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This week: Two main themes

• Assign a numerical value to an 
observation
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Perceptron (classifier) Linear Regression



In addition: Vectors, matrices, NumPy

• Efficient code: both writing and execution
• A@B can replace three nested loops

• GPUs – parallel processing

• NumPy:
• Based on vectors and matrices

• Used by Marsland

• Libraries for ML, including Deep Learning

• Necessary for a deeper understanding
• in particular, of complex neural networks

• Tensor generalizes vectors and matrices
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6.2 The Brain and the Perceptron
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Inspiration for AI and ML

• Psychology
• Ask people how they think

• Observe how humans behave

• Logic
• How should you think

• ‘’Hardware’’:
• ‘’If we want to make a machine replicating humans, it should be built on 

similar hardware’’

• … and more …
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The human brain

Rough figures

• 1.5 kilos

• 1011 Neurons 
• cells

• 1014 Synapses 
• connections between neurons

• Clock time: 10−3 seconds
• Compared to computer:

1 GHz = 10−9 seconds
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"Medical gallery of Blausen Medical 2014". WikiJournal of Medicine 1 (2). 
DOI:10.15347/wjm/2014.010. ISSN 2002-4436. 

https://commons.wikimedia.org/w/index.php?curid=31574253


Neuron
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https://simple.wikipedia.org/wiki/Neuron#/media/File:Neuron.svg

• Axon
• Transports signals to other cells

• Dendrites
• Receive signals from other cells' 

axons at the synapses

• Soma (cell body):
• "Sums" the signals from the dendrites

• When membrane potential passes a 
threshold, 

• an action potential is sent down the 
axon, the cell "spikes" or "fires"

https://simple.wikipedia.org/wiki/Neuron#/media/File:Neuron.svg


Hebb's rule

• Donald O. Hebb: 
The Organization of Behavior (1949)
• Goal: The connections between behavior and 

neural activity

• Terje Lømo, UiO, 1966
• Long-term potentiation

• empirical confirmation

10

When an axon of cell A is near enough to excite cell B 
and repeatedly or persistently takes part in firing it, 
some growth process or metabolic change takes place 
in one or both cells such that A's efficiency, as one of 
the cells firing B, is increased

https://thebrain.mcgill.ca/flash/i/i_07/i_07_cl/i_07_cl_tra/i_07_cl_tra.html

https://thebrain.mcgill.ca/flash/i/i_07/i_07_cl/i_07_cl_tra/i_07_cl_tra.html


McCulloch and Pitts

• Warren S. McCulloch and Walter Pitts, 1943: 
• "A Logical Calculus of the Ideas Immanent in 

Nervous Activity"

• A formal simplified model of neurons

• Showed how networks of these neurons could 
correspond to logical formulas
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W.S. McCulloch b. 1898

W. Pitts b. 1923



The Perceptron

• Frank Rosenblatt, 1958

• A learning algorithm, 
• which we will consider

• A custom-built machine 
• based on this algorithm

• for image recognition

12
https://en.wikipedia.org/wiki/File:Mark_I_perceptron.jpeg

https://en.wikipedia.org/wiki/File:Mark_I_perceptron.jpeg


The Perceptron

1. A set of inputs: 𝑥1, 𝑥2, … 𝑥𝑚
2. A set of weights: 𝑤1, 𝑤2, …𝑤𝑚
3. An adder:

ℎ =෍

𝑖=1

𝑚

𝑤𝑖𝑥𝑖 = 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑚𝑥𝑚

4. An activation function,
Originally a step function:
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𝑜 = 𝑔 ℎ = ቊ
1 𝑖𝑓 ℎ > 𝜃
0 𝑖𝑓 ℎ ≤ 𝜃



6.3 The Perceptron Algorithm
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The Perceptron

1. A set of inputs: 𝑥1, 𝑥2, … 𝑥𝑚
2. A set of weights: 𝑤1, 𝑤2, …𝑤𝑚
3. An adder:

ℎ =෍

𝑖=1

𝑚

𝑤𝑖𝑥𝑖 = 𝑤1𝑥1 +𝑤2𝑥2 +⋯+𝑤𝑚𝑥𝑚

4. An activation function,
Originally a step function:
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𝑜 = 𝑔 ℎ = ቊ
1 𝑖𝑓 ℎ > 𝜃
0 𝑖𝑓 ℎ ≤ 𝜃



• Consider the simplest situation with only one input: 𝑥1
• Assume we have a fixed threshold, say 𝜃 = 1

