
IN3050/IN4050 -
Introduction to
Artificial Intelligence
and Machine Learning
Lecture 6:
Perceptron and Linear Regression

Jan Tore Lønning

6.1 Overview
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

2

This week: Two main themes

• Assign a numerical value to an
observation

3

Perceptron (classifier) Linear Regression

In addition: Vectors, matrices, NumPy

• Efficient code: both writing and execution
• A@B can replace three nested loops

• GPUs – parallel processing

• NumPy:
• Based on vectors and matrices

• Used by Marsland

• Libraries for ML, including Deep Learning

• Necessary for a deeper understanding
• in particular, of complex neural networks

• Tensor generalizes vectors and matrices

4

Overview

5

6.2 Brain and the
perceptron

6.3 The perceptron
algorithm

A.1 Vectors

A.2 Matrices

6.4 Linear regression

6.5 Gradient descent

Slides
Lecture 06

Slides
V&M

Compendium
“Geometry
and Linear
Algebra”

6.2 The Brain and the Perceptron
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

6

Inspiration for AI and ML

• Psychology
• Ask people how they think

• Observe how humans behave

• Logic
• How should you think

• ‘’Hardware’’:
• ‘’If we want to make a machine replicating humans, it should be built on

similar hardware’’

• … and more …

7

The human brain

Rough figures

• 1.5 kilos

• 1011 Neurons
• cells

• 1014 Synapses
• connections between neurons

• Clock time: 10−3 seconds
• Compared to computer:

1 GHz = 10−9 seconds

8

"Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2).
DOI:10.15347/wjm/2014.010. ISSN 2002-4436.

https://commons.wikimedia.org/w/index.php?curid=31574253

Neuron

9

https://simple.wikipedia.org/wiki/Neuron#/media/File:Neuron.svg

• Axon
• Transports signals to other cells

• Dendrites
• Receive signals from other cells'

axons at the synapses

• Soma (cell body):
• "Sums" the signals from the dendrites

• When membrane potential passes a
threshold,

• an action potential is sent down the
axon, the cell "spikes" or "fires"

https://simple.wikipedia.org/wiki/Neuron#/media/File:Neuron.svg

Hebb's rule

• Donald O. Hebb:
The Organization of Behavior (1949)
• Goal: The connections between behavior and

neural activity

• Terje Lømo, UiO, 1966
• Long-term potentiation

• empirical confirmation

10

When an axon of cell A is near enough to excite cell B
and repeatedly or persistently takes part in firing it,
some growth process or metabolic change takes place
in one or both cells such that A's efficiency, as one of
the cells firing B, is increased

https://thebrain.mcgill.ca/flash/i/i_07/i_07_cl/i_07_cl_tra/i_07_cl_tra.html

https://thebrain.mcgill.ca/flash/i/i_07/i_07_cl/i_07_cl_tra/i_07_cl_tra.html

McCulloch and Pitts

• Warren S. McCulloch and Walter Pitts, 1943:
• "A Logical Calculus of the Ideas Immanent in

Nervous Activity"

• A formal simplified model of neurons

• Showed how networks of these neurons could
correspond to logical formulas

11

W.S. McCulloch b. 1898

W. Pitts b. 1923

The Perceptron

• Frank Rosenblatt, 1958

• A learning algorithm,
• which we will consider

• A custom-built machine
• based on this algorithm

• for image recognition

12
https://en.wikipedia.org/wiki/File:Mark_I_perceptron.jpeg

https://en.wikipedia.org/wiki/File:Mark_I_perceptron.jpeg

The Perceptron

1. A set of inputs: 𝑥1, 𝑥2, … 𝑥𝑚
2. A set of weights: 𝑤1, 𝑤2, …𝑤𝑚
3. An adder:

ℎ =෍

𝑖=1

𝑚

𝑤𝑖𝑥𝑖 = 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑚𝑥𝑚

4. An activation function,
Originally a step function:

13

𝑜 = 𝑔 ℎ = ቊ
1 𝑖𝑓 ℎ > 𝜃
0 𝑖𝑓 ℎ ≤ 𝜃

6.3 The Perceptron Algorithm
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

14

The Perceptron

1. A set of inputs: 𝑥1, 𝑥2, … 𝑥𝑚
2. A set of weights: 𝑤1, 𝑤2, …𝑤𝑚
3. An adder:

ℎ =෍

𝑖=1

𝑚

𝑤𝑖𝑥𝑖 = 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑚𝑥𝑚

4. An activation function,
Originally a step function:

15

𝑜 = 𝑔 ℎ = ቊ
1 𝑖𝑓 ℎ > 𝜃
0 𝑖𝑓 ℎ ≤ 𝜃

• Consider the simplest situation with only one input: 𝑥1
• Assume we have a fixed threshold, say 𝜃 = 1

