
recombination)

*z=ax; +(1-a)y;, wherea:0< o <%,

* The parameter ¢ can be:
e constant: « =0.5 -> uniform arithmetical crossover

o e variable (e.g. depend on the age of the population)
e picked at random every time




Real-Valued or Floating-Point Representation:

Simple arithmetic crossover

* Parents: (x;,*x, )y and <y;,"".Y,)
* Pick a random gene (k) after this point mix values

* childy 1s:

<x1,...,xk,a-yk+1 +(1—a)-xk+1,...,a-yn +(1—05)-xn>

* reverse for other child. e.g. with o = 0.5

0.1|102|0.3/0.4|/0.5(0.6|0.7/0.8|0.9 0.10.2/0.3/0.4|05|0.6(05/05 06

0.3|0.2(0.3/0.2|10.3|0.2|0.3|0.2/|0.3 0.3/0.2(0.3/0.2|10.3|0.2/0.5/05/06
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Permuta

Useful in oro

Task Is (or ca
certain order

* production
scheduled

10N Representations

ering/sequencing problems

n be solved by) arranging some objects in a

. Examples:

scheduling: important thing is which elements are
before others (order)

* Travelling Salesman Problem (TSP) : important thing is which
elements occur next to each other (adjacency)

If there are n variables then the representation iIs as a list
of n Integers, each of which occurs exactly once

[1,2,

3: ‘{J E’/ 34'2'/ t/j



Permutation Representations:
Mutation [;,é&:s,@-» [3,3,8 1]

* Normal mutation operators lead to inadmissible solutions
* Mutating a single gene destroys the permutation

* Therefore must change at least two values

* Mutation probability now reflects the probability that some
operator I1s applied once to the whole string, rather than
iIndividually in each position



Permutation Representations:
Swap mutation

* Pick two alleles at random and swap their positions

V

1/12/3/4|5(6/7(8|8 > 1193




Permutation Representations:
nsert Mutation

* Pick two allele values at random

* Move the second to follow the first, shifting the rest along to
accommodate

* Note that this preserves most of the order and the adjacency
Information




Permutation Representations:
SCramble mutation

* Pick a subset of genes at random
* Randomly rearrange the alleles in those positions




Permutation Representations:
nversion mutation

* Pick two alleles at random and then invert the substring between
them.

* Preserves most adjacency information (only breaks two links) but
disruptive of order information




Permutation Representations:
Crossover operators

- “Normal” crossover operators will often lead to inadmissible
solutions

12345 12321

04321 [54345

* Many specialised operators have been devised which focus on
combining order or adjacency information from the two parents



Permutation Representations:
Conserving Adjacency

* Important for problems where adjacency between elements
decides quality (e.g. TSP)

-
/




Permutation Representations:
Conserving Adjacency

* Important for problems where adjacency between elements
decides quality (e.g. TSP)

* [1,2,3,4,5] I1s same plan as [5,4,3,2,1] -> order and position not important,
but adjacency Is.
* Partially Mapped Crossover and Edge Recombination are
example operators

11/2/3]4]5]6/7]8]/9]

» [9]3/2]4/5[6]/7[1]8]

(9]3][7][8]2]6]5]1]4]




Permutation Representations:
Conserving Order

* Important for problems where order of elements decide
performance (e.g. production scheduling)

Making breakfast:

Start brewing coffee
Toast bread

Apply butter

Add jam

Pour hot coffee

ok owbhPE




Permutation Representations:
Conserving Order

* Important for problems order of elements decide performance

(e.g. production scheduling)
* Now, [1,2,3,4,5] Is a very different plan than [5,4,3,2,1]

* Order Crossover and Cycle Crossover are example operators




Permutation Representations:
Partially Mapped Crossover (PMX) (1/2)

Informal procedure for parents P1 and P2:

Choose random segment and copy it from P1
Starting from the first crossover point look for elements in that segment of P2 that have not been copied
For each of these /look in the offspring to see what element ; has been copied in its place from P1

B~ w e

Place /into the position occupied jin P2, since we know that we will not be putting s there (as is already in
offspring)

5. If the place occupied by jin P2 has already been filled in the offspring 4, put /in the position occupied by &
in P2

6. Having dealt with the elements from the crossover segment, the rest of the offspring can be filled from P2.

Second child is created analogously



Permutation Representations:
Partially Mapped Crossover (PMX)