• Let blue be the positive class, and red the negative class

• We see that the positive class corresponds to 𝑥1 > 3, or 
1

3
𝑥1 > 1

• So 𝑤1 =
1

3
will yield the desired outcome: 𝑤1𝑥1 > 1 iff 𝑥1 > 3

Adjusting the threshold - example
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• Assume the same fixed threshold, say 𝜃 = 1

• Let blue be the positive class, and red the negative class

• We see that now the positive class corresponds to 𝑥1 < 3

• But there is no 𝑤1 such that 𝑥1 < 3 if and only if 𝑤1𝑥1 > 1

• If we instead can change the threshold to 𝜃 = −1, we see that

• 𝑥1 < 3 if and only if 𝑤1𝑥1 > −1 if 𝑤1 = −
1

3

• Conclusion: We must change the threshold as well as the weights

Adjusting the threshold – example contd.

17



The Bias Term

Since:

• σ𝑖=1
𝑚 𝑤𝑖𝑥𝑖 > 𝜃 is the same as

• σ𝑖=1
𝑚 𝑤𝑖𝑥𝑖 − 𝜃 > 0, is the same as

• σ𝑖=1
𝑚 𝑤𝑖𝑥𝑖 −𝑤0𝑥0 = σ𝑖=0

𝑚 𝑤𝑖𝑥𝑖 > 0
• Provided 𝑥0 = −1 (and 𝑤0 = 𝜃)

We can

• add a new feature 𝑥0 = −1 for all items

• Replace (𝑥1, 𝑥2, … , 𝑥𝑛) with (−1, 𝑥1, 𝑥2, … , 𝑥𝑛)

• Replace σ𝑖=1
𝑚 𝑤𝑖𝑥𝑖 > 𝜃 with ℎ = σ𝑖=0

𝑚 𝑤𝑖𝑥𝑖 > 0
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Redefined objective

Geometric understanding

• Find a line 𝑤1𝑥1 + 𝑤0𝑥0 = 0
• such that ℎ −1, 𝑥1 = 𝑤1𝑥1 +𝑤0𝑥0 = 𝑤1𝑥1 − 𝑤0 > 0
• if and only if 𝑥1 < 3

19



Training one perceptron

1. Initialize: set all weights to small 
random numbers, 𝑤0, 𝑤1, …𝑤𝑚

2. Repeat until <some criteria>:
Consider one training instance
• Inputs: 𝑥0, 𝑥1, … 𝑥𝑚
• Label: 𝑡, which is 1 or 0
• Calculate the output of the perceptron

𝑦 = 𝑜 = 𝑔 σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖

• If 𝑦 = 𝑡, do nothing, if 𝑦 ≠ 𝑡, update weights

20

−𝑤0



Update weights

if 𝑡 = 1, 𝑦 = 0

• increase σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖

• by increasing each 𝑤𝑖𝑥𝑖:
• if 𝑥𝑖 > 0: increase 𝑤𝑖

• if 𝑥𝑖 < 0: decrease 𝑤𝑖

• 𝑤𝑖 = 𝑤𝑖 + 𝜂𝑥𝑖
• cover both cases

if 𝑡 = 0, 𝑦 = 1

• decrease σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖

• by decreasing each 𝑤𝑖𝑥𝑖:
• if 𝑥𝑖 > 0: decrease 𝑤𝑖

• if 𝑥𝑖 < 0: increase 𝑤𝑖

• 𝑤𝑖 = 𝑤𝑖 − 𝜂𝑥𝑖

21

𝜂 > 0 is the fixed learning rate 

𝑤𝑖 = 𝑤𝑖 + η(𝑡 − 𝑦)𝑥𝑖 = 𝑤𝑖 − η(𝑦 − 𝑡)𝑥𝑖
(covers all cases)

−𝑤0



Example

• We are in the middle
of training

• Learning rate: 𝜂 = 0.1
• We have so far, the following 

weights for the decisions:
• Positive class provided
ℎ = −𝑤0 +𝑤1𝑥1 = 1 − 𝑥1 > 0
• i.e., 𝑤0 = −1 and 𝑤1 = −1

22

• Consider the point P=(-1,2):
• ℎ 𝑃 = 1 − 2 < 0
• Wrongly classified
• Update:

• 𝑤0 = 𝑤0 − η 𝑦 − 𝑡 𝑥0 =
−1 − 0.1 0 − 1 −1 = −1.1

• 𝑤1 = 𝑤1 − η 𝑦 − 𝑡 𝑥1 =
−1 − 0.1 0 − 1 2 = −0.8

• Consider the point T=(-1,4.6):
• ℎ 𝑇 = 1 − 4.6 < 0

• Do nothing



Example

• We are in the middle
of training

• Learning rate: 𝜂 = 0.1
• We have so far, the following 

weights for the decisions:
• Positive class provided
ℎ = −𝑤0 +𝑤1𝑥1 = 1 − 𝑥1 > 0
• i.e., 𝑤0 = −1 and 𝑤1 = −1
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• Consider the point P=(-1,2):
• ℎ 𝑃 = 1 − 2 < 0
• Wrongly classified
• Update:

• 𝑤0 = 𝑤0 − η 𝑦 − 𝑡 𝑥0 =
−1 − 0.1 0 − 1 −1 = −1.1

• 𝑤1 = 𝑤1 − η 𝑦 − 𝑡 𝑥1 =
−1 − 0.1 0 − 1 2 = −0.8

• Consider the point T=(-1,4.6):
• ℎ 𝑇 = 1 − 4.6 < 0

• Do nothing

1 − 𝑥1 = 0 0.8 − 1.1𝑥1 = 0



Observe

• Many possible solutions
• 𝑤0 = −1.1,𝑤1= −0.8

• 𝑤0 = −2.2,𝑤1= −1.6

• 𝑤0 = −5.5,𝑤1= −4.0

• Same line

• Same classifier

24

• But
• 𝑤0 = 1.1,𝑤1= 0.8

• Same line

• But swaps the two classes!

1 − 𝑥1 = 0 0.8 − 1.1𝑥1 = 0



Properties

• With only one training item
• the algorithm will sooner or later 

classify the item correctly

• and no longer update

• When there are several training 
items, there might be 
disagreement:
• one item will increase a certain 

weight 𝑤𝑖

• another item will decrease it

• What then?
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Linear separability

• A set is linearly separable if 
there is a straight line in the 
feature plane such that all points 
in one class fall on one side and 
all points in the other class fall at 
the other side

• For more than two features, this 
generalizes to a hyper-plane

• (With one dimension to a point, 
cf. the example so far)

26



Linear classifier

• A linear classifier will always 
propose a linear decision 
boundary
• (point, line, plane, hyper-plane)

• whether the set is linearly 
separable or not

• The perceptron is a linear 
classifier

27



Perceptron Convergence Theorem

• If the training set is linearly 
separable, the perceptron 
algorithm will (sooner or later)
• find a linear decision boundary
• stop updating

• Unless the learning rate 𝜂 is too 
large

• Comment:
• There are normally more than one 

solution, which generalizes 
differently to test data

28



Perceptron summary

• The brain, neuron and synapsis

• The bias term

• The perceptron algorithm

• Linear classifiers

• Linear separability
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6.4 Linear Regression
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Supervised learning – two types

• Assign a label (class) from a 
finite set of labels to an 
observation

• Assign a numerical value to an 
observation
• e.g., the temperature tomorrow

32

Classification Regression

?



Supervised learning

• Each observation (datapoint) is described as a feature vector
• 𝒙𝑗 = 𝑥𝑗,1, 𝑥𝑗,2, … , 𝑥𝑗,𝑚
• The "input"

• There is a well-defined set of possible target values, T

• The goal is for an input to predict a target value 𝑓(𝒙𝑗) from T

• For supervised learning, we have a training set
• 𝒙1, 𝑡1 , 𝒙2, 𝑡2 , … 𝒙𝑁 , 𝑡𝑁

• We try to learn the function 𝑓 from the training set

33



Regression

• In classification, the target set is a set of categories: 
• The goal is to predict one of these.

• In regression, the target set is real numbers:
• The goal is to predict a 𝑦𝑗 = 𝑓(𝒙𝑗) which is close to the true 𝑡𝑗

• It is a general problem of function approximation:
• working out the value between values that we know

34



An example from Marsland

• Given, the following data, can 
we find the value of the output 
when x = 0.44?
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Linear regression

• We need some idea regarding 
the kind of functions we are 
looking for

• The simplest is to assume a 
linear function
• 𝑓 𝒙 = 𝑓 (𝑥1, 𝑥2, … , 𝑥𝑚) =
𝑤0 + 𝑤1𝑥1 +𝑤2𝑥2 +…𝑤𝑚𝑥𝑚

36

Of course, this isn't always a good fit, but linear regression may also 
be adopted to some non-linear functions by feature engineering.



Inductive bias (read Daumé: ciml)

• To learn from data, you must 
have some idea regarding how 
the data are distributed.

• You choose a model.

• You try to find parameters which 
makes the model fit the training 
data well.