• Let blue be the positive class, and red the negative class

• We see that the positive class corresponds to 𝑥1 > 3, or
1

3
𝑥1 > 1

• So 𝑤1 =
1

3
will yield the desired outcome: 𝑤1𝑥1 > 1 iff 𝑥1 > 3

Adjusting the threshold - example

16

• Assume the same fixed threshold, say 𝜃 = 1

• Let blue be the positive class, and red the negative class

• We see that now the positive class corresponds to 𝑥1 < 3

• But there is no 𝑤1 such that 𝑥1 < 3 if and only if 𝑤1𝑥1 > 1

• If we instead can change the threshold to 𝜃 = −1, we see that

• 𝑥1 < 3 if and only if 𝑤1𝑥1 > −1 if 𝑤1 = −
1

3

• Conclusion: We must change the threshold as well as the weights

Adjusting the threshold – example contd.

17

The Bias Term

Since:

• σ𝑖=1
𝑚 𝑤𝑖𝑥𝑖 > 𝜃 is the same as

• σ𝑖=1
𝑚 𝑤𝑖𝑥𝑖 − 𝜃 > 0, is the same as

• σ𝑖=1
𝑚 𝑤𝑖𝑥𝑖 −𝑤0𝑥0 = σ𝑖=0

𝑚 𝑤𝑖𝑥𝑖 > 0
• Provided 𝑥0 = −1 (and 𝑤0 = 𝜃)

We can

• add a new feature 𝑥0 = −1 for all items

• Replace (𝑥1, 𝑥2, … , 𝑥𝑛) with (−1, 𝑥1, 𝑥2, … , 𝑥𝑛)

• Replace σ𝑖=1
𝑚 𝑤𝑖𝑥𝑖 > 𝜃 with ℎ = σ𝑖=0

𝑚 𝑤𝑖𝑥𝑖 > 0

18

Redefined objective

Geometric understanding

• Find a line 𝑤1𝑥1 + 𝑤0𝑥0 = 0
• such that ℎ −1, 𝑥1 = 𝑤1𝑥1 +𝑤0𝑥0 = 𝑤1𝑥1 − 𝑤0 > 0
• if and only if 𝑥1 < 3

19

Training one perceptron

1. Initialize: set all weights to small
random numbers, 𝑤0, 𝑤1, …𝑤𝑚

2. Repeat until <some criteria>:
Consider one training instance
• Inputs: 𝑥0, 𝑥1, … 𝑥𝑚
• Label: 𝑡, which is 1 or 0
• Calculate the output of the perceptron

𝑦 = 𝑜 = 𝑔 σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖

• If 𝑦 = 𝑡, do nothing, if 𝑦 ≠ 𝑡, update weights

20

−𝑤0

Update weights

if 𝑡 = 1, 𝑦 = 0

• increase σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖

• by increasing each 𝑤𝑖𝑥𝑖:
• if 𝑥𝑖 > 0: increase 𝑤𝑖

• if 𝑥𝑖 < 0: decrease 𝑤𝑖

• 𝑤𝑖 = 𝑤𝑖 + 𝜂𝑥𝑖
• cover both cases

if 𝑡 = 0, 𝑦 = 1

• decrease σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖

• by decreasing each 𝑤𝑖𝑥𝑖:
• if 𝑥𝑖 > 0: decrease 𝑤𝑖

• if 𝑥𝑖 < 0: increase 𝑤𝑖

• 𝑤𝑖 = 𝑤𝑖 − 𝜂𝑥𝑖

21

𝜂 > 0 is the fixed learning rate

𝑤𝑖 = 𝑤𝑖 + η(𝑡 − 𝑦)𝑥𝑖 = 𝑤𝑖 − η(𝑦 − 𝑡)𝑥𝑖
(covers all cases)

−𝑤0

Example

• We are in the middle
of training

• Learning rate: 𝜂 = 0.1
• We have so far, the following

weights for the decisions:
• Positive class provided
ℎ = −𝑤0 +𝑤1𝑥1 = 1 − 𝑥1 > 0
• i.e., 𝑤0 = −1 and 𝑤1 = −1

22

• Consider the point P=(-1,2):
• ℎ 𝑃 = 1 − 2 < 0
• Wrongly classified
• Update:

• 𝑤0 = 𝑤0 − η 𝑦 − 𝑡 𝑥0 =
−1 − 0.1 0 − 1 −1 = −1.1

• 𝑤1 = 𝑤1 − η 𝑦 − 𝑡 𝑥1 =
−1 − 0.1 0 − 1 2 = −0.8

• Consider the point T=(-1,4.6):
• ℎ 𝑇 = 1 − 4.6 < 0

• Do nothing

Example

• We are in the middle
of training

• Learning rate: 𝜂 = 0.1
• We have so far, the following

weights for the decisions:
• Positive class provided
ℎ = −𝑤0 +𝑤1𝑥1 = 1 − 𝑥1 > 0
• i.e., 𝑤0 = −1 and 𝑤1 = −1

23

• Consider the point P=(-1,2):
• ℎ 𝑃 = 1 − 2 < 0
• Wrongly classified
• Update:

• 𝑤0 = 𝑤0 − η 𝑦 − 𝑡 𝑥0 =
−1 − 0.1 0 − 1 −1 = −1.1

• 𝑤1 = 𝑤1 − η 𝑦 − 𝑡 𝑥1 =
−1 − 0.1 0 − 1 2 = −0.8

• Consider the point T=(-1,4.6):
• ℎ 𝑇 = 1 − 4.6 < 0

• Do nothing

1 − 𝑥1 = 0 0.8 − 1.1𝑥1 = 0

Observe

• Many possible solutions
• 𝑤0 = −1.1,𝑤1= −0.8

• 𝑤0 = −2.2,𝑤1= −1.6

• 𝑤0 = −5.5,𝑤1= −4.0

• Same line

• Same classifier

24

• But
• 𝑤0 = 1.1,𝑤1= 0.8

• Same line

• But swaps the two classes!

1 − 𝑥1 = 0 0.8 − 1.1𝑥1 = 0

Properties

• With only one training item
• the algorithm will sooner or later

classify the item correctly

• and no longer update

• When there are several training
items, there might be
disagreement:
• one item will increase a certain

weight 𝑤𝑖

• another item will decrease it

• What then?

25

Linear separability

• A set is linearly separable if
there is a straight line in the
feature plane such that all points
in one class fall on one side and
all points in the other class fall at
the other side

• For more than two features, this
generalizes to a hyper-plane

• (With one dimension to a point,
cf. the example so far)

26

Linear classifier

• A linear classifier will always
propose a linear decision
boundary
• (point, line, plane, hyper-plane)

• whether the set is linearly
separable or not

• The perceptron is a linear
classifier

27

Perceptron Convergence Theorem

• If the training set is linearly
separable, the perceptron
algorithm will (sooner or later)
• find a linear decision boundary
• stop updating

• Unless the learning rate 𝜂 is too
large

• Comment:
• There are normally more than one

solution, which generalizes
differently to test data

28

Perceptron summary

• The brain, neuron and synapsis

• The bias term

• The perceptron algorithm

• Linear classifiers

• Linear separability

29

IN3050/IN4050 -
Introduction to
Artificial Intelligence
and Machine Learning
Lecture 6 – 2020

Linear regression

Jan Tore Lønning

6.4 Linear Regression
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

31

Supervised learning – two types

• Assign a label (class) from a
finite set of labels to an
observation

• Assign a numerical value to an
observation
• e.g., the temperature tomorrow

32

Classification Regression

?

Supervised learning

• Each observation (datapoint) is described as a feature vector
• 𝒙𝑗 = 𝑥𝑗,1, 𝑥𝑗,2, … , 𝑥𝑗,𝑚
• The "input"

• There is a well-defined set of possible target values, T

• The goal is for an input to predict a target value 𝑓(𝒙𝑗) from T

• For supervised learning, we have a training set
• 𝒙1, 𝑡1 , 𝒙2, 𝑡2 , … 𝒙𝑁 , 𝑡𝑁

• We try to learn the function 𝑓 from the training set

33

Regression

• In classification, the target set is a set of categories:
• The goal is to predict one of these.

• In regression, the target set is real numbers:
• The goal is to predict a 𝑦𝑗 = 𝑓(𝒙𝑗) which is close to the true 𝑡𝑗

• It is a general problem of function approximation:
• working out the value between values that we know

34

An example from Marsland

• Given, the following data, can
we find the value of the output
when x = 0.44?

35

Linear regression

• We need some idea regarding
the kind of functions we are
looking for

• The simplest is to assume a
linear function
• 𝑓 𝒙 = 𝑓 (𝑥1, 𝑥2, … , 𝑥𝑚) =
𝑤0 + 𝑤1𝑥1 +𝑤2𝑥2 +…𝑤𝑚𝑥𝑚

36

Of course, this isn't always a good fit, but linear regression may also
be adopted to some non-linear functions by feature engineering.

