

UiO **University of Oslo**

IN3050/IN4050 -Introduction to **Artificial Intelligence** and Machine Learning Lecture 7 – 2021 Logistic Regression Jan Tore Lønning

7.1 Linear Regression and Classification

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

Today

- 1. Linear Regression and Classification
- 2. The Logistic Function and its Derivative
- 3. The Logistic Regression Classifier
- 4. Cross-Entropy Loss
- 5. Training the Logistic Regression Classifier
- 6. Variants of Gradient Descent
- 7. Multi-Class Classification

Supervised learning - Where are we?

	Classification	Regression
Decision tree	Lec.1 (simplified form)	
k Nearest Neighbors	Lec.5	
Perceptron	Lec.5	
Linear regression		Lec. 6
Logistic regression		
Neural networks		

Supervised learning - Where are we?

	Classification	Regression
Decision tree	Lec.1 (simplified form)	
k Nearest Neighbors	Lec.5	Possible
Perceptron	Lec.6	
Linear regression	today	Lec. 6
Logistic regression	today!	
Neural networks	Next week	

Logistic regression?

Interesting by itself

- A classifier
 - (not numerical regression)
- "Standard" ("best") purely linear classifier
- (Not in Marsland)

Useful tools for neural networks:

- The logistic function:
 - Its derivative
- Loss function
- Application of the chain rule for derivatives for gradient descent

	Linear Classifier	Linear regression
Number of input variable	Decision boundary	Prediction
One	Point	Line
Two	Line	Plane
Three	Plane	Hyper-plane
>3	Hyper-plane	
Update	Perceptron: $w_i = w_i - \eta(y - t)x_i$	$w_k = w_k - \eta \frac{2}{N} \sum_{j=1}^{N} ((t_j - y_j)(-x_{j,k}))$
Type of y, t	{0,1}	Real numbers

Example: predicting gender from height

- The decision boundary should be a number: *c*
- An observation, n, is classified
 - male if height_n > c
 - *female* otherwise
- How do we determine *c*?

- 1. Consider the prediction of classes as prediction of the two numbers 1, -1, resp.
- 2. Fit a linear regressor to these data (minimizing) MSE

- 1. Consider the prediction of classes as prediction of the two numbers 1, -1, resp.
- 2. Fit a linear regressor to these data (minimizing) MSE

- 1. Consider the prediction of classes as prediction of the two numbers 1, -1, resp.
- 2. Fit a linear regressor to these data (minimizing) MSE
- 3. Predict
 - Positive class if $\boldsymbol{y} > \boldsymbol{0}$ and
 - Negative class, otherwise otherwise
- Hence, decision boundary is dotted black line

- 1. Consider the prediction of classes as prediction of the two numbers 1, -1, resp.
- 2. Fit a linear regressor to these data (minimizing) MSE
- 3. Predict
 - Positive class if y > 0 and
 - Negative class, otherwise otherwise
- Hence, decision boundary is dotted black line

- Consider example from last week.
- Compare Lin.reg.-classifier to perceptron
- Assume stochastic gradient descent: We update for one datapoint at a time

Example • We are in the middle of training • Learning rate: $\eta = 0.1$ • We have so far, the following weights for the decisions:

- Positive class provided $\begin{array}{l} h=-w_0+w_1x_1=1-x_1>0\\ \text{ i.e., }w_0=-1 \text{ and }w_1=-1 \end{array}$
- Consider the point Q=(-1, -2):
 - Correctly classified
 - Perceptron: Do nothing

• Lin.reg.classifier:

•
$$h(Q) = 1 - 1(-2) = 3$$

•
$$w_0 = w_0 - \eta(y - t)x_0 =$$

-1 - 0.1(3 - 1)(-1) = -0.8

•
$$w_1 = w_1 - \eta(y - t)x_1 = -1 - 0.1(3 - 1)(-2) = -0.6$$

Limitations

- For example
 - moving 7 (out of) 100 pos 100 steps to the right
 - the decision boundary is moved
 - from 168
 - to 171.5
 - the accuracy (on the 200 training set) goes
 - from 0.81
 - to 0.78
- Should these outliers have such an effect?

