
IN3050/IN4050 -
Introduction to
Artificial Intelligence
and Machine Learning
Lecture 8

Multi-layer neural networks and backpropagation

Jan Tore Lønning

8.1 Feed-forward
Neural networks
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

2

Today

1. Feed-forward neural networks (Multi-layer Perceptron)

2. Matrix representations of neural networks

3. The Backpropagation Algorithm

4. Finer details

5. More on Evaluation

3

The neural inspiration

4

https://simple.wikipedia.org/wiki/Neuron#/media/File:Neuron.svg

• So far inspired by one neuron

• That does not make intelligence

The human brain, roughly
• 1011 Neurons

• 1014 Synapses

• The strength is the interactions

• Neural Networks

https://simple.wikipedia.org/wiki/Neuron#/media/File:Neuron.svg

Artificial Neural Networks

• Inspired by the brain

• Does not pretend to be a model
of the brain

• The simplest model is the
• Feed forward network, also called

• Multi-layer Perceptron

5

Feed forward network

• An input layer

• An output layer: the predictions

• One or more hidden layers

• Connections from nodes in one
layer to nodes in the next layer
(from left to right)

• The connections are marked
with weights

6

Going forwards (predictions)

• There is one input node for each
feature/dimension in an input vector:
𝑥1, 𝑥2, … , 𝑥𝑚

• In addition, an input bias node 𝑥0 = −1

• The input values are multiplied with the
weights and summed into each hidden node.

• There is some processing in the hidden node.

• The output values of the hidden nodes are fed
to the next layer.

• (etc.)

7

One hidden unit

1. First sum of weighted inputs :
• z = σ𝑖=0

𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

2. Then the result is run through
an activation function, 𝑔 to
produce 𝑔 𝑧 = 𝑔 𝒘 ∙ 𝒙

• The activation function could be
the step function,
• c.f. the XOR-example:

• Marsland sec 3.4..2 & start ch. 4

8

−𝑤0

It is the non-linearity of the
activation function which makes it
possible for MLP to predict non-

linear decision boundaries

A differentiable activation function

• It is unclear how to update the
weights if 𝑔 isn’t differentiable

• One option is to use the logistic
(sigmoid) function

• 𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑤∙𝑥

• Differentiable

• 𝑦′ = 𝑦(1 − 𝑦)

• (There are alternative activation
functions.)

9

One hidden node

1. First sum of weighted inputs:
• z = σ𝑖=0

𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

2. Then

• 𝑦 = 𝑔 𝑧 = 𝜎(𝑧) =
1

1+𝑒−𝑤∙𝑥

10

x1

x2

x3

-1

Σ

w0
w1

w2

w3

z y

Going forwards (predictions)

• After the processing in the

hidden layer, the output is taken

as input to the next layer

• One must also add a bias term

at this layer.

• Observe that this has to be done:

• During processing

• E.g., over again each time we process

the same training item

11

Output layer

• Several possibilities, depending
on the task, including:
• Regression

• Binary classification

• Multi-label classification

• Multi-class classification

• From the last layer to the output
layer is like the same tasks
without multiple layers!

• c.f. Marsland, sec. 4.2.3

12

1. Regression

• One output node

• No activation function
• = activation function is the identity

function

• Observe that this can predict
non-linear functions!

13

෍

2. Binary classification

• One output node

• Logistic activation function

• Similar to logistic regression

• Can produce non-linear decision
boundaries

14

Σ + 𝜎

3. Multi-label classification

• Several output nodes

• Logistic activation function

• Can be made multi-class
classification by one vs. rest.

• The model Marsland considers

15

Σ + 𝜎

Σ + 𝜎

Σ + 𝜎

4. Multi-class classification

• Several output nodes

• Sum the weighted inputs at each
nodes

• The sums are brought together
in the soft-max

16

Σ

Σ

Σ
Soft
max

8.2 Matrix representations
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

17

Representing the connections

• We use a matrix to represent the connections

• Element 𝑤𝑖,𝑗 is the connection:
• from node 𝑖
• to node 𝑗

• (Beware, some texts do it differently)

18

Connections going into a node

19

x1

x2

x3

-1

z2

𝑤0,2

z3

z4

z1
𝑤1,2

𝑤2,2

𝑤3,2

Connections going out of a node

20

x1

x2

x3

-1

z2

z3

z4

z1

𝑤1,2

𝑤1,1

𝑤1,3

𝑤1,4

Batch-processing

• In batch-processing we can multiply by weights and (i) sum the results
for (iii) each input item, and (ii) each hidden node in one operation

• Three nested loops by just: 𝑋𝑊

21

Activation function

• Each 𝑧𝑖,𝑗 is passed through the activation function: 𝑦𝑖,𝑗 = 𝑔(𝑧𝑖,𝑗)

• In NumPy this can be done by one operation: 𝑔(𝑋𝑊)

• Reminder: 𝑔 may be the logistic function, but doesn’t have to
• i.e., 𝑔(𝑧𝑖,𝑗) = 𝜎(𝑧𝑖,𝑗) =

1

1+𝑒
−𝑧𝑖,𝑗

22

Footnote: Notation

• Half of all texts follow us and Marsland with respect to notation

• The other half does differently

• It amounts to the same.