• Models carry with them 
inductive biases, e.g.,
• Linear regression can only learn 

straight lines.

• Perceptron can only learn linear 
decision boundaries

37



Linear regression

• When there is only one input 
variable
• called simple linear regression

• 𝑓 𝑥1 = 𝑤0 +𝑤1𝑥1
• a straight line

• easy to draw

• In the general case
• 𝑓 𝒙 = 𝑤0 +𝑤1𝑥1 +𝑤2𝑥2 +…𝑤𝑚𝑥𝑚
• describes a hyper-plane

• harder to draw

38



Notation

• 𝑓 𝒙 = 𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2 +…𝑤𝑚𝑥𝑚
• Often used notation:

• 𝑓 𝒙 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +…𝛽𝑚𝑥𝑚
• The 𝛽𝑖-s are parameters of the model

• 𝛽1, 𝛽2𝑥2, …𝛽𝑚called coefficients

• 𝛽0 called intercept

• We have used 𝑤𝑖 for weights

• We will assume a 𝑥0 = 1 (bias)

39



Mean Square Error (MSE)

• We need a way to tell whether a 
line is a good fit to the data, and 
whether one line is better than 
another

•
1

𝑁
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

• The goal is to minimize this error.

40



MSE in 3D

• With two input variables, we are 
trying to find a plane.

• The MSE is similar 

•
1

𝑁
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

41Trevor Hastie et al, The Elements of Statistical Learning



Footnote: variants

• Root Mean Square Error(RMSE):

•
1

𝑁
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

• MSE: 
1

𝑁
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

• SE: σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

•
1

2
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

• They all have reach minimum for 
the same values of 𝑥𝑖-s and 𝑤𝑖-s.

• RMSE has the ’’right scale’’, but 
not suited for finding min.

• Mean (MSE or RMSE) is needed 
for comparison across different 
training/test sets

42



Goal

• The goal is to find the 𝑤0, 𝑤1, … 𝑤𝑚 that minimizes the MSE 

1

𝑁
෍

𝑗=1

𝑁

𝑡𝑗 −෍

𝑖=0

𝑚

𝑤𝑖𝑥𝑗𝑖

2
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Minimizing: one variable

• We assume you know how to 
minimize with one variable:

• 𝑓 𝑥 = (𝑥 − 3)2+2

• 𝑓′(𝑥) = 2 𝑥 − 3

• 𝑓′(𝑥) = 0 iff 𝑥 = 3

44



The minimization problem

• (Here as a maximization 
problem, ‘’upside-down’’, easier 
to draw.)

• Looking for a point where the 
tangent plane is horizontal:
• Where all the derivatives are 0

• The MSE is convex:
• There is only one global minimum

• No problem with local optima

45

https://en.wikipedia.org/wiki/File:Maximum_tangentplane_boxed.png



Tangent plane

• Just like the derivative in 2D 
determines a tangent to the curve,

• the partial derivatives in more 
dimensions determines tangents to 
the surface parallel to the axes

• These tangents together determine 
a tangent (hyper-)plane to the 
surface

• It is the steepest direction in this 
plane, we follow when we follow 
gradient ascent/descent.

46

Picture source

https://math.libretexts.org/Courses/Mount_Royal_University/MATH_3200:_Mathematical_Methods/6:__Differentiation_of_Functions_of_Several_Variables/6.4:__Tangent_Planes_and_Linear_Approximations


Partial derivatives

• We assume you know
• If 𝑓 𝑥 = 𝑎 + 𝑏𝑥 2, then

• 𝑓′ 𝑥 =
𝑑

𝑑𝑥
𝑓 𝑥 = 2 𝑎 + 𝑏𝑥 𝑏

• Extended to more dimensions, 
we can construct partial 
derivatives, e.g.
• 𝑔 𝑥, 𝑦 = (𝑎 + 𝑏𝑥 + 𝑐𝑦)2

•
𝜕

𝜕𝑥
𝑔 𝑥, 𝑦 = 2 𝑎 + 𝑏𝑥 + 𝑐𝑦 𝑏

•
𝜕

𝜕𝑦
𝑔 𝑥, 𝑦 = 2 𝑎 + 𝑏𝑥 + 𝑐𝑦 𝑐

47

https://www.wikihow.com/Image:OyXsh.png



Minimizing the MSE

• To minimize 𝑓 =
1

𝑁
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

with respect to the 𝑤0, 𝑤1, … 𝑤𝑚

• we can calculate the partial derivatives

•
𝜕

𝜕𝑤𝑘
𝑓 =

2

𝑁
σ𝑗=1
𝑁 (𝑡𝑗 −σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖)(−𝑥𝑗,𝑘) for 𝑘 = 1, 2, … ,𝑚