Inductive bias (read Daumé: ciml)

• To learn from data, you must
have some idea regarding how
the data are distributed.

• You choose a model.

• You try to find parameters which
makes the model fit the training
data well.

• Models carry with them
inductive biases, e.g.,
• Linear regression can only learn

straight lines.

• Perceptron can only learn linear
decision boundaries

37

Linear regression

• When there is only one input
variable
• called simple linear regression

• 𝑓 𝑥1 = 𝑤0 +𝑤1𝑥1
• a straight line

• easy to draw

• In the general case
• 𝑓 𝒙 = 𝑤0 +𝑤1𝑥1 +𝑤2𝑥2 +…𝑤𝑚𝑥𝑚
• describes a hyper-plane

• harder to draw

38

Notation

• 𝑓 𝒙 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 +…𝑤𝑚𝑥𝑚
• Often used notation:

• 𝑓 𝒙 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +…𝛽𝑚𝑥𝑚
• The 𝛽𝑖-s are parameters of the model

• 𝛽1, 𝛽2𝑥2, …𝛽𝑚called coefficients

• 𝛽0 called intercept

• We have used 𝑤𝑖 for weights

• We will assume a 𝑥0 = 1 (bias)

39

Mean Square Error (MSE)

• We need a way to tell whether a
line is a good fit to the data, and
whether one line is better than
another

•
1

𝑁
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

• The goal is to minimize this error.

40

MSE in 3D

• With two input variables, we are
trying to find a plane.

• The MSE is similar

•
1

𝑁
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

41Trevor Hastie et al, The Elements of Statistical Learning

Footnote: variants

• Root Mean Square Error(RMSE):

•
1

𝑁
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

• MSE:
1

𝑁
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

• SE: σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

•
1

2
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

• They all have reach minimum for
the same values of 𝑥𝑖-s and 𝑤𝑖-s.

• RMSE has the ’’right scale’’, but
not suited for finding min.

• Mean (MSE or RMSE) is needed
for comparison across different
training/test sets

42

Goal

• The goal is to find the 𝑤0, 𝑤1, … 𝑤𝑚 that minimizes the MSE

1

𝑁
෍

𝑗=1

𝑁

𝑡𝑗 −෍

𝑖=0

𝑚

𝑤𝑖𝑥𝑗𝑖

2

43

Minimizing: one variable

• We assume you know how to
minimize with one variable:

• 𝑓 𝑥 = (𝑥 − 3)2+2

• 𝑓′(𝑥) = 2 𝑥 − 3

• 𝑓′(𝑥) = 0 iff 𝑥 = 3

44

The minimization problem

• (Here as a maximization
problem, ‘’upside-down’’, easier
to draw.)

• Looking for a point where the
tangent plane is horizontal:
• Where all the derivatives are 0

• The MSE is convex:
• There is only one global minimum

• No problem with local optima

45

https://en.wikipedia.org/wiki/File:Maximum_tangentplane_boxed.png

Tangent plane

• Just like the derivative in 2D
determines a tangent to the curve,

• the partial derivatives in more
dimensions determines tangents to
the surface parallel to the axes

• These tangents together determine
a tangent (hyper-)plane to the
surface

• It is the steepest direction in this
plane, we follow when we follow
gradient ascent/descent.

46

Picture source

https://math.libretexts.org/Courses/Mount_Royal_University/MATH_3200:_Mathematical_Methods/6:__Differentiation_of_Functions_of_Several_Variables/6.4:__Tangent_Planes_and_Linear_Approximations

Partial derivatives

• We assume you know
• If 𝑓 𝑥 = 𝑎 + 𝑏𝑥 2, then

• 𝑓′ 𝑥 =
𝑑

𝑑𝑥
𝑓 𝑥 = 2 𝑎 + 𝑏𝑥 𝑏

• Extended to more dimensions,
we can construct partial
derivatives, e.g.
• 𝑔 𝑥, 𝑦 = (𝑎 + 𝑏𝑥 + 𝑐𝑦)2

•
𝜕

𝜕𝑥
𝑔 𝑥, 𝑦 = 2 𝑎 + 𝑏𝑥 + 𝑐𝑦 𝑏

•
𝜕

𝜕𝑦
𝑔 𝑥, 𝑦 = 2 𝑎 + 𝑏𝑥 + 𝑐𝑦 𝑐

47

https://www.wikihow.com/Image:OyXsh.png

Minimizing the MSE

• To minimize 𝑓 =
1

𝑁
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

with respect to the 𝑤0, 𝑤1, … 𝑤𝑚

• we can calculate the partial derivatives

•
𝜕

𝜕𝑤𝑘
𝑓 =

2

𝑁
σ𝑗=1
𝑁 (𝑡𝑗 −σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖)(−𝑥𝑗,𝑘) for 𝑘 = 1, 2, … ,𝑚

•
𝜕

𝜕𝑤𝑘
𝑓 =

2

𝑁
σ𝑗=1
𝑁 (𝑡𝑗 − 𝑦𝑗)(−𝑥𝑗,𝑘) for 𝑘 = 1, 2,… ,𝑚

• (Observe that this is just a generalization of

•
𝜕

𝜕𝑥
𝑔 𝑥, 𝑦 = 2 𝑎 + 𝑏𝑥 + 𝑐𝑦 𝑏)

48

Closed form solution

• To minimize 𝑓 =
1

𝑁
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗𝑖
2

• We can set these partial derivatives to equal 0:
𝜕

𝜕𝑤𝑘
𝑓 =

2

𝑁
σ𝑗=1
𝑁 (𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗𝑖)(−𝑥𝑗𝑘) = 0, for 𝑘 = 1, 2, … ,𝑚

• We get m many linear equations of m unknown 𝑤𝑖-s

• We know how to solve such a system.

49

Some good and some bad news

• This has a closed form solution, i.e., there is a recipe for calculating
the solution:
• This works fine for low dimensions (few features for each observation)

• But it gets slow for more dimensions.
• Standard algorithms are 𝑂(𝑚3) where m is the number of dimensions.

• In ML we may have millions of features/dimensions

• And since it does not require ML, we will not go into it.

• But we can always use gradient descent – next video!

50

6.5 Applying Gradient Descent
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

51

Gradient descent in one variable

• (Lecture 2)

• Start with 𝑥0
• Iteratively find, 𝑥1, 𝑥2,.., 𝑥𝑖,…

with decreasing 𝑓(𝑥𝑖) by setting

• 𝑥𝑖+1 = 𝑥𝑖 − 𝛾𝑓′(𝑥𝑖)

• 𝛾 is the learning rate

52

The gradient in more dimensions

• We move in the opposite
direction of the gradient.

53

Minimizing the MSE

• To minimize 𝑓 =
1

𝑁
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

with respect to the 𝑤0, 𝑤1, … 𝑤𝑚

• we can calculate the partial derivatives

•
𝜕

𝜕𝑤𝑘
𝑓 =

2

𝑁
σ𝑗=1
𝑁 (𝑡𝑗 −σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖)(−𝑥𝑗,𝑘) for 𝑘 = 1, 2, … ,𝑚

•
𝜕

𝜕𝑤𝑘
𝑓 =

2

𝑁
σ𝑗=1
𝑁 (𝑡𝑗 − 𝑦𝑗)(−𝑥𝑗,𝑘) for 𝑘 = 1, 2,… ,𝑚

• (Observe that this is just a generalization of

•
𝜕

𝜕𝑥
𝑔 𝑥, 𝑦 = 2 𝑎 + 𝑏𝑥 + 𝑐𝑦 𝑏)

54

Prediction (matrix form)

55

𝑦𝑗 = 𝑦𝑗,1 = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑗,𝑖 = (𝑥𝑗,0, 𝑥𝑗,1, … , 𝑥𝑗,𝑚) ∙ (𝑤0,1, 𝑤1,1, … , 𝑤𝑚,1)

The gradient

56

𝜕

𝜕𝑤𝑘
𝑓 =

2

𝑁
෍

𝑗=1

𝑁

(𝑡𝑗 − 𝑦𝑗)(−𝑥𝑗,𝑘)

Implementing the gradient descent

• Input:
• 𝑋, input, a 𝑁 ×𝑚 NumPy matrix:

• N items, m features

• 𝑇, corresponding target values,
• 𝑁 × 1 column vector

• (maybe it is given as a vector of
length 𝑁 and must be transformed)

• Make a weight matrix, 𝑊,
• 𝑁 × 1 column vector

• Forward step:
• 𝑌 = 𝑋@𝑊

• Update step:
• 𝑊 = 𝑊 − 𝛾∇𝑓

• 𝑊 −= 𝛾𝑋. 𝑇(𝑌 − 𝑇)

• (𝛾 is a learning rate)

57

Summary

• Linear regression

• Inductive bias

• Mean Square Error

• Minimizing the MSE

• Using Gradient Descent

• in Matrix form

58