By the way: We have here used 0 and 1 for the two classes. This works equally fine. Prediction: Positive class for y > 0.5

 The MSE seems to punish correctly classified items too severely.

The "correct" decision boundary

- The (Heaviside) step function
- But:
 - How do we find the best one?
 - Not a differentiable function

7.2 The Logistic Function and its Derivative

IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

The "correct" decision boundary

- The (Heaviside) step function
- But:
 - How do we find the best one?
 - Not a differentiable function

The sigmoid curve

- An approximation to the ideal decision boundary
- Differentiable
 - Gradient descent
- Mistakes further from the decision boundary are punished harder

An observation, n, is classified

- *male* if f(*height_n*) > 0.5
- *female* otherwise

Exponential function - Logistic function

The logistic function

•
$$y = \frac{1}{1+e^{-z}} = \frac{e^z}{e^z+1}$$

- A sigmoid curve
 - Other functions also make sigmoid curves e.g., y = tanh(z)
- Maps $(-\infty,\infty)$ to (0,1)
- Monotone
- Can be used for transforming numeric values into probabilities

The derivative of the logistic function

•
$$y = f(x) = \frac{1}{1+e^{-x}}$$

• This has the form $y = g(h(x))$
where $g(z) = \frac{1}{z}$ and $z = h(x) = 1 + e^{-x}$
• Hence $f'(x) = g'(z)h'(x) = \frac{-1}{(1+e^{-x})^2}(-e^{-x}) =$
• $\frac{e^{-x}+1-1}{(1+e^{-x})^2} = \frac{e^{-x}+1}{(1+e^{-x})^2} - \frac{1}{(1+e^{-x})^2} = y - y^2 = y(1-y)$

• We will use this also in the multi-layer neural networks

7.3 The Logistic Regression Classifier

IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

Logistic Regression:

• First sum of weighted inputs :

•
$$\mathbf{z} = \sum_{i=0}^{m} w_i x_i = \boldsymbol{w} \cdot \boldsymbol{x}$$

• Apply the logistic function σ to this sum

$$y = \sigma(z) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$$

- For $x = \vec{x}$ predict
 - as the positive class if y > 0.5,
 - otherwise, the negative class

Comparison: activation function

- Perceptron: step function
- Linear regression: identity
- Logistic regression: the logistic function

With two features

From IDRE, UCLA

- Two features: x_1, x_2
- Apply weights: w_0, w_1, w_2
- Let $y = -w_0 + w_1 x_1 + w_2 x_2$
- Apply the logistic function, σ , and check whether

•
$$\sigma(y) = \frac{1}{1 + e^{-y}} > 0.5$$

Geometrically: Folding a plane along a sigmoid The decision boundary is the intersection of this surface and the plane $p = \sigma(y) = 0.5$: This turns out to be a straight line

Example with two features

• Example:

- Heights and weights
- Acc.: = 0.95
- Blue line = decision boundary
 - Points above it gets a value > 0.5

Understanding logistic regression 1

The following 3 slides attempt to give you an understanding of logistic regressions models.

- The model is probability-based
- There are two classes t=1, t=0
- For an observation $x = \vec{x}$, we wonder:
- How probable is it that this \vec{x} belongs to class 1, and how probable is it that it belongs to class 0?
- i.e., what are $P(t = 1 | \vec{x})$ and $P(t = 0 | \vec{x})$? Which is largest?

Understanding logistic regression 2

- What are $P(t = 1 | \vec{x})$ and $P(t = 0 | \vec{x})$? Which is largest?
- Consider the odds: $\frac{P(t=1|\vec{x})}{P(t=0|\vec{x})} =$

$$\frac{P(t=1|x)}{P(t=0|\vec{x})} = \frac{P(t=1|x)}{1 - P(t=1|\vec{x})}$$

- If this is >1, \vec{x} most probably belongs to t=1, otherwise t=0
- The odds varies between 0 and infinity
- Take the logarithm of this, $\log \frac{P(t=1|\vec{x})}{1-P(t=1|\vec{x})}$
 - If this is >0, \vec{x} most probably belongs to t=1
 - This varies between minus infinity and plus infinity