•
𝜕

𝜕𝑤𝑘
𝑓 =

2

𝑁
σ𝑗=1
𝑁 (𝑡𝑗 − 𝑦𝑗)(−𝑥𝑗,𝑘) for 𝑘 = 1, 2,… ,𝑚

• (Observe that this is just a generalization of 

•
𝜕

𝜕𝑥
𝑔 𝑥, 𝑦 = 2 𝑎 + 𝑏𝑥 + 𝑐𝑦 𝑏 )

48



Closed form solution

• To minimize 𝑓 =
1

𝑁
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗𝑖
2

• We can set these partial derivatives to equal 0:
𝜕

𝜕𝑤𝑘
𝑓 =

2

𝑁
σ𝑗=1
𝑁 (𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗𝑖)(−𝑥𝑗𝑘) = 0, for 𝑘 = 1, 2, … ,𝑚

• We get m many linear equations of m unknown 𝑤𝑖-s

• We know how to solve such a system.

49



Some good and some bad news

• This has a closed form solution, i.e., there is a recipe for calculating 
the solution:
• This works fine for low dimensions (few features for each observation)

• But it gets slow for more dimensions. 
• Standard algorithms are 𝑂(𝑚3) where m is the number of dimensions.

• In ML we may have millions of features/dimensions

• And since it does not require ML, we will not go into it.

• But we can always use gradient descent – next video!
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6.5 Applying Gradient Descent
IN3050/IN4050 Introduction to Artificial Intelligence 

and Machine Learning
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Gradient descent in one variable

• (Lecture 2)

• Start with 𝑥0
• Iteratively find, 𝑥1, 𝑥2,.., 𝑥𝑖,… 

with decreasing 𝑓(𝑥𝑖) by setting

• 𝑥𝑖+1 = 𝑥𝑖 − 𝛾𝑓′(𝑥𝑖)

• 𝛾 is the learning rate

52



The gradient in more dimensions

• We move in the opposite 
direction of the gradient.
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Minimizing the MSE

• To minimize 𝑓 =
1

𝑁
σ𝑗=1
𝑁 𝑡𝑗 − σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖
2

with respect to the 𝑤0, 𝑤1, … 𝑤𝑚

• we can calculate the partial derivatives

•
𝜕

𝜕𝑤𝑘
𝑓 =

2

𝑁
σ𝑗=1
𝑁 (𝑡𝑗 −σ𝑖=0

𝑚 𝑤𝑖𝑥𝑗,𝑖)(−𝑥𝑗,𝑘) for 𝑘 = 1, 2, … ,𝑚

•
𝜕

𝜕𝑤𝑘
𝑓 =

2

𝑁
σ𝑗=1
𝑁 (𝑡𝑗 − 𝑦𝑗)(−𝑥𝑗,𝑘) for 𝑘 = 1, 2,… ,𝑚

• (Observe that this is just a generalization of 

•
𝜕

𝜕𝑥
𝑔 𝑥, 𝑦 = 2 𝑎 + 𝑏𝑥 + 𝑐𝑦 𝑏 )
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Prediction (matrix form)
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𝑦𝑗 = 𝑦𝑗,1 = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑗,𝑖 = (𝑥𝑗,0, 𝑥𝑗,1, … , 𝑥𝑗,𝑚) ∙ (𝑤0,1, 𝑤1,1, … , 𝑤𝑚,1)



The gradient
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𝜕

𝜕𝑤𝑘
𝑓 =

2

𝑁
෍

𝑗=1

𝑁

(𝑡𝑗 − 𝑦𝑗)(−𝑥𝑗,𝑘)



Implementing the gradient descent

• Input:
• 𝑋, input, a 𝑁 ×𝑚 NumPy matrix:

• N items, m features

• 𝑇, corresponding target values,
• 𝑁 × 1 column vector

• (maybe it is given as a vector of 
length 𝑁 and must be transformed)

• Make a weight matrix, 𝑊,
• 𝑁 × 1 column vector

• Forward step:
• 𝑌 = 𝑋@𝑊

• Update step:
• 𝑊 = 𝑊 − 𝛾∇𝑓

• 𝑊 −= 𝛾𝑋. 𝑇(𝑌 − 𝑇)

• (𝛾 is a learning rate)

57



Summary

• Linear regression

• Inductive bias

• Mean Square Error

• Minimizing the MSE

• Using Gradient Descent

• in Matrix form
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