(2/2)
11/2]/3/4|5/6/7[8/9]

Step 1: » [ [ [ [4[5]6[7] [ ]
1913[7/8/2/6(5[1(4]

[112][3[4]s[6]7]8]9]
Step 2: » [ [ [2[4[5[6[7] [8]

“y

LNy
19[3[7[8[2]6[5]1]4]

11/2]/3[4]/5]/6/7]/8[9]

Step 3: > [9]3[2[4]5[6]7]1]8]

(9]3[7]8]2]6][5][1]4]




Permutation Representations:
Fdge Recombination (1/3)

* Works by constructing a table listing which
edges are present In the two parents, If an
edge Is common to both, mark with a +

°*e2.0.[123456789]and[937826514]

Element| Edges | Element| Edges

1 12549 6 2,5+,7

2 11368 T [368+
3124790 8 27+ 9
411359 9 [1348
5 14,6+



Permutation Representations:
-dge Recombination (2/3)

Informal procedure: once edge table Is constructed

1.

2.
3.
4

Pick an initial element, entry, at random and put it In the offspring
Set the variable current element = entry
Remove all references to current element from the table

Examine list for current element:
* |f there is a common edge, pick that to be next element
* Otherwise pick the entry in the list which itself has the shortest list

* Ties are split at random

In the case of reaching an empty list:
* anew elementis chosen at random



Permutation Representations:
-dge Recombination (3/3)

Element| Edges |Element| Edges

1 2549 6 2,5+,7

2 1,3,6,8 7 3,6,8+

3 12479 8 [2,7+,9

1 1,3,5,9 9 1,3,4,8

5 1,4,6+

I
Choices|Element |Reason Partial
selected result

All 1 |Random 1]
2,5,4,9 5  |Shortest list 1 5]
4,6 6 |Common edge 15 6]
2,7 2  |Random choice (both have two items in list)|[1 5 6 2]
3.8 8  [Shortest list 15628
7.9 7 |Common edge 156287
3 3 Only item in list 1562873
4,9 9 |Random choice 156287309
4 4 |Last element 15628739/ ]




Permutation Representations:
Order crossover (1/2)

* |dea Is to preserve relative order that elements occur

* Informal procedure:
* 1. Choose an arbitrary part from the first parent

* 2. Copy this part to the first child
* 3. Copy the numbers that are not in the first part, to the first child:
* starting right from cut point of the copied part,

* using the order of the second parent
* and wrapping around at the end

* 4. Analogous for the second child, with parent roles reversed



Permutation Representations:

Order crossover (2/2)
* Copy randomly selected set from first parent

(1/2/3[4[5/6|7]8]9]

» [ [ ] J4a[5][6]7] | |

9|3\7|8/2|/6/5|14

* Copy rest from second parent in order 1,9,3,8,2

(1/2/3[4]5[6]/7|8]9]

» |3/8/2[4|5(6[7[1]9]

9/3/7[8[2[6[/5/1[4]




Permutation Representations:
Cycle crossover (1/2)

Basic idea:
Each allele comes from one parent together with i1ts position.

Informal procedure:

1. Make a cycle of alleles from P1 in the following way.

(a) Start with the first allele of P1.

(b) Look at the allele at the same position in P2.
(c

(

)
) Go to the position with the same allele in P1.
d) Add this allele to the cycle.
(e) Repeat step b through d until you arrive at the first allele of P1.
2. Put the alleles of the cycle in the first child on the positions they have
In the first parent.
3. Take next cycle from second parent



Permutation Representations:
Cycle crossover (2/2)

* Step 1: identify cycles

11/2[/3[4[/5/ 6(7[8|9]

[1/2/3/4/5/6|7|8/9| [1/2/3[4]/5/6(7|8[9]| (1/3(7[4|2[6]/5(8]|9]

[@[3]7]8]2]6]5]114] [B[3[7][8]2]6/5[1]4] [8]3[7]8]2[6]5]1]4]

* Step 2: copy alternate cycles into offspring

[9]3]7[8][2[6]5][1]4] [9]2]3[8][5][8]7[1]4]