Understanding logistic regression 3

- $\log \frac{P(t=1|\vec{x})}{1-P(t=1|\vec{x})} > 0$?
- Try to find a linear expression for this, $\log\left(\frac{P(t=1|\vec{x})}{1-P(t=1|\vec{x})}\right) = \vec{w} \cdot \vec{x} > 0$
- Given such a linear expression, then
 - $\frac{P(t=1|\vec{x})}{1-P(t=1|\vec{x})} = e^{\vec{w}\cdot\vec{x}}$
- Solving this with respect to $P(t = 1 | \vec{x})$ yields

•
$$P(t=1|\vec{x}) = \frac{e^{\vec{w}\cdot\vec{x}}}{1+e^{\vec{w}\cdot\vec{x}}} = \frac{1}{1+e^{-\vec{w}\cdot\vec{x}}}$$

A probabilistic classifier

- The logistic regression will ascribe a probability to all instances for the class t=1 (and for t=0)
- We turn it into a classifier by ascribing class t=1 if $P(t = 1 | \vec{x}) > 0.5$
- We could also choose other cutoffs, e.g., if the classes are not equally important.

7.4 Cross-Entropy Loss

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

How to find the best curve?

- What are the best choices of *a* and *b* in $\frac{1}{1+e^{-(ax+b)}}$?
- Geometrically *a* and *b* determine the
 - Midpoint (b)
 - Steepness (a)
- of the curve
- What are the best choices of \vec{w} $y = P(t = 1 | \vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$

Learning in the logistic regression model

- A training instance consists of
 - a feature vector \vec{x}
 - a label (class), t, which is 1 or 0.
- With a set of weights, \vec{w} , the classifier will assign
 - $y = P(t = 1 | \vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$ to this training instance \vec{x}
 - where $P(t = 0 | \vec{x}) = 1 y$
- Goal: find \vec{w} that maximize $P(t|\vec{x})$ of all training inst.s (\vec{x}, t)

Loss function

- In machine learning we decide on an objective for the training.
- We can do that in terms of a loss function.
- The goal of the training is to minimize the loss function.
- Example: linear regression
 - Loss: Mean Square Error

- We can choose between various loss functions.
- The choice is partly determined by the learner.
- For logistic regression we choose (simplified) cross-entropy loss

Footnote: Notation

- I observe that I haven't been consequent in notation
- I fluctuate between boldface x and non-bold with an arrow \vec{x} . There are no (intended) differences between the two, $x = \vec{x}$
- I have also fluctuated between x_j and $\vec{x}^{(j)}$ for vector number j in the input set. Again, the two ways of writing amount to the same.

The money game

- I will give you 10 multiple-choice questions. You must answer all.
- I give you a million NOK before the game.
- In each round, you must bet your remaining money on the alternatives. Say there are 3 answers in the first round. You could bet any of the following, e.g.

	Your bet			You keep		
	Answer A	Answer B	Answer C	If A correct	If B correct	If C correct
Strategy 1	1,000,000	0	0	1,000,000	0	0
Strategy 2	400,000	300,000	300,000	400,000	300,000	300,000
Strategy 3	800,000	150,000	50,000	800,000	150,000	50,000

- You proceed to the nest round with the money you keep.
- What would be the best strategy?

Cross-entropy loss

- The underlying idea is that we want to maximize the joint probability of all the predictions we make
 - $\prod_{i=1}^{N} P(t^{(i)} | \vec{x}^{(i)})$, over all the training data i = 1, 2, ..., N
 - (since the training data are independent)
- This is the same as maximizing
 - $\log \prod_{i=1}^{N} P(t^{(i)} | \vec{x}^{(i)}) = \sum_{i=1}^{N} \log P(t^{(i)} | \vec{x}^{(i)})$
- This is the same as minimizing
 - $L_{CE}(\vec{w}) = -\log \prod_{i=1}^{N} P(t^{(i)} | \vec{x}^{(i)}) = \sum_{i=1}^{N} -\log P(t^{(i)} | \vec{x}^{(i)})$
 - Which is an instance of what is called the cross-entropy loss

More on cross-entropy loss

• When t = 1,
$$P(t \mid \vec{x}) = y = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$$