• But don’t mix them up!

23

We Them

Connection from node i to node j 𝑤𝑖,𝑗 𝑤𝑗,𝑖

Data and weights 𝑋𝑊 𝑊𝑋

Applying activation function 𝑔(𝑋𝑊) 𝑔(𝑊𝑋)

8.3 Learning by
Back-propagation
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

24

Background

Marsland (p.74), ‘’…just three things that you need to know…’’:

1. If 𝑓 𝑥 =
1

2
𝑥2 then 𝑓′ 𝑥 = 𝑥

2. If 𝑓 𝑥 = 𝑐 then 𝑓′ 𝑥 = 0

3. If 𝑓 𝑥 = ℎ(𝑔 𝑥) then 𝑓′ 𝑥 = ℎ′ 𝑔 𝑥 𝑔′(𝑥) (the chain rule)

He forgot

4. If 𝑦 = 𝜎(𝑧) =
1

1+𝑒−𝑤∙𝑥
, then 𝑦′ = 𝑦(1 − 𝑦)

25

In addition

We will make use of the following which we have already seen:

• The logistic regression model

• Gradient descent

• GD applied to
• Linear regression

• Logistic regression

• Loss-functions:
• MSE, Cross-Entropy

26

Training

• Given a set of training instances
• { 𝒙1, 𝑡1 , 𝒙2, 𝑡2 ,…, 𝒙𝑁 , 𝑡𝑁 }:

• Forwards:
• Run them forwards and get predictions

• {𝑦1, 𝑦𝑁, … , 𝑦𝑁}

• Backwards
• Use a suitable loss function and compare

these to the target values
• 𝑡1, 𝑡2, … , 𝑡𝑁

• Apply gradient descent to update the weights (partial derivatives)

27

How do we update the weights

Last layer

• (easy)

• Like the same problems for
linear regression or logistic
regression without a hidden
layer

The first layer

• The big question:

• How do we update the first
layer?

• We don't have a loss (error) here

28

Solution: Backpropagation

• Let's be a little more formal

• Let the matrix V be the
connections from input to
hidden and W from hidden to
output
• dim 𝑉 = (𝑚 + 1 × 𝑘)

• dim 𝑊 = (𝑘 + 1 × 𝑛)

• Activation functions:
• Hidden layers: 𝑔

• Hidden output layer: 𝑓

29

WV

• Let us in the following consider
SGD where we update for one
input 𝒙 = (𝑥1, 𝑥2, … 𝑥𝑚)

Forwards (notation)

• Add bias and send
• 𝒙+ = (𝑥0, 𝑥1, … 𝑥𝑚)

• through the first layer to get
• 𝒉 = 𝒙+𝑽 = (ℎ1, ℎ2, … , ℎ𝑘), where

• ℎ𝑗 = σ𝑖=0
𝑚 𝑥𝑖𝑣𝑖,𝑗

• 𝑘 is the number of hidden nodes

• Apply activation function to get
• 𝒂 = 𝑔(𝒉) = (𝑎1, 𝑎2, … , 𝑎𝑘),

• where 𝑎𝑗 = 𝑔(ℎ𝑗)

• Add bias and send
• 𝒂+ = (𝑎0, 𝑎1, 𝑎2, … , 𝑎𝑘)

• through the second layer to get
• 𝒛 = 𝒂+𝑾 = (𝑧1, 𝑧2, … , 𝑧𝑛), where

• 𝑧𝑗 = σ𝑖=0
𝑘 𝑎𝑖𝑤𝑖,𝑗

• 𝑛 is the number of output nodes

• Apply activation function to get
• 𝒚 = 𝑓(𝒛) = (𝑦1, 𝑦2, … , 𝑦𝑛),

• where 𝑦𝑗 = 𝑓(𝑧𝑗)

30

Backwards: 1.Regression

• We will consider various output
tasks, starting with the simple
regression

• There is only one output node

• The output activation function,
𝑓, is identity

31

෍

Backwards: Update last layer

• For loss, we use MSE, or , as Marsland, the simpler

Sum of Squares Error (SE): 𝐿𝑆𝐸 𝐭, 𝒚 =
1

2
σ𝑗=1
𝑁 𝑡𝑗 − 𝑦𝑗

2

• (The index 𝑗 here, runs over the input items. There is only one output node)