Genetic Programming:
Tree Representation

* Trees are a universal form, e.g. consider

* Arithmetic formula: 2.7[{(”3)_%)
+

* Logical formula:

xAtrue) > (xvy)v(ze xXAY)
| =1;

° Prog ram: while (i < 20)
{

}

=1 +1



Genetic Programming:

Tree Representation
_|_

N S G
2/\ N /

/\“A
/\



Genetic Programming:
Tree Representation

| =1;
4 while (i < 20)

/\ { =1 +1
///i\\ while }
N

1 20 1




Genetic Programming: Mutation

* Most common mutation: replace randomly chosen subtree by
randomly generated tree

- -

SN N NN

X 3y/—|—\ X 3

9 1



Genetic Programming: Recombination

_|_

2 HA @\ a 3 3A+
RN LN
Parent 1 5 1 Parent 2
AN /A+

2NaN N, N,

AN A A

Child 1 Child 2
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Genetic Algorithms:
An example after Goldberg 89

* Simple problem: max x¢ over {0,1,-,31}

* GA approach:
* Representation: binary code, e.g., 01101 <> 13
* Population size: 4
* 1-point x-over, bitwise mutation
* Roulette wheel selection
* Random Initialisation

* We show one generational cycle done by hand



X2 example: Parent Selection

String Initial |z Value| Fitness |Prob;|Expected|Actual
no. population f(z) = x* count | count
1 01101 13 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 2
3 01000 8 64 0.06 0.22 0
4 10011 19 361 0.31 1.23 1
Sum 1170 1.00 4.00 4
Average 293 0.25 1.00 1
Max 576 0.49 1.97 2




X2 example: Crossover

String Mating [Crossover| Offspring |z Value| Fitness
no. pool point |after xover f(x) = 2
1 01101 4 01100 12 144
2 1100/0 4 11001 25 625
2 11/000 2 11011 27 729
4 10]011 2 10000 16 256
Sum 1754
Average 439
Max 729




X2 example: Mutation

String | Offspring Offspring |z Value| Fitness
no. after xover|after mutation flz) =2
1 01100 11100 26 676
2 11001 11001 25 625
2 11011 11011 27 729
4 10000 10100 18 324
Sum 2354
Average 588.5
Max 729
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Underwater Inspection - Current Practice

ROV Inspection

ol oo o
E‘E ﬂ' f Typical vessel POB = 60 person

Typical Inspection crew = 32 persons
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Resident AUV Solution

Manifold

Well 1

Well 2
Well 3

“ Resident
L, Flatfish
Dociing (Retrievable)
station

(Permanent)

* Lower operation costs
* Independent of weather
* Allows more frequent inspections






|[dea: Optimize Inspection Plans with an

>

Generate Plan

- Performance:
-

coverage, ener
Measure Energy s 8y)

Inspection Target and Coverage




But how to represent plans?

* The EA has to be able to:

* Make small changes to the plan
(mutation)

* Combine plans (crossover)

* Evaluate the plan (calculate its
length)

* Given some inspection target

* How do we represent a path
moving around that target in a
way the EA can “understand”?




How can we represent these plans?
_ ) _ | . o




My solution: 1) Automatically generate
candidate waypoints

* Each has a unique ID:
1,2,3,4...n

* Parameters allow us to adjust
how many waypoints we
produce

) wp__interval



My solution: 2) A plan is now just a sequence

of waypoint ID’s .

* E.g. the plan [14, 72, 111, 122,
140, 217]

* How should we do mutations?
How to make small changes?

AT



Population i

NSGA-I] T — - 50% chance of random deletion:

= utation

Selection #38, *; 2352 ]
- 50% chance of random insertion:

Fitness E.g, 56, 23, 2, ...]

Evaluation 4"‘ )
29

- One-point crossover:
[AL, ... AiJAi+], ... An]
[B1, ... Bj,§Bj+1, ... Bm]

N

[Al, ... Ai, Bj+1, ... Bm]
[B1, ... Bj, Ai+1, ... An]

b



Why didn’t | use the permutation-style
mutation/crossover? .

* | need plans to be able to grow/shrink to search for all possibilities.
Permutations are always the same size.

* It may be useful to visit a waypoint several times, since the robot
collects information while moving between waypoints
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