• When t= 0,
$$P(t | \vec{x}) = 1 - y$$

• Since

•
$$y^t = y$$
 when $t = 1$

•
$$y^t = 1$$
 when $t = 0$

•
$$(1 - y)^{(1-t)} = 1$$
 when $t = 1$

•
$$(1 - y)^{(1-t)} = (1 - y)$$
 when $t = 0$

•
$$P(t|\vec{x}) = y^t (1-y)^{(1-t)}$$
, whether $t = 1$ or $t = 0$

7.5 Training the Logistic Regression Classifier

IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

Gradient descent

- The loss function tells us which model is best.
- How do we find it?
- No closed-form solution, i.e., formula as there are for linear regression,
- Good news:
 - The log-loss function is convex: you are not stuck in local minima
 - We know which way to go

The gradient

- We have
 - $L_{CE}(\vec{w}) = -\log \prod_{i=1}^{N} P(t^{(i)} | \vec{x}^{(i)}) = \sum_{i=1}^{N} -\log P(t^{(i)} | \vec{x}^{(i)})$
 - $P(t|\vec{x}) = y^t (1-y)^{(1-t)}$
 - $y = \sigma(\vec{w} \cdot \vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$
- We shall find
 - $\frac{\partial}{\partial w_j} L_{CE}(\vec{w})$ for each w_j
 - since $\frac{\partial}{\partial w_j} L_{CE}(\vec{w}) = \sum_{i=1}^N -\frac{\partial}{\partial w_j} \log P(t^{(i)} | \vec{x}^{(i)})$
 - we can consider what this looks like for one pair $(\vec{x}^{(i)}, t^{(i)})$ at a time

•
$$-\frac{\partial}{\partial w_i} \log P(t|\vec{x}) = -\frac{\partial}{\partial w_i} \left(\log(y^t(1-y)^{(1-t)}) \right) = -\frac{\partial}{\partial w_i} (t \log(y) + (1-t)\log(1-y))$$

Derivative: the chain rule

• We shall find

•
$$-\frac{\partial}{\partial w_i} \log P(t|\vec{x}) = -\frac{\partial}{\partial w_i} (t \log(y) + (1-t)\log(1-y))$$

• =
$$-\frac{\partial}{\partial y} (t \log(y) + (1 - t)\log(1 - y)) (\frac{\partial}{\partial w_i} y)$$
 by the chain rule for derivatives

•
$$\frac{\partial}{\partial y} \left(t \log(y) + (1-t) \log(1-y) \right) = \frac{t}{y} - \frac{(1-t)}{(1-y)} = \frac{t(1-y) - y(1-t)}{y(1-y)} = \frac{(t-y)}{y(1-y)}$$

The derivative of the logistic function

•
$$y = \sigma(\vec{w} \cdot \vec{x}) = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}} = \frac{1}{1 + e^{-z}}$$
, where $z = \vec{w} \cdot \vec{x}$

•
$$\frac{\partial}{\partial w_i} y = \left(\frac{\partial}{\partial z} y\right) \left(\frac{\partial}{\partial w_i} z\right)$$

• $\frac{\partial}{\partial z} y = y(1 - y)$ (the logistic function)
• $\frac{\partial}{\partial w_i} z = x_i$
• $\frac{\partial}{\partial w_i} y = y(1 - y)x_i$

Putting it together graphically

•
$$\frac{\partial}{\partial w_i} L_{CE}(\boldsymbol{x}, t, \boldsymbol{w}) =$$

• $\frac{\partial}{\partial y} L_{CE}(\boldsymbol{x}, t, \boldsymbol{w}) \left(\frac{\partial}{\partial z} y\right) \left(\frac{\partial}{\partial w_i} z\right)$

Putting it all together

•
$$\frac{\partial}{\partial w_i} L_{CE}(\mathbf{x}, t, \mathbf{w}) = -\frac{\partial}{\partial w_i} \log P(t | \vec{x}) = -\frac{\partial}{\partial w_i} (t \log(y) + (1 - t) \log(1 - y))$$

• =
$$-\frac{\partial}{\partial y} (t \log(y) + (1 - t)\log(1 - y)) (\frac{\partial}{\partial w_i} y)$$

• = $-\frac{(t - y)}{y(1 - y)} y(1 - y) x_i = -(t - y) x_i$

- A long journey but the result is simple
- Adding together (matrix multiplication) for all the training data yields the gradient

•
$$(\nabla f)_i = \frac{\partial}{\partial w_i} L_{CE}(X, T, \mathbf{w}) = \sum_{j=1}^N -(t_j - y_j) x_{j,i}$$

7.6 Variants of Gradient Descent

IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

Variants of gradient descent

Batch training:

- Calculate the loss for the whole training set, and the gradient for this
- Make one move in the correct direction
- Repeat (an epoch)
- Can be slow

Stochastic gradient descent:

- Pick one item
- Calculate the loss for this item
- Calculate the gradient for this item and move in the opposite direction
- Each move does not have to be in towards the direction of the gradient for the whole set.
- But the overall effect may be good
- Can be faster

Variants of gradient descent

Mini-batch training:

- Pick a subset of the training set of a certain size
- Calculate the loss for this subset
- Make one move in the direction opposite of this gradient
- Repeat (an epoch)
- A good compromise between the two extremes
- (The other two are subcases of this)

- Batch gradient descent
- Mini-batch gradient Descent
- Stochastic gradient descent

https://suniljangirblog.wordpress.com/2018/12/13/ variants-of-gradient-descent/

7.7 Multi-Class Classification

IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

Multi-class classification

Classification

 Assign a label (class) from a finite set of labels to an observation

- So far, many algorithms and examples have been binary: *yes-no, 1-0*
- But many classification tasks are multi-class:
 - To each observation x choose one label from a finite set T
- What is different?

1-of-N or "one hot encoding"

- The labels might be categorical:
 - 'apple', tomato', 'dog', 'horse'
- The algorithms demand numerical attributes.
- First attempt
 - 'apple' = 1
 - 'tomato' = 2
 - 'dog' = 3
 - etc.
- Why isn't this a good idea?

- Better:
 - 'apple' = (1, 0, 0, 0, 0, 0)
 - 'tomato' = (0, 1, 0, 0, 0, 0)
 - 'dog' = (0, 0, 1, 0, 0, 0)
 - etc.
- Both the target and the predicted value are vectors.

- Train one classifier for each class
 - (cf. Marsland's ch.3)
- Works for multi-label classification
- But the multi-class classifiers should only propose one class
- How to choose?

One vs. rest contd.

- It is easy to decide for items which fall into exactly one class
- But what if they fall into
 - More than one class?
 - No classes?

https://github.com/amueller/introduction to ml with python

One vs. rest

- If each classifier predicts a score, compare the scores for the classes
- Choose the class with the highest score.
- E.g., log. reg.:
 - Probability of being red: 0.8
 - Probability of being blue: 0.7
 - Choose red

https://github.com/amueller/introduction to ml with python

One vs. rest

• For x_i choose the j for which $y_{i,j}$ is the max of $\{y_{i,1}, y_{i,2}, \dots, y_{i,n}\}$

Multinomial Logistic Regression

- Logistic regression gives another option for making a multi-class classifier
- Called multinomial logistic regression, or softmax regression
 - also called maximum entropy (maxent) classifier,
- With one class we considered $P(t = 1 | \vec{x}) = \frac{e^{\vec{w} \cdot \vec{x}}}{1 + e^{\vec{w} \cdot \vec{x}}} = \frac{1}{1 + e^{-\vec{w} \cdot \vec{x}}}$
- and implicitly $P(t=0|\vec{x}) = 1 \frac{e^{\vec{w}\cdot\vec{x}}}{1+e^{\vec{w}\cdot\vec{x}}} = \frac{1}{1+e^{\vec{w}\cdot\vec{x}}}$
- We now consider a linear expression \vec{w}_i , for each class C_i , i = 1, ..., k
- The probability for each class is then given by the softmax function

$$P(C_j | \vec{x}) = \frac{e^{\overrightarrow{w_j} \cdot \vec{x}}}{\sum_{i=1}^k e^{\overrightarrow{w_i} \cdot \vec{x}}}$$

Training softmax

- It is possible to train towards softmax.
- In each step, we have to calculate y_i for each class j.
- In updating the weights for one class *i*, the predicted values for all the classes are considered and contribute to the update.
- We skip the details.