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Supervised learning - Where are we?

_____________Classification

Decision tree Lec.1 (simplified form)

k Nearest Neighbors  Lec.5

Perceptron Lec.5

Linear regression Lec. 6
Logistic regression

Neural networks



Supervised learning - Where are we?

_____________Classification

Decision tree Lec.1 (simplified form)

k Nearest Neighbors  Lec.5 Possible
Perceptron Lec.6

Linear regression today Lec. 6
Logistic regression today!

Neural networks Next week
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Interesting by itself Useful tools for neural networks:

* A classifier * The logistic function:
* (not numerical regression) * Its derivative
* “Standard” (“best”) purely * Loss function

linear classifier e Application of the chain rule for

* (Not in Marsland) derivatives for gradient descent
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_ Linear Classifier Linear regression

Number of input variable
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Type of y, t

Decision boundary
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Hyper-plane

Perceptron:
w; = w; =Ny — t)x;

{0,1}

Prediction
Line
Plane

Hyper-plane
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Example: predicting gender from height
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* The decision boundary should
be a number: ¢

 An observation, n, is classified
* male if height n>c
* female otherwise

* How do we determine c?



Linear regression as a classifier

15

1. Consider the prediction of
classes as prediction of the
two numbers 1, -1, resp.
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Linear regression as a classifier

15

1. Consider the prediction of
classes as prediction of the
two numbers 1, -1, resp.
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Linear regression as a classifier

1. Consider the prediction of
classes as prediction of the

1. Consider the prediction of two numbers 1, -1, resp.

classes as predlctlon of the 2. Fit alinear regressor to these
two numbers 1, -1, resp. data (minimizing) MSE
2. Fit a linear regressor to these 3. Predict
data (minimizing) MSE * Positive classify > 0 and
* Negative class, otherwise
3. Predict otherwise

* Hence, decision boundary is

* Positive class if y > 0 and dotted black line

* Negative class, otherwise
otherwise

* Hence, decision boundary is
dotted black line



Tx0

)(1>

e Consider example from last week.
 Compare Lin.reg.-classifier to perceptron

e Assume stochastic gradient descent:
We update for one datapoint at a time

12
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e We are in the middle
of training é o

* Learning rate:n = 0.1  ©

* We have so far, the following
weights for the decisions:

* Positive class provided
h=—WO+W1x1 = 1—x1 >0
*ji.e, wo=—-1landw; = -1

e Consider the point Q=(-1, -2):
e Correctly classified
* Perceptron: Do nothing

* Lin.reg.classifier:
ch(Q)=1-1(-2)=3

* wo =wo— Ny —t)xy =
~1-013=1)(-1) = —0.8

*wi=w; — Ny —tx; =
—1-01(3 - 1)(=2) = —0.6
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Limitations

125

100 1

* For example

075

* moving 7 (out of) 100 pos 050 |
100 steps to the right oo |
* the decision boundary is moved vao ]
e from 168 025
* to171.5 ~0.50 — . i . . .
e the accuracy (on the 200 training 4010180 ;0 B0 Mo 20 ;0 0
set) goes
 from 0.81 By the way:
* 100.78 We have here used 0 and 1 for the two
* Should these outliers have such classes.
an effect? This works equally fine.

Prediction: Positive class for y > 0.5
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Linear regression as a classifier

* The MSE seems to punish
correctly classified items too
severely.
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The “correct” decision boundary

* The (Heaviside) step function

150 e But:
H  How do we find the best one?
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e Not a differentiable function
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The “correct” decision boundary

* The (Heaviside) step function

150 e But:
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The sigmoid curve

* An approximation to the ideal
decision boundary

e Differentiable
 Gradient descent

* Mistakes further from the
R decision boundary are punished
harder
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T 1 Do 0 Be 2o An observation, n, is classified

 male if f(height n)> 0.5
* female otherwise
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Exponential function - Logistic function
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//upload.wikimedia.org/wikipedia/commons/8/88/Logistic-curve.svg

The logistic function

A S eZ
y 1+e~% e?+1
* A sigmoid curve

* Other functions also make sigmoid
curves e.g., y = tanh(z)

