
IN3050/IN4050, Lecture 3
Evolutionary algorithms 1

1: Introduction to evolution
2: Evolutionary algorithms
3: Components of an evolutionary algorithm
4: Binary, integer and real-valued representations
5: Permutation and tree-based representations
6: Example of a simple evolutionary algorithm
7: Example of a real-world evolutionary project

IN3050/IN4050, Lecture 3
Evolutionary algorithms 1

1: Introduction to evolution
Kai Olav Ellefsen

Next video: Evolutionary algorithms

Why Draw Inspiration from Evolution?

Video from https://www.youtube.com/watch?v=g0TaYhjpOfo

https://www.youtube.com/watch?v=g0TaYhjpOfo

Video from https://www.youtube.com/watch?v=T-c17RKh3uE

https://www.youtube.com/watch?v=T-c17RKh3uE

Evolution
• Biological evolution:

• Lifeforms adapt to a particular environment over successive
generations.

• Combinations of traits that are better adapted tend to increase
representation in population.

• Mechanisms: Variation (Crossover, Mutation) and Selection (Survival of
the fittest).

• Evolutionary Computing (EC):
• Mimic the biological evolution to optimize solutions to a wide variety of

complex problems.
• In every new generation, a new set of solutions is created using bits

and pieces of the fittest of the old.

IN3050/IN4050, Lecture 3
Evolutionary algorithms 1

2: Evolutionary algorithms
Kai Olav Ellefsen

Next video: Components of an evolutionary algorithm

The Problem with Hillclimbing

General scheme of EAs

10

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination

EA scheme in pseudo-code

Scheme of an EA:
Two pillars of evolution
There are two competing forces

Increasing population diversity
by genetic operators

 mutation
 recombination

Push towards novelty

Decreasing population diversity by
selection

 of parents
 of survivors

Push towards quality

Representation: EA terms

1 0 1 1

Allele= 0 or 1 (what values a gene can have)

0 1 2

Locus: the position of a gene

Gene: one element
of the array

Genotype: a set of gene values

Phenotype: what could be
built/developed based on the
genotype

n

IN3050/IN4050, Lecture 3
Evolutionary algorithms 1

3: Components of an evolutionary algorithm
Kai Olav Ellefsen

Next video: Binary, integer and real-valued representations

Main EA components:
Evaluation (fitness) function

• Represents the task to
solve

• Enables selection (provides
basis for comparison)

• Assigns a single real-
valued fitness to each
phenotype

General scheme of EAs

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination

Main EA components:
Population

• The candidate solutions (individuals) of the problem
• Population is the basic unit of evolution, i.e., the

population is evolving, not the individuals
• Selection operators act on population level
• Variation operators act on individual level

General scheme of EAs

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination

Main EA components:
Selection mechanisms

• Identify individuals
• to become parents
• to survive

• Pushes population towards higher fitness
• Parent selection is usually probabilistic

• high quality solutions more likely to be selected than low quality, but
not guaranteed

• This stochastic nature can aid escape from local optima

• More on selection next week!

General scheme of EAs

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination

Main EA components:
Variation operators

• Role: to generate new candidate solutions
• Usually divided into two types according to their arity

(number of inputs to the variation operator):
• Arity 1 : mutation operators
• Arity >1 : recombination operators
• Arity = 2 typically called crossover
• Arity > 2 is formally possible, seldom used in EC

Main EA components:
Mutation
• Role: cause small, random

variance to a genotype
• Element of randomness is

essential and differentiates
it from other unary
heuristic operators

before

1 1 1 0 1 1 1after

1 1 1 1 1 1 1

Why do we do Random
Mutation?

Main EA components:
Recombination (1/2)
• Role: merges information from parents into offspring
• Choice of what information to merge is stochastic
• Hope is that some offspring are better by combining elements of genotypes

that lead to good traits

1 1 1 1 1 1 1 0 0 0 0 0 0 0

Parents
cut cut

Offspring

Main EA components:
Recombination (2/2)

25

1 1 1 0 0 0 0 0 0 0 1 1 1 1

Crossover and/or mutation?

• Crossover is explorative, it makes a big jump to an area
somewhere “in between” two (parent) areas

• Mutation is exploitative, it creates random small
diversions, thereby staying near (in the area of) the parent

General scheme of EAs

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination

Main EA components:
Initialisation / Termination
• Initialisation usually done at random,

• Need to ensure even spread and mixture of possible allele values
• Can include existing solutions, or use problem-specific heuristics, to “seed” the

population

• Termination condition checked every generation
• Reaching some (known/hoped for) fitness
• Reaching some maximum allowed number of generations
• Reaching some minimum level of diversity
• Reaching some specified number of generations without fitness improvement

Typical EA behaviour: Stages
Stages in optimising on a 1-dimensional fitness landscape

Early stage:
quasi-random population distribution

Mid-stage:
population arranged around/on hills

Late stage:
population concentrated on high hills

IN3050/IN4050, Lecture 3
Evolutionary algorithms 1

4: Binary, integer and real-valued representations
Kai Olav Ellefsen

Next video: Permutation and tree-based representations

Chapter 4: Representation, Mutation, and
Recombination

• Role of representation and variation operators

• Most common representation of genomes:
• Binary
• Integer
• Real-Valued or Floating-Point
• Permutation
• Tree

Role of representation and variation
operators

• First stage of building an EA and most difficult one:
choose right representation for the problem

• Type of variation operators needed depends on
chosen representation

Binary Representation

• One of the earliest representations
• Genotype consists of a string of binary digits

33

Binary Representation:
Mutation

• Alter each gene independently with a probability pm

• pm is called the mutation rate

Binary Representation:
1-point crossover
• Choose a random point on the two parents
• Split parents at this crossover point
• Create children by exchanging tails

Binary Representation:
n-point crossover
• Choose n random crossover points
• Split along those points
• Glue parts, alternating between parents

Binary Representation:
Uniform crossover

• Assign 'heads' to one parent, 'tails' to the other
• Flip a coin for each gene of the first child
• Make an inverse copy of the gene for the second child
• Breaks more “links” in the genome

Integer Representation
• Some problems naturally have integer variables,

• e.g. image processing parameters

• Others take categorical values from a fixed set
• e.g. {blue, green, yellow, pink}

• N-point / uniform crossover operators work

• Extend bit-flipping mutation to make:
• “creep” i.e. more likely to move to similar value

• Adding a small (positive or negative) value to each gene with probability p.
• Random resetting (esp. categorical variables)

• With probability pm a new value is chosen at random

38

Real-Valued or Floating-Point
Representation: Uniform Mutation

• General scheme of floating point mutations

• Uniform Mutation:

• Analogous to bit-flipping (binary) or random resetting (integers)

39

ll xxxx xx ′′=′→= ..., , ...,, 11

[]iiii UBLBxx ,, ∈′

Real-Valued or Floating-Point
Representation: Nonuniform Mutation
• Non-uniform mutations:

• Most common method is to add random deviate to each variable
separately, taken from N(0, σ) Gaussian distribution and then curtail to
range

x’i = xi + N(0,σ)
• Standard deviation σ, mutation step size, controls amount of change

(2/3 of drawings will lie in range (- σ to + σ))

Real-Valued or Floating-Point Representation:
Crossover operators

• Discrete recombination:
• each allele value in offspring z comes from one of its parents (x,y) with equal

probability: zi = xi or yi
• Could use n-point or uniform

• Intermediate recombination:
• exploits idea of creating children “between” parents (hence a.k.a. arithmetic

recombination)
• zi = α xi + (1 - α) yi where α : 0 ≤ α ≤ 1.
• The parameter α can be:

• constant: α =0.5 -> uniform arithmetical crossover
• variable (e.g. depend on the age of the population)
• picked at random every time

41

Real-Valued or Floating-Point Representation:
Simple arithmetic crossover
• Parents: 〈x1,…,xn 〉 and 〈y1,…,yn〉
• Pick a random gene (k) after this point mix values
• child1 is:

• reverse for other child. e.g. with α = 0.5

nxkxkykxx ⋅−+⋅+⋅−++⋅)1(ny ..., ,1)1(1 , ..., ,1 αααα

IN3050/IN4050, Lecture 3
Evolutionary algorithms 1

5: Permutation and tree-based representations
Kai Olav Ellefsen

Next video: Example of a simple evolutionary algorithm

Permutation Representations
• Useful in ordering/sequencing problems
• Task is (or can be solved by) arranging some objects in a

certain order. Examples:
• production scheduling: important thing is which elements are

scheduled before others (order)
• Travelling Salesman Problem (TSP) : important thing is which

elements occur next to each other (adjacency)

• if there are n variables then the representation is as a list
of n integers, each of which occurs exactly once

Permutation Representations:
Mutation
• Normal mutation operators lead to inadmissible solutions

• Mutating a single gene destroys the permutation

• Therefore must change at least two values
• Mutation probability now reflects the probability that some

operator is applied once to the whole string, rather than
individually in each position

Permutation Representations:
Swap mutation
• Pick two alleles at random and swap their positions

Permutation Representations:
Insert Mutation
• Pick two allele values at random
• Move the second to follow the first, shifting the rest along to

accommodate
• Note that this preserves most of the order and the adjacency

information

Permutation Representations:
Scramble mutation
• Pick a subset of genes at random
• Randomly rearrange the alleles in those positions

Permutation Representations:
Inversion mutation
• Pick two alleles at random and then invert the substring between

them.
• Preserves most adjacency information (only breaks two links) but

disruptive of order information

Permutation Representations:
Crossover operators
• “Normal” crossover operators will often lead to inadmissible

solutions

• Many specialised operators have been devised which focus on
combining order or adjacency information from the two parents

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

Permutation Representations:
Conserving Adjacency
• Important for problems where adjacency between elements

decides quality (e.g. TSP)

Permutation Representations:
Conserving Adjacency
• Important for problems where adjacency between elements

decides quality (e.g. TSP)
• [1,2,3,4,5] is same plan as [5,4,3,2,1] -> order and position not important,

but adjacency is.

• Partially Mapped Crossover and Edge Recombination are
example operators

Permutation Representations:
Conserving Order
• Important for problems where order of elements decide

performance (e.g. production scheduling)

Making breakfast:

1. Start brewing coffee
2. Toast bread
3. Apply butter
4. Add jam
5. Pour hot coffee

Permutation Representations:
Conserving Order
• Important for problems order of elements decide performance

(e.g. production scheduling)
• Now, [1,2,3,4,5] is a very different plan than [5,4,3,2,1]

• Order Crossover and Cycle Crossover are example operators

Permutation Representations:
Partially Mapped Crossover (PMX) (1/2)
Informal procedure for parents P1 and P2:

1. Choose random segment and copy it from P1

2. Starting from the first crossover point look for elements in that segment of P2 that have not been copied

3. For each of these i look in the offspring to see what element j has been copied in its place from P1

4. Place i into the position occupied j in P2, since we know that we will not be putting j there (as is already in
offspring)

5. If the place occupied by j in P2 has already been filled in the offspring k, put i in the position occupied by k
in P2

6. Having dealt with the elements from the crossover segment, the rest of the offspring can be filled from P2.

Second child is created analogously

Permutation Representations:
Partially Mapped Crossover (PMX)
(2/2)

Permutation Representations:
Edge Recombination (1/3)
• Works by constructing a table listing which

edges are present in the two parents, if an
edge is common to both, mark with a +

• e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]

Permutation Representations:
Edge Recombination (2/3)
Informal procedure: once edge table is constructed
1. Pick an initial element, entry, at random and put it in the offspring

2. Set the variable current element = entry
3. Remove all references to current element from the table

4. Examine list for current element:
• If there is a common edge, pick that to be next element
• Otherwise pick the entry in the list which itself has the shortest list
• Ties are split at random

5. In the case of reaching an empty list:
• a new element is chosen at random

Permutation Representations:
Edge Recombination (3/3)

Permutation Representations:
Order crossover (1/2)
• Idea is to preserve relative order that elements occur
• Informal procedure:

• 1. Choose an arbitrary part from the first parent
• 2. Copy this part to the first child
• 3. Copy the numbers that are not in the first part, to the first child:

• starting right from cut point of the copied part,
• using the order of the second parent
• and wrapping around at the end

• 4. Analogous for the second child, with parent roles reversed

Permutation Representations:
Order crossover (2/2)
• Copy randomly selected set from first parent

• Copy rest from second parent in order 1,9,3,8,2

Permutation Representations:
Cycle crossover (1/2)
Basic idea:
Each allele comes from one parent together with its position.
Informal procedure:
1. Make a cycle of alleles from P1 in the following way.

(a) Start with the first allele of P1.
(b) Look at the allele at the same position in P2.
(c) Go to the position with the same allele in P1.
(d) Add this allele to the cycle.
(e) Repeat step b through d until you arrive at the first allele of P1.

2. Put the alleles of the cycle in the first child on the positions they have
in the first parent.

3. Take next cycle from second parent

Permutation Representations:
Cycle crossover (2/2)

• Step 1: identify cycles

• Step 2: copy alternate cycles into offspring

Genetic Programming:
Tree Representation
• Trees are a universal form, e.g. consider

• Arithmetic formula:

• Logical formula:

• Program:









+
−++⋅

15
)3(2 yxπ

(x ∧ true) → ((x ∨ y) ∨ (z ↔ (x ∧ y)))

i =1;
while (i < 20)
{

i = i +1
}









+
−++⋅

15
)3(2 yxπ

Genetic Programming:
Tree Representation

i =1;
while (i < 20)
{

i = i +1
}

Genetic Programming:
Tree Representation

Genetic Programming: Mutation

• Most common mutation: replace randomly chosen subtree by
randomly generated tree

Child 2

Parent 1 Parent 2

Child 1

Genetic Programming: Recombination

IN3050/IN4050, Lecture 3
Evolutionary algorithms 1

6: Example of a simple evolutionary algorithm
Kai Olav Ellefsen

Next video: Example of a real-world evolutionary project

Genetic Algorithms:
An example after Goldberg ’89
• Simple problem: max x2 over {0,1,…,31}
• GA approach:

• Representation: binary code, e.g., 01101 ↔ 13
• Population size: 4
• 1-point x-over, bitwise mutation
• Roulette wheel selection
• Random initialisation

• We show one generational cycle done by hand

X2 example: Parent Selection

X2 example: Crossover

X2 example: Mutation

IN3050/IN4050, Lecture 3
Evolutionary algorithms 1

7: Example of a real-world evolutionary project
Kai Olav Ellefsen

75

76

77

78

79

80

81

82

83

84

85

86

87

IN3050/IN4050, Lecture 3
Evolutionary algorithms 1

1: Introduction to evolution
2: Evolutionary algorithms
3: Components of an evolutionary algorithm
4: Binary, integer and real-valued representations
5: Permutation and tree-based representations
6: Example of a simple evolutionary algorithm
7: Example of a real-world evolutionary project

	IN3050/IN4050, Lecture 3�Evolutionary algorithms 1�
	IN3050/IN4050, Lecture 3�Evolutionary algorithms 1�
	Slide Number 3
	Why Draw Inspiration from Evolution?
	Slide Number 5
	Slide Number 6
	Evolution
	IN3050/IN4050, Lecture 3�Evolutionary algorithms 1�
	The Problem with Hillclimbing
	General scheme of EAs
	EA scheme in pseudo-code
	Scheme of an EA:�Two pillars of evolution
	Representation: EA terms
	IN3050/IN4050, Lecture 3�Evolutionary algorithms 1�
	Main EA components:�Evaluation (fitness) function
	General scheme of EAs
	Main EA components:�Population
	General scheme of EAs
	Main EA components:�Selection mechanisms
	General scheme of EAs
	Main EA components:�Variation operators
	Main EA components:�Mutation
	Why do we do Random Mutation?
	Main EA components:�Recombination (1/2)
	Main EA components:�Recombination (2/2)
	Crossover and/or mutation?
	General scheme of EAs
	Main EA components:�Initialisation / Termination
	Typical EA behaviour: Stages
	IN3050/IN4050, Lecture 3�Evolutionary algorithms 1�
	Chapter 4: Representation, Mutation, and Recombination
	Role of representation and variation operators
	Binary Representation
	Binary Representation:�Mutation
	Binary Representation:�1-point crossover
	Binary Representation:�n-point crossover
	Binary Representation:�Uniform crossover
	Integer Representation
	Real-Valued or Floating-Point Representation: Uniform Mutation
	Real-Valued or Floating-Point Representation: Nonuniform Mutation
	Real-Valued or Floating-Point Representation:�Crossover operators
	Real-Valued or Floating-Point Representation:�Simple arithmetic crossover
	IN3050/IN4050, Lecture 3�Evolutionary algorithms 1�
	Permutation Representations
	Permutation Representations:�Mutation
	Permutation Representations:�Swap mutation
	Permutation Representations:�Insert Mutation
	Permutation Representations:�Scramble mutation
	Permutation Representations:�Inversion mutation
	Permutation Representations:�Crossover operators
	Permutation Representations:�Conserving Adjacency
	Permutation Representations:�Conserving Adjacency
	Permutation Representations:�Conserving Order
	Permutation Representations:�Conserving Order
	Permutation Representations:�Partially Mapped Crossover (PMX) (1/2)
	Permutation Representations:�Partially Mapped Crossover (PMX) (2/2)
	Permutation Representations:�Edge Recombination (1/3)
	Permutation Representations:�Edge Recombination (2/3)
	Permutation Representations:�Edge Recombination (3/3)
	Permutation Representations:�Order crossover (1/2)
	Permutation Representations:�Order crossover (2/2)
	Permutation Representations:�Cycle crossover (1/2)
	Permutation Representations:�Cycle crossover (2/2)
	Genetic Programming: �Tree Representation
	Slide Number 65
	Slide Number 66
	Genetic Programming: Mutation
	Genetic Programming: Recombination
	IN3050/IN4050, Lecture 3�Evolutionary algorithms 1�
	Genetic Algorithms:�An example after Goldberg ’89
	X2 example: Parent Selection
	X2 example: Crossover
	X2 example: Mutation
	IN3050/IN4050, Lecture 3�Evolutionary algorithms 1�
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	IN3050/IN4050, Lecture 3�Evolutionary algorithms 1�

