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Today

1. Linear Regression and Classification

2. The Logistic Function and its Derivative

3. The Logistic Regression Classifier

4. Cross-Entropy Loss

5. Training the Logistic Regression Classifier

6. Variants of Gradient Descent

7. Multi-Class Classification
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Supervised learning - Where are we?

Classification Regression

Decision tree Lec.1 (simplified form)

k Nearest Neighbors Lec.5

Perceptron Lec.5

Linear regression Lec. 6

Logistic regression

Neural networks
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Supervised learning - Where are we?

Classification Regression

Decision tree Lec.1 (simplified form)

k Nearest Neighbors Lec.5 Possible

Perceptron Lec.6

Linear regression today Lec. 6

Logistic regression today!

Neural networks Next week
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Logistic regression?

Interesting by itself

• A classifier 
• (not numerical regression)

• ‘’Standard’’ (‘’best’’) purely 
linear classifier

• (Not in Marsland)

Useful tools for neural networks:

• The logistic function:
• Its derivative

• Loss function

• Application of the chain rule for 
derivatives for gradient descent
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Linear Classifier Linear regression

Number of input variable Decision boundary Prediction

One Point Line

Two Line Plane

Three Plane Hyper-plane

>3 Hyper-plane

Update Perceptron:
𝑤𝑖 = 𝑤𝑖 − η(𝑦 − 𝑡)𝑥𝑖 𝑤𝑘 = 𝑤𝑘 − 𝜂

2

𝑁
෍

𝑗=1

𝑁

(𝑡𝑗 − 𝑦𝑗)(−𝑥𝑗,𝑘)

Type of y, t {0,1} Real numbers



Example: predicting gender from height

• The decision boundary should 
be a number: c

• An observation, n, is classified
• male if height_n > c

• female otherwise

• How do we determine c?
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Linear regression as a classifier

1. Consider the prediction of 
classes as prediction of the 
two numbers 1, -1, resp.

2. Fit a linear regressor to these 
data (minimizing) MSE
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Linear regression as a classifier

1. Consider the prediction of 
classes as prediction of the 
two numbers 1, -1, resp.

2. Fit a linear regressor to these 
data (minimizing) MSE
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Linear regression as a classifier

1. Consider the prediction of 
classes as prediction of the 
two numbers 1, -1, resp.

2. Fit a linear regressor to these 
data (minimizing) MSE

3. Predict
• Positive class if y > 0 and 
• Negative class, otherwise

otherwise

• Hence, decision boundary is 
dotted black line
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Example

• Consider example from last week.

• Compare Lin.reg.-classifier to perceptron

• Assume stochastic gradient descent: 
We update for one datapoint at a time
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Example

• We are in the middle
of training

• Learning rate: 𝜂 = 0.1
• We have so far, the following 

weights for the decisions:
• Positive class provided
ℎ = −𝑤0 +𝑤1𝑥1 = 1 − 𝑥1 > 0
• i.e., 𝑤0 = −1 and 𝑤1 = −1

13

• Lin.reg.classifier:

• ℎ 𝑄 = 1 − 1(−2) = 3
• 𝑤0 = 𝑤0 − η 𝑦 − 𝑡 𝑥0 =
−1 − 0.1 3 − 1 −1 = −0.8

• 𝑤1 = 𝑤1 − η 𝑦 − 𝑡 𝑥1 =
−1 − 0.1 3 − 1 (−2) = −0.6

• Consider the point Q=(-1, -2):
• Correctly classified

• Perceptron: Do nothing

Q



Limitations

• For example
• moving 7 (out of) 100 pos 

100 steps to the right
• the decision boundary is moved

• from 168
• to 171.5

• the accuracy (on the 200 training 
set) goes
• from 0.81
• to 0.78

• Should these outliers have such 
an effect?

14

By the way:
We have here used 0 and 1 for the two 
classes.
This works equally fine.
Prediction: Positive class for 𝑦 > 0.5



Linear regression as a classifier

• The MSE seems to punish 
correctly classified items too 
severely.
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The ‘’correct’’ decision boundary

• The (Heaviside) step function

• But:
• How do we find the best one?

• Not a differentiable function
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7.2 The Logistic Function and its 
Derivative
IN3050/IN4050 Introduction to Artificial Intelligence 

and Machine Learning
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The ‘’correct’’ decision boundary

• The (Heaviside) step function

• But:
• How do we find the best one?

• Not a differentiable function
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The sigmoid curve

• An approximation to the ideal 
decision boundary

• Differentiable
• Gradient descent

• Mistakes further from the 
decision boundary are punished 
harder
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An observation, n, is classified
• male if f(height_n) > 0.5
• female otherwise



Exponential function  - Logistic function

20

𝑦 =
1

1 + 𝑒−𝑧
=

𝑒𝑧

𝑒𝑧 + 1
𝑦 = 𝑒𝑧

//upload.wikimedia.org/wikipedia/commons/8/88/Logistic-curve.svg


The logistic function

• 𝑦 =
1

1+𝑒−𝑧
=

𝑒𝑧

𝑒𝑧+1

• A sigmoid curve
• Other functions also make sigmoid 

curves e.g., 𝑦 = tanh 𝑧

• Maps (−∞,∞) to 0,1

• Monotone

• Can be used for transforming 
numeric values into probabilities
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The derivative of the logistic function

• 𝑦 = 𝑓(𝑥) =
1

1+𝑒−𝑥

• This has the form 𝑦 = 𝑔 ℎ 𝑥

where 𝑔 𝑧 =
1

𝑧
and 𝑧 = ℎ(𝑥) = 1 + 𝑒−𝑥

• Hence 𝑓′ 𝑥 = 𝑔′ 𝑧 ℎ′ 𝑥 =
−1

1+𝑒−𝑥 2 −𝑒−𝑥 =

•
𝑒−𝑥+1 −1

1+𝑒−𝑥 2 = 
𝑒−𝑥+1

1+𝑒−𝑥 2 −
1

1+𝑒−𝑥 2 = y − 𝑦2 = 𝑦(1 − 𝑦)

• We will use this also in the multi-layer neural networks
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7.3 The Logistic Regression Classifier
IN3050/IN4050 Introduction to Artificial Intelligence 

and Machine Learning
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Logistic Regression:

• First sum of weighted inputs :

• z = σ𝑖=0
𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

• Apply the logistic function σ to 
this sum 

𝑦 = 𝜎(𝑧) =
1

1 + 𝑒−𝑤∙ Ԧ𝑥

• For 𝒙 = Ԧ𝑥 predict
• as the positive class if 𝑦 > 0.5,
• otherwise, the negative  class

24
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Comparison: activation function

• Perceptron: step function

• Linear regression: identity

• Logistic regression: 
the logistic function

25

−𝑤0



With  two features

• Two features: 𝑥1, 𝑥2
• Apply weights: 𝑤0, 𝑤1, 𝑤2

• Let 𝑦 = −𝑤0 + 𝑤1𝑥1 + 𝑤2𝑥2
• Apply the logistic function, 𝜎, 

and check whether

• 𝜎 𝑦 =
1

1+𝑒−𝑦
> 0.5
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From IDRE, UCLA

Geometrically: Folding a plane along a sigmoid
The decision boundary is the intersection of 
this surface and the plane p = 𝜎 𝑦 = 0.5:
This turns out to be a straight line



Example with two features

• Example:
• Heights and weights

• Acc.: = 0.95

• Blue line = decision boundary
• Points above it gets a value > 0.5
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Understanding logistic regression 1

The following 3 slides attempt to give you an understanding of logistic 
regressions models.

• The model is probability-based

• There are two classes t=1, t=0

• For an observation 𝒙 = Ԧ𝑥, we wonder:

• How probable is it that this Ԧ𝑥 belongs to class 1, and how probable is 
it that it belongs to class 0?

• i.e., what are 𝑃 𝑡 = 1 Ԧ𝑥 and 𝑃 𝑡 = 0 Ԧ𝑥 ? Which is largest?

28



Understanding logistic regression 2

• What are 𝑃 𝑡 = 1 Ԧ𝑥 and 𝑃 𝑡 = 0 Ԧ𝑥 ? Which is largest?

• Consider the odds: 
𝑃(𝑡=1| Ԧ𝑥)

𝑃(𝑡=0| Ԧ𝑥)
=

𝑃(𝑡=1| Ԧ𝑥)

1−𝑃(𝑡=1| Ԧ𝑥)

• If this is >1, Ԧ𝑥 most probably belongs to t=1, otherwise t=0

• The odds varies between 0 and infinity

• Take the logarithm of this, log
𝑃(𝑡=1| Ԧ𝑥)

1−𝑃(𝑡=1| Ԧ𝑥)

• If this is >0, Ԧ𝑥 most probably belongs to t=1

• This varies between minus infinity and plus infinity
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Understanding logistic regression 3

• log
𝑃(𝑡=1| Ԧ𝑥)

1−𝑃(𝑡=1| Ԧ𝑥)
> 0 ?

• Try to find a linear expression for this, log
𝑃(𝑡=1| Ԧ𝑥)

1−𝑃(𝑡=1| Ԧ𝑥)
= 𝑤 ∙ Ԧ𝑥 > 0

• Given such a linear expression, then

•
𝑃(𝑡=1| Ԧ𝑥)

1−𝑃(𝑡=1| Ԧ𝑥)
= 𝑒𝑤∙ Ԧ𝑥

• Solving this with respect to 𝑃 𝑡 = 1 Ԧ𝑥 yields

• 𝑃 𝑡 = 1 Ԧ𝑥 =
𝑒𝑤∙𝑥

1+𝑒𝑤∙𝑥
=

1

1+𝑒−𝑤∙𝑥
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A probabilistic classifier

• The logistic regression will 
ascribe a probability to all 
instances for the class t=1 
(and for t=0)

• We turn it into a classifier by 
ascribing class t=1 if 

𝑃 𝑡 = 1 Ԧ𝑥 > 0.5

• We could also choose other cut-
offs, e.g., if the classes are not 
equally important.

31

source: Wikipedia



7.4 Cross-Entropy Loss
IN3050/IN4050 Introduction to Artificial Intelligence 

and Machine Learning
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How to find the best curve?

• What are the best choices of a

and b in 
1

1+𝑒− 𝑎𝑥+𝑏 ?

• Geometrically a and b determine 
the 
• Midpoint (b)

• Steepness (a)

• of the curve

• What are the best choices of 𝑤

𝑦 = 𝑃 𝑡 = 1 Ԧ𝑥 =
1

1+𝑒−𝑤∙𝑥
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Learning in the logistic regression model

• A training instance consists of 
• a feature vector Ԧ𝑥

• a label (class), 𝑡, which is 1 or 0.

• With a set of weights, 𝑤, 
the classifier will assign 

• 𝑦 = 𝑃 𝑡 = 1 Ԧ𝑥 =
1

1+𝑒−𝑤∙𝑥

to this training instance Ԧ𝑥

• where 𝑃 𝑡 = 0 Ԧ𝑥 = 1 − 𝑦

• Goal: find 𝑤 that maximize  
𝑃 𝑡 Ԧ𝑥 of all training inst.s ( Ԧ𝑥, 𝑡)
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Loss function

• In machine learning we decide 
on an objective for the training.

• We can do that in terms of a loss 
function.

• The goal of the training is to 
minimize the loss function.

• Example: linear regression
• Loss: Mean Square Error

• We can choose between various 
loss functions.

• The choice is partly determined 
by the learner.

• For logistic regression we choose 
(simplified) cross-entropy loss
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Footnote: Notation

• I observe that I haven’t been consequent in notation

• I fluctuate between boldface 𝒙 and non-bold with an arrow Ԧ𝑥. There 
are no (intended) differences between the two, 𝒙 = Ԧ𝑥

• I have also fluctuated between 𝒙𝑗 and Ԧ𝑥(𝑗) for vector number 𝑗 in the 
input set. Again, the two ways of writing amount to the same.
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The money game

• I will give you 10 multiple-choice questions. You must answer all.

• I give you a million NOK before the game.

• In each round, you must bet your remaining money on the alternatives. Say there 
are 3 answers in the first round. You could bet any of the following, e.g.

• You proceed to the nest round with the money you keep.

• What would be the best strategy?

37

Your bet You keep

Answer A Answer B Answer C If A correct If B correct If C correct

Strategy 1 1,000,000 0 0 1,000,000 0 0

Strategy 2 400,000 300,000 300,000 400,000 300,000 300,000

Strategy 3 800,000 150,000 50,000 800,000 150,000 50,000



Cross-entropy loss

• The underlying idea is that we want to maximize the joint probability 
of all the predictions we make
• ς𝑖=1

𝑁 𝑃 𝑡(𝑖) Ԧ𝑥(𝑖)), over all the training data 𝑖 = 1,2,… ,𝑁
• (since the training data are independent)

• This is the same as maximizing
• logς𝑖=1

𝑁 𝑃 𝑡(𝑖) Ԧ𝑥(𝑖)) = σ𝑖=1
𝑁 log 𝑃 𝑡(𝑖) Ԧ𝑥(𝑖))

• This is the same as minimizing
• 𝐿𝐶𝐸 𝑤 = − logς𝑖=1

𝑁 𝑃(𝑡 𝑖 | 𝑥(𝑖)) = σ𝑖=1
𝑁 − log𝑃(𝑡(𝑖)| Ԧ𝑥(𝑖))

• Which is an instance of what is called the cross-entropy loss
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More on cross-entropy loss

• When t = 1, 𝑃 𝑡 Ԧ𝑥 = 𝑦 =
1

1+𝑒−𝑤∙𝑥

• When t= 0, 𝑃 𝑡 Ԧ𝑥 = 1 − 𝑦

• Since
• 𝑦𝑡 = 𝑦 when t = 1

• 𝑦𝑡 = 1 when t = 0

• 1 − 𝑦 1−𝑡 = 1 when t = 1

• 1 − 𝑦 1−𝑡 = (1 − 𝑦) when t = 0

• 𝑃 𝑡 Ԧ𝑥 = 𝑦𝑡(1 − 𝑦)(1−𝑡), whether t = 1 or t = 0
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7.5 Training the 
Logistic Regression Classifier
IN3050/IN4050 Introduction to Artificial Intelligence 

and Machine Learning
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Gradient descent

• The loss function tells us which 
model is best.

• How do we find it?

• No closed-form solution, i.e., 
formula as there are for linear 
regression,

• Good news:
• The log-loss function is convex: 

you are not stuck in local minima

• We know which way to go
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The gradient

• We have
• 𝐿𝐶𝐸 𝑤 = − logς𝑖=1

𝑁 𝑃(𝑡 𝑖 | 𝑥(𝑖)) = σ𝑖=1
𝑁 − log𝑃(𝑡(𝑖)| Ԧ𝑥(𝑖))

• 𝑃 𝑡 Ԧ𝑥 = 𝑦𝑡(1 − 𝑦)(1−𝑡)

• 𝑦 = 𝜎 𝑤 ∙ Ԧ𝑥 =
1

1+𝑒−𝑤∙𝑥

• We shall find
•

𝜕

𝜕𝑤𝑗
𝐿𝐶𝐸 𝑤 for each 𝑤𝑗

• since 
𝜕

𝜕𝑤𝑗
𝐿𝐶𝐸 𝑤 = σ𝑖=1

𝑁 −
𝜕

𝜕𝑤𝑗
log𝑃(𝑡(𝑖)| Ԧ𝑥(𝑖))

• we can consider what this looks like for one pair Ԧ𝑥(𝑖), 𝑡(𝑖) at a time

• −
𝜕

𝜕𝑤𝑖
log𝑃 𝑡 Ԧ𝑥 = −

𝜕

𝜕𝑤𝑖
log 𝑦𝑡 1 − 𝑦 1−𝑡 =

−
𝜕

𝜕𝑤𝑖
(t log y + 1 − t log 1 − y )

42

t

Loss(y,t)



Derivative: the chain rule

• We shall find

• −
𝜕

𝜕𝑤𝑖
log 𝑃 𝑡 Ԧ𝑥 = −

𝜕

𝜕𝑤𝑖
t log y + 1 − t log 1 − y

• = −
𝜕

𝜕𝑦
t log y + 1 − t log 1 − y

𝜕

𝜕𝑤𝑖
𝑦 by the chain rule for derivatives

•
𝜕

𝜕𝑦
t log y + 1 − t log 1 − y =

𝑡

𝑦
−

1−𝑡

1−𝑦
=

𝑡 1−𝑦 −𝑦 1−𝑡

𝑦 1−𝑦
=

𝑡−𝑦

𝑦 1−𝑦
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The derivative of the logistic function

• 𝑦 = 𝜎 𝑤 ∙ Ԧ𝑥 =
1

1+𝑒−𝑤∙𝑥
=

1

1+𝑒−𝑧
, where 𝑧 = 𝑤 ∙ Ԧ𝑥

•
𝜕

𝜕𝑤𝑖
𝑦 =

𝜕

𝜕𝑧
𝑦

𝜕

𝜕𝑤𝑖
𝑧

•
𝜕

𝜕𝑧
𝑦 = 𝑦(1 − 𝑦) (the logistic function)

•
𝜕

𝜕𝑤𝑖
𝑧 = 𝑥𝑖

•
𝜕

𝜕𝑤𝑖
𝑦 = 𝑦(1 − 𝑦)𝑥𝑖
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Putting it together graphically

•
𝜕

𝜕𝑤𝑖
𝐿𝐶𝐸 𝒙, 𝑡, 𝒘 =

•
𝜕

𝜕𝑦
𝐿𝐶𝐸 𝒙, 𝑡, 𝒘

𝜕

𝜕𝑧
𝑦

𝜕

𝜕𝑤𝑖
𝑧
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𝐿𝐶𝐸 𝒙, 𝑡, 𝒘

𝜕

𝜕𝑧
𝑦𝜕

𝜕𝑤𝑖
𝑧



Putting it all together

•
𝜕

𝜕𝑤𝑖
𝐿𝐶𝐸 𝒙, 𝑡, 𝒘 = −

𝜕

𝜕𝑤𝑖
log 𝑃 𝑡 Ԧ𝑥 = −

𝜕

𝜕𝑤𝑖
t log y + 1 − t log 1 − y

• = −
𝜕

𝜕𝑦
t log y + 1 − t log 1 − y

𝜕

𝜕𝑤𝑖
𝑦

• = −
𝑡−𝑦

𝑦 1−𝑦
𝑦 1 − 𝑦 𝑥𝑖 = −(t − y)𝑥𝑖

• A long journey – but the result is simple

• Adding together (matrix multiplication) for all the training data yields the gradient

• (∇𝑓)𝑖=
𝜕

𝜕𝑤𝑖
𝐿𝐶𝐸 𝑋, 𝑇,𝒘 = σ𝑗=1

𝑁 −(𝑡𝑗 − 𝑦𝑗)𝑥𝑗,𝑖
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7.6 Variants of Gradient Descent
IN3050/IN4050 Introduction to Artificial Intelligence 

and Machine Learning
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Variants of gradient descent

• Calculate the loss for the whole 
training set, and the gradient for this

• Make one move in the correct 
direction

• Repeat (an epoch)

• Can be slow

• Pick one item

• Calculate the loss for this item

• Calculate the gradient for this item 
and move in the opposite direction

• Each move does not have to be in 
towards the direction of the 
gradient for the whole set.

• But the overall effect may be good

• Can be faster

48

Batch training: Stochastic gradient descent:



Variants of gradient descent

• Pick a subset of the training set of a 
certain size

• Calculate the loss for this subset
• Make one move in the direction 

opposite of this gradient
• Repeat (an epoch)

• A good compromise between the 
two extremes

• (The other two are subcases of 
this)

49

Mini-batch training:

https://suniljangirblog.wordpress.com/2018/12/13/
variants-of-gradient-descent/

https://suniljangirblog.wordpress.com/2018/12/13/variants-of-gradient-descent/


7.7 Multi-Class Classification
IN3050/IN4050 Introduction to Artificial Intelligence 

and Machine Learning
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Multi-class classification

• Assign a label (class) from a 
finite set of labels to an 
observation

• So far, many algorithms and 
examples have been binary: 
yes-no, 1-0

• But many classification tasks are 
multi-class:
• To each observation 𝒙 choose one 

label from a finite set T

• What is different?

51

Classification

?



1-of-N or "one hot encoding"

• The labels might be categorical:
• 'apple', tomato', 'dog', 'horse'

• The algorithms demand 
numerical attributes.

• First attempt
• 'apple' = 1
• 'tomato' = 2
• 'dog' = 3
• etc.

• Why isn't this a good idea?

• Better:
• 'apple' = (1, 0, 0, 0, 0, 0)
• 'tomato' = (0, 1, 0, 0, 0, 0)
• 'dog' = (0, 0, 1, 0, 0, 0)
• etc.

• Both the target and the 
predicted value are vectors.
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One vs. rest

• Train one classifier for each class
• (cf. Marsland's ch.3)

• Works for multi-label classification

• But the multi-class classifiers 
should only propose one class

• How to choose?

53
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One vs. rest contd.

• It is easy to decide for 
items which fall into 
exactly one class

• But what if they fall 
into
• More than one class?

• No classes?

54

https://github.com/amueller/introduction_to_ml_with_python

https://github.com/amueller/introduction_to_ml_with_python


One vs. rest

• If each classifier predicts a score, 
compare the scores for the 
classes

• Choose  the class with the 
highest score.

• E.g., log. reg.:
• Probability of being red: 0.8

• Probability of being blue: 0.7

• Choose red

55

https://github.com/amueller/introduction_to_ml_with_python

https://github.com/amueller/introduction_to_ml_with_python


One vs. rest

• For 𝒙𝑖 choose the 𝑗 for which 𝑦𝑖,𝑗 is the max of 𝑦𝑖,1, 𝑦𝑖,2, … , 𝑦𝑖,𝑛

56



Multinomial Logistic Regression

• Logistic regression gives another option for making a multi-class classifier
• Called multinomial logistic regression, or softmax regression

• also called maximum entropy (maxent) classifier,

• With one class we considered 𝑃 𝑡 = 1 Ԧ𝑥 =
𝑒𝑤∙𝑥

1+𝑒𝑤∙𝑥
=

1

1+𝑒−𝑤∙𝑥

• and implicitly 𝑃 𝑡 = 0 Ԧ𝑥 = 1 −
𝑒𝑤∙𝑥

1+𝑒𝑤∙𝑥
=

1

1+𝑒𝑤∙𝑥

• We now consider a linear expression 𝑤𝑖, for each class 𝐶𝑖 , 𝑖 = 1,… , 𝑘
• The probability for each class is then given by the softmax function

𝑃 𝐶𝑗 Ԧ𝑥 =
𝑒
𝑤𝑗∙𝑥

σ𝑖=1
𝑘 𝑒𝑤𝑖∙𝑥
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Training softmax

• It is possible to train towards softmax.

• In each step, we have to calculate 𝑦𝑗 for each class 𝑗.

• In updating the weights for one class 𝑖, the predicted values for all the 
classes are considered and contribute to the update.

• We skip the details.
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