* Maps (—o0, ) to (0,1)
* Monotone

* Can be used for transforming
numeric values into probabilities

-6 -4 =2



//upload.wikimedia.org/wikipedia/commons/8/88/Logistic-curve.svg

The derivative of the logistic function

= () = o=

* This has the form y = g(h(x))
where g(z) = iand z=h(x)=14+e7*

o _ ! ! — —1 —p—XY) —

Henc g (z)h'(x) = (1+e—x)2( e %) =

e 11 e*v1 1
(1+e-%)2  (1+e-02  (4e-x2 I Y

* We will use this also in the multi-layer neural networks
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Logistic Regression:

* First sum of weighted inputs :
¢ 7Z = ?Lowixi =W X

* Apply the logistic function o to
this sum

y=6(Z)=1

* For x = x predict
* as the positive class if y > 0.5,
* otherwise, the negative class

~+ e‘V_")"z
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Comparison: activation function

* Perceptron: step function Wo
* Linear regression: identity x; :‘ S
* Logistic regression: W

Xm

the logistic function

25
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With two features
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Example with two features

* Example:
* Heights and weights

0. * Acc.: =0.95
* Blue line = decision boundary

* Points above it gets a value > 0.5

5 8 8 a8 8 &

27



Understanding logistic regression 1

The following 3 slides attempt to give you an understanding of logistic
regressions models.

* The model is probability-based
 There are two classes t=1, t=0
* For an observation x = x, we wonder:

* How probable is it that this x belongs to class 1, and how probable is
it that it belongs to class 0?

* j.e., what are P(t = 1|x) and P(t = 0|x)? Which is largest?

28



Understanding logistic regression 2

* What are P(t = 1|x) and P(t = 0]x)? Which is largest?
P(t=1|X) _  P(t=1|x)
P(t=0|%) 1-P(t=1|%)
e If this is >1, X most probably belongs to t=1, otherwise t=0
* The odds varies between 0 and infinity
P(t=1|x)
1-P(t=1|x)
* If this is >0, X most probably belongs to t=1
* This varies between minus infinity and plus infinity

* Consider the odds:

* Take the logarithm of this, log



Understanding logistic regression 3

P(t=1]x)

. ?

g1—P(t=1|a?) >0

: : : : P(t=1|x S
* Try to find a linear expression for this, log( ( lx)% ) =w-:x>0
1-P(t=1|x)

e Given such a linear expression, then

. _P(=1]x) _ WR

1-P(t=1|x)

* Solving this with respect to P(t = 1|x) yields

° P(t — 1|_)2')) = eW:C — 1_>

1+eWX  14e~WX



A probabilistic classifier

* The logistic regression will S e
ascribe a probability to all "
instances for the class t=1
(and for t=0)

* We turn it into a classifier by
ascribing class t=1 if
P(t =1|x) > 0.5

 We could also choose other cut-
offs, e.g., if the classes are not o S

Probability of passing exam

00 = %% & & 6. &% &

equally important. |
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How to find the best curve?

 What are the best choices of a
1

_|_e—(ax+b) :

150 andbin 1

125

 Geometrically a and b determine
the
* Midpoint (b)
e Steepness (a)

100 -

0.75 -

0.50 1

025 4

0.00 A sees o
025 | e of the curve
%0 1m0 10 Bo w0 180 0 e What are the best choices of w
. 1
y=P(t =11%) = —
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Learning in the logistic regression model
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* A training instance consists of

e a feature vector x
* alabel (class), t, whichis 1 or O.

* With a set of weights, w,
the classifier will assign

cy=P(t=1|%) = —

T dkeTWX
to this training Instance x

« where P(t =0|x) =1—y

* Goal: find w that maximize
P(t|x) of all training inst.s (X, t)




Loss function

* In machine learning we decide * We can choose between various
on an objective for the training. loss functions.

* We can do that in terms of aloss ¢ The choice is partly determined
function. by the learner.

* The goal of the training is to * For logistic regression we choose
minimize the loss function. (simplified) cross-entropy loss

* Example: linear regression
* Loss: Mean Square Error



Footnote: Notation

* | observe that | haven’t been consequent in notation

e | fluctuate between boldface x and non-bold with an arrow X. There
are no (intended) differences between the two, x = x

* | have also fluctuated between x; and xU) for vector number j in the
input set. Again, the two ways of writing amount to the same.



The money game

| will give you 10 multiple-choice questions. You must answer all.
* | give you a million NOK before the game.

* In each round, you must bet your remaining money on the alternatives. Say there
are 3 answers in the first round. You could bet any of the following, e.g.

| vowbet | Youkeep

Answer A Answer B Answer C If A correct If Bcorrect If Ccorrect
Strategy 1 1,000,000 0 0 1,000,000 0 0
Strategy 2 400,000 300,000 300,000 400,000 300,000 300,000
Strategy 3 800,000 150,000 50,000 800,000 150,000 50,000

* You proceed to the nest round with the money you keep.
 What would be the best strategy?
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Cross-entropy loss

* The underlying idea is that we want to maximize the joint probability
of all the predictions we make

 [IXL, P(t@ | ¥®), over all the training datai = 1,2, ..., N
* (since the training data are independent)
* This is the same as maximizing
* log [T, P(t@|2D) = TN log P(t O] xD)
* This is the same as minimizing
* Leg(W) = —1og[TIL, PEP1X®D) = T, —log P(t®]%D)
* Which is an instance of what is called the cross-entropy loss




More on cross-entropy loss

*Whent=1,P(t|%) =y = —=

* Whent=0,P(t|x)=1—y
* Since
« y! =ywhent=1
« yt =1whent=0
¢ (1—y)3"9 =1whent=1
¢ (1—9y)1"8 = (1 —-y)whent=0
e P(t|%) = y'(1 — )Y, whethert=1ort=0
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Gradient descent

* The loss function tells us which
model is best.

e How do we find it?

* No closed-form solution, i.e.,
formula as there are for linear

regression,

e Good news:

* The log-loss function is convex:
you are not stuck in local minima

* We know which way to go

Cost




The gradient

e We have
* Lcg(W) = —log Hliv=1p(t(i)|7(i)) = Iiv=1_10gp(t(i)|5f)(i))

« P(t|X) = y*(1—y)A®
1

1+e~WX

cy=0c(W-X) =

e We shall find
9

* — Lcg(W) for each w; ’

aWj
. 0 — 0 N
. smcea—WjLCE(W) = ﬁvzl—a—wjlogP(t(‘Hx(‘))

* we can consider what this looks like for one pair (55("), t(i)) at a time
0 N d —
- log P(t%) = - 5 (log(y*(1 = »)179)) =

(tlog(y) + (1 — tlog(1 —y))

aWi

Loss(y,t)

42



Derivative: the chain rule

 We shall find

9 ~N_ 0
" log P(t]|x) =

aWi

: (tlog(y) + (1 — Dlog(1 —y))

d
awi

. = _aa_y (tlog(y) + (1 — t)log(1 —y)) ( y) by the chain rule for derivatives

. 9 _ B _ ot (-0 _ ta-y)-ya-o) _ (t-y)
oy (tlog®) + (1~ Dlog(1 ~y)) = y (-y)  y(a-y)  ya-y)



The derivative of the logistic function

cy=0(Ww-x) = L__——1  wherez=w-%
1+e WX  1+e™%

‘5n? = (57) Gr?)

. %y = y(1 — y) (the logistic function)

[ J a — .
awiZ = X;
0
c—y =y —-y)x;

aWi



Putting it together graphically

0

" Gw; LCE (%, t, W)=
. %L(,‘E (x,t, w) (% y) (ai’i Z)

45



Putting it all together

" ow, Lw) = —
+(tlog(y) + (1 = Vlog(1 - y)) (57
' = —y((tl_yy))y(l - V)x; = —(t=y)x;

* Along journey — but the result is simple

* Adding together (matrix multiplication) for all the training data yields the gradient

V)= S Lo (X T, W) = B~ — y)
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Variants of gradient descent

Batch training: Stochastic gradient descent:
e Calculate the loss for the whole  Pick one item
training Set, and the gradient for th|S ° Calculate the IOSS for th|s |tem
* Make one move in the correct

e Calculate the gradient for this item

direction and move in the opposite direction

* Repeat (an epoch) e Each move does not have to be in

* Can be slow towards the direction of the
gradient for the whole set.

* But the overall effect may be good
* Can be faster



Variants of gradient descent

M"“'batCh tralnlng' — Batch gradient descent

* Pick a subset of the training set of a — Mini-batch gradient Descent
certain Size — Stochastic gradient descent

e Calculate the loss for this subset

e Make one move in the direction
opposite of this gradient

* Repeat (an epoch)

* A good compromise between the
two extremes

° (The other two are subcases of https://suniljangirblog.wordpress.com/2018/12/13/
this) variants-of-gradient-descent/
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Multi-class classification

Classification

e Assign a label (class) from a
finite set of labels to an
observation
CEHO O N
h ) A L 44

- ‘ &

.v e .. -

<1 T R 9 Lk A

Y T f huw

o) ) By ) els) Y e

e N B

* So far, many algorithms and
examples have been binary:
yes-no, 1-0

* But many classification tasks are

multi-class:

* To each observation x choose one
label from a finite set T

e What is different?
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1-of-N or "one hot encoding"

* The labels might be categorical: ¢ Better:
* 'apple', tomato’, 'dog', 'horse' e 'apple'=(1,0,0,0,0, 0)
* The algorithms demand * ‘tomato’' = (0, 1,0, 0, 0, 0)
numerical attributes. * 'dog'=(0,0,1,0,0,0)
* etc.

* First attempt
e 'apple'=1
* 'tomato' =2
e 'dog'=3
. etc.

 Why isn't this a good idea?

* Both the target and the
predicted value are vectors.



One vs. rest

—
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e Train one classifier for each class
e (cf. Marsland's ch.3)

 Works for multi-label classification

* But the multi-class classifiers
should only propose one class

e How to choose?

A

—

Inputs

i1 Y12 Yin
—
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— i /

| YyN1\UN2 /" UNn
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One vs. rest contd.

* It is easy to decide for
items which fall into
exactly one class

But what if they fall
Into

* More than one class?
* No classes?

Feature 1

15

10 +

#® Class0

& Class1

%V Class 2
— Line class 0
== Line class 1
Line class 2

-10 -8 —h -4 -2 0 2 4 B B
Feature 0

https://github.com/amueller/introduction to ml with python



https://github.com/amueller/introduction_to_ml_with_python

One vs. rest

* If each classifier predicts a score,

compare the scores for the
classes

* Choose the class with the
highest score.

Feature 1

* E.g., log. reg.:
* Probability of being red: 0.8

* Probability of being blue: 0.7
* Choose red

Feature 0

https://github.com/amueller/introduction to ml with python
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One vs. rest

—

1o _T1]

:11] _g . ow o

L1.m

@Ti,l 12,2

L2,

| N0 TN IN2

LN.m

wo. 1
w1
wo 1

| Wi 1

wp.2
w2
wo 9

Wiy, 2

’Ei?ﬂ‘ﬂ
W1 n

W9 g

—

]
u"‘i‘?‘! NI

Y11 W12

N n

21 Y22

| UN1 UN2

5

YN n

* For x; choose the j for which y; ; is the max of {%’,1; Vi2s e yi,n}

—
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Multinomial Logistic Regression

* Logistic regression gives another option for making a multi-class classifier

* Called multinomial logistic regression, or softmax regression

* also called maximum entropy (maxent) classifier,
. , R WX .
 With one class we considered P(t = 1|x) = —

L 1+eWXx 1+e—WX
eWX 1

 and implicitly P(t = 0|x) =1 — —

1+eV_V>'_)’_‘> 1+eW¥
* We now consider a linear expression w;, for each class C;,i = 1, ..., k

* The probability for each class is then given by the softmax function

er'x

k WX
i=1 €1

P(G|%) =5

57



Training softmax

* It is possible to train towards softmax.
* In each step, we have to calculate y; for each class ;.

* In updating the weights for one class i, the predicted values for all the
classes are considered and contribute to the update.

* We skip the details.