• We have seen that

•
𝜕

𝜕𝑤𝑖,1
𝐿𝑆𝐸 𝐭, 𝒚 =

𝜕

𝜕𝒚
𝐿𝑆𝐸 𝐭, 𝒚

𝜕

𝜕𝑤𝑖,1
𝒚 = σ𝑗=1

𝑁 (𝑡𝑗 − 𝑦𝑗)(−𝑎𝑗,𝑖)

• For SGD where we update for one input 𝒙 = (𝑥1, 𝑥2, … 𝑥𝑚)

•
𝜕

𝜕𝑤𝑖,1
𝐿𝑆𝐸 t, 𝑦 =

𝜕

𝜕𝒚
𝐿𝑆𝐸 t, 𝑦

𝜕

𝜕𝑤𝑖,1
𝑦 = 𝑡 − 𝑦 −𝑎𝑖 = 𝑦 − 𝑡 𝑎𝑖

32

Backwards: Update last layer, ctd.

•
𝜕

𝜕𝑤𝑖,1
𝐿𝑆𝐸 t, 𝑦 = 𝑦 − 𝑡 𝑎𝑖

• We know from lect. 6 how to update
this (𝒂 corresponds to 𝒙 then)

• But wait!

• We first have to find how to update the
first layer.

33

Backwards: Update first layer: V, 1

• 𝒚 = 𝑓 𝒛 = 𝐳, where 𝒛 = 𝒂+𝑾

• 𝒂 = 𝑔(𝒉), where 𝒉 = 𝒙+𝑽

•
𝜕

𝜕𝑣𝑖,𝑗
𝐿𝑆𝐸 t, 𝑦 =

•
𝜕

𝜕𝒂
𝐿𝑆𝐸 t, 𝑦

𝜕

𝜕𝑣𝑖,𝑗
𝒂 =

•
𝜕

𝜕𝑎𝑗
𝐿𝑆𝐸 t, 𝑦

𝜕

𝜕𝑣𝑖,𝑗
𝑎𝑗

• because
𝜕

𝜕𝑣𝑖,𝑗
𝑎𝑘 = 𝟎 for 𝑘 ≠ 𝑗

34

෍
𝑣𝑖,𝑗

𝑥𝑖

𝑎𝑗 𝑤𝑗.1

Backwards: Update first layer: V, 2

• 𝒚 = 𝑓 𝒛 = 𝐳, where 𝒛 = 𝒂+𝑾

•
𝜕

𝜕𝑎𝑗
𝐿𝑆𝐸 t, 𝑦 =

𝜕

𝜕𝒚
𝐿𝑆𝐸 t, 𝑦

𝜕

𝜕𝑎𝑗
𝑦 =

𝑡 − 𝑦 −𝑤𝑗,1 = 𝑦 − 𝑡 𝑤𝑗,1

• Observe similarities and differences to

•
𝜕

𝜕𝑤𝑖,1
𝐿𝑆𝐸 t, 𝑦 = 𝑦 − 𝑡 𝑎𝑖

• We call the common part: 𝑦 − 𝑡 for the
delta term, 𝛿𝑜(𝜅) of the end node 𝜅.

35

෍
𝑣𝑖,𝑗

𝑥𝑖

𝑎𝑗 𝑤𝑗.1

Backwards: Update first layer: V, 3

• 𝒂 = 𝑔(𝒉), where 𝒉 = 𝒙+𝑽

•
𝜕

𝜕𝑣𝑖,𝑗
𝑎𝑗 =

𝜕

𝜕𝒉
𝑔

𝜕

𝜕𝑣𝑖,𝑗
𝒉 =

=
𝜕

𝜕ℎ𝑗
𝑔

𝜕

𝜕𝑣𝑖,𝑗
ℎ𝑗

•
𝜕

𝜕𝑣𝑖,𝑗
ℎ𝑗 = 𝑥𝑖

• If 𝑎𝑗 = 𝑔(ℎ𝑗) = 𝜎(ℎ𝑗), then

•
𝜕

𝜕ℎ𝑗
𝑔 = 𝑎𝑗(1 − 𝑎𝑗)

•
𝜕

𝜕𝑣𝑖,𝑗
𝑎𝑗 = 𝑎𝑗(1 − 𝑎𝑗)𝑥𝑖

36

෍
𝑣𝑖,𝑗

𝑥𝑖

𝑎𝑗 𝑤𝑗.1

Backwards: Update first layer: V, 4

• 𝒚 = 𝑓 𝒛 = 𝐳, where 𝒛 = 𝒂+𝑾

• 𝒂 = 𝑔(𝒉), where 𝒉 = 𝒙+𝑽

•
𝜕

𝜕𝑣𝑖,𝑗
𝐿𝑆𝐸 t, 𝑦 =

𝜕

𝜕𝑎𝑗
𝐿𝑆𝐸 t, 𝑦

𝜕

𝜕𝑣𝑖,𝑗
𝑎𝑗 =

• 𝑦 − 𝑡 𝑤𝑗,1 𝑎𝑗(1 − 𝑎𝑗)