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Repetition:
General scheme of EAs

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Initialization

Termination



Repetition:
Genotype & Phenotype

1 23 45 6 7 8

Genotype:
A solution representation
applicable to variation

Phenotype:
A solution representation
we can evaluate

14
72

111
122
140

217

[14, 72, 111, 122, 140, 217]

Decoding
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Chapter 5: Fitness, Selection and 
Population Management
• Selection is second fundamental 

force for evolutionary systems
• Topics include:

- Selection operators
- Preserving diversity 

Variation

Selection



Scheme of an EA:
General scheme of EAs

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Initialization

Termination



Selection

• Selection can occur in two places:
• Parent selection (selects mating pairs)
• Survivor selection (replaces population)

• Selection works on the population
-> selection operators are representation-independent
because they work on the fitness value

• Selection pressure: As selection pressure increases, 
fitter solutions are more likely to survive, or be chosen 
as parents



Effect of Selection Pressure

• Low Pressure • High Pressure



Why Not Always High Selection Pressure?

Exploration Exploitation



Scheme of an EA:
General scheme of EAs

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination



Example: roulette wheel selection

fitness(A) = 3
fitness(B) = 1
fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B

2/6 = 33%

Parent Selection:
Fitness-Proportionate Selection



Parent Selection:
Fitness-Proportionate Selection (FPS)

• Probability for individual i to be selected for mating in a 
population size μ with FPS is 

• Problems include
• One highly fit member can rapidly take over if rest of 

population is much less fit: Premature Convergence

• At end of runs when finesses are similar, loss of selection 
pressure 





Parent Selection:
Tournament Selection (1/3)

• The methods above rely on global population statistics
• Could be a bottleneck especially on parallel machines, very 

large population
• Relies on presence of external fitness function which might not 

exist: e.g. evolving game players



Parent Selection:
Tournament Selection (2/3)

Idea for a procedure using only local fitness information:
• Pick k members at random then select the best of these
• Repeat to select more individuals



Parent Selection:
Tournament Selection (3/3)

• Probability of selecting i will depend on:
• Rank of i
• Size of sample k

• higher k increases selection pressure

• Whether contestants are picked with replacement
• Picking without replacement increases selection pressure

• Whether fittest contestant always wins (deterministic) or 
this happens with probability p



Survivor Selection (Replacement)
• From a set of μ old solutions and λ offspring: Select a 

set of μ individuals forming the next generation

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination



Fitness-based replacement – examples

• Elitism
• Always keep at least one copy of the N fittest solution(s) so far
• Widely used in most EA-variants

• (µ,λ)-selection (best candidates can be lost)
- based on the set of children only (λ > µ)
- choose the best µ offspring for next generation

• (µ+λ)-selection (elitist strategy)
- based on the set of parents and children
- choose the best µ individuals for next generation

• (µ,λ)-selection may loose the best solution, but is better at leaving 
local optima 
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Multimodality

• Often might want to identify several possible peaks
• Different peaks may be different good ways to solve the problem.
• We therefore need methods to preserve diversity (instead of 

converging to one peak)



Approaches for Preserving Diversity:
Introduction
• Explicit vs implicit
• Implicit approaches:

• Impose an equivalent of geographical separation
• Impose an equivalent of speciation

• Explicit approaches
• Make similar individuals compete for resources (fitness)
• Make similar individuals compete with each other for survival



Explicit Approaches for Preserving Diversity: 
Fitness Sharing (1/2)

• Restricts the number of individuals within a given niche 
by “sharing” their fitness

• Need to set the size of the niche σshare in either 
genotype or phenotype space

• run EA as normal but after each generation set
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Explicit Approaches for Preserving Diversity: 
Fitness Sharing (2/2)
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Explicit Approaches for Preserving Diversity: 
Crowding

• Idea: New individuals replace similar individuals
• Randomly shuffle and pair parents, produce 2 

offspring
• Each offspring competes with their nearest parent for 

survival (using a distance measure)
• Result: Even distribution among niches.



Explicit Approaches for Preserving Diversity: 
Crowding vs Fitness sharing

Observe the number of individuals per niche

Fitness 
Sharing

Crowding



Implicit Approaches for Preserving Diversity: 
Automatic Speciation

• Either only mate with 
genotypically / 
phenotypically similar 
members or 

• Add species-tags to 
genotype

• initially randomly set 
• when selecting partner 

for recombination, only 
pick members with a 
good match



Implicit Approaches for Preserving Diversity: 
Geographical Separation

EA

EA

EA EA

EA

• “Island” Model Parallel EA
• Periodic migration of individual solutions between 

populations



Implicit Approaches for Preserving Diversity: 
“Island” Model Parallel EAs 
• Run multiple populations in parallel 
• After a (usually fixed) number of generations (an Epoch), 

exchange individuals with neighbours
• Repeat until ending criteria met
• Partially inspired by parallel/clustered systems
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Chapter 10:
Hybridisation with Other Techniques: Memetic 
Algorithms

1. Why Hybridise?
2. What is a Memetic Algorithm?
3. Local Search

• Lamarckian vs. Baldwinian adaptation

4. Where to hybridise



1. Why Hybridise

• Might be looking at improving on existing techniques (non-EA)

• Might be looking at improving EA search for good solutions 



1. Why Hybridise



2. What is a Memetic Algorithm?

• The combination of Evolutionary Algorithms with Local Search 
Operators that work within the EA loop has been termed 
“Memetic Algorithms”

• Term also applies to EAs that use instance-specific 
knowledge

• Memetic Algorithms have been shown to be orders of 
magnitude faster and more accurate than EAs on some 
problems, and are the “state of the art” on many problems



3. Local Search: Main Idea

• Make a small, but intelligent (problem-specific), change to an existing 
solution

• If the change improves it, keep the improved version
• Otherwise, keep trying small, smart changes until it improves, or until we 

have tried all possible small changes

Swap (1,3)



3. Local Search: Motivation



3. Local Search:
Pivot Rules
• Is the neighbourhood searched randomly, systematically or 

exhaustively ?
• does the search stop as soon as a fitter neighbour is found 

(Greedy Ascent) 
• or is the whole set of neighbours examined and the best chosen 

(Steepest Ascent)
• of course there is no one best answer, but some are quicker than 

others to run ........





4. Local Search and Evolution

• Do offspring inherit what their parents have “learnt” in life?

• Yes - Lamarckian evolution
• Improved fitness and genotype

• No - Baldwinian evolution
• Improved fitness only



4. Lamarckian 
Evolution

(Image from sparknotes.com)

• Lamarck, 1809: Traits 
acquired in parents’ lifetimes 
can be inherited by offspring

• This type of direct 
inheritance of acquired traits 
is not possible, according to 
modern evolutionary theory



(Brain from Wikimedia Commons)

4. Inheriting Learned Traits?



4. Local Search and Evolution

• In practice, most recent Memetic Algorithms use:
• Pure Lamarckian evolution, or
• A stochastic mix of Lamarckian and Baldwinian evolution



5. Where to Hybridise:



Hybridization - Example



Reminder: Optimizing Inspection Plans with 
an EA



Each Plan is a Sequence of Waypoint IDs

14
72

111
122
140

217

• E.g. the plan [14, 72, 111, 122, 
140, 217]

• Would you hybridize the 
search for plans? How could 
we insert some knowledge in 
the search?



Constructive Heuristics

• Idea: Find examples of OK plans 
to seed the initial population

• The plans don’t have to be 
great, just better starting points 
than random plans

• What could be a simple, OK 
plan for inspections?



My idea: Make simple, circling solutions



Did this kind of seeding work?



Did this kind of seeding work?



Hybrid Algorithms Summary

• It is common practice to hybridise EA’s when using them in a real world 
context.

• This may involve the use of operators from other algorithms which have 
already been used on the problem, or the incorporation of domain-specific 
knowledge

• Memetic algorithms have been shown to be orders of magnitude faster and 
more accurate than EAs on some problems, and are the “state of the art” on 
many problems
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Chapter 12:
Multiobjective Evolutionary Algorithms

• Multiobjective optimisation problems (MOP)
- Pareto optimality

• EC approaches
- Selection operators
- Preserving diversity



Multi-Objective Problems (MOPs)

• Wide range of problems can be categorised by the presence of a 
number of n possibly conflicting objectives:

• buying a car: speed vs. price vs. reliability
• engineering design: lightness vs. strength
• Inspecting infrastructure: Energy usage vs completeness

• Two problems:
• finding set of good solutions
• choice of best for the particular application



An example: Inspecting Infrastructure

Energy / Travel Distance

Completeness



Two approaches to multiobjective
optimisation
• Weighted sum (scalarisation):

• transform into a single objective optimisation method
• compute a weighted sum of the different objectives

• A set of multi-objective solutions (Pareto front):
• The population-based nature of EAs used to simultaneously search 

for a set of points approximating Pareto front



Comparing solutions
• Optimisation task:

Minimize both f1 and f2

• Then:
a is better than b
a is better than c
a is worse than e
a and d are incomparable

Objective space



Dominance relation
• Solution x dominates solution y, (x ≤ y), if:

• x is better than y in at least one objective,
• x is not worse than y in all other objectives

solutions 
dominated 

by x

solutions 
dominating 

x



Dominance relation
• Who is c dominated by?
• Who does e dominate?

Objective space



Pareto optimality
• Solution x is non-dominated among a set of solutions Q if no 

solution from Q dominates x

• A set of non-dominated solutions from the entire feasible 
solution space is the Pareto set, or Pareto front, its members 
Pareto-optimal solutions



f1(x)

f2(x)
min

min

Which are non-dominated?



f1(x)

f2(x)
min

min

Which are non-dominated?



Goal of multiobjective optimisers
• Find a set of non-dominated solutions (approximation set)

following the criteria of:
• convergence (as close as possible to the Pareto-optimal front),
• diversity (spread, distribution)



EC approach:
Requirements
1. Way of assigning fitness and selecting individuals, 

• usually based on dominance

2. Preservation of a diverse set of points
• similarities to multi-modal problems

3. Remembering all the non-dominated points you have seen
• usually using elitism or an archive



EC approach: 
1. Selection

• Could use aggregating approach and change weights during 
evolution

• Different parts of population use different criteria
• no guarantee of diversity

• Dominance (made a breakthrough for MOEA)
• ranking or depth based
• fitness related to whole population



Example: Dominance Ranking in NSGA-II

Figure from Clune, Mouret & Lipson (2013): “The evolutionary origins of modularity”



EC approach:
2. Diversity maintenance
• Aim: Evenly distributed population along the Pareto front
• Usually done by niching techniques such as:

• fitness sharing
• adding amount to fitness based on inverse distance to nearest neighbour

• All rely on some distance metric in genotype / phenotype / 
objective space



EC approach:
3. Remembering Good Points

• Could just use an elitist algorithm

• Common to maintain an archive of non-dominated points
• some algorithms use this as a second population that can be in 

recombination etc.



Multi objective problems - Summary

• MO problems occur very frequently 

• EAs are very good at solving MO problems

• MOEAs are one of the most successful EC subareas 



Multiobjective Optimization- Example



Population

Mutation & 
Crossover

Fitness 
Evaluation

NSGA-II 
Selection

1. Decode genotype into plan

[A, B, C, D]  ->  
A

B

C

D



Population

Mutation & 
Crossover

Fitness 
Evaluation

NSGA-II 
Selection

1. Decode genotype into plan
2. Estimate energy usage

-Any edges introducing a collision are penalized
by adding a constant term to their energy usage



Population

Mutation & 
Crossover

Fitness 
Evaluation

NSGA-II 
Selection

1. Decode genotype into plan
2. Calculate energy usage
3. Estimate coverage:

- Estimate all geometric primitives covered by each 
edge in the plan

- Calculate the total area of covered primitives
- Coverage score = 



AUV Inspection Plans After 1000 
Generations of NSGA-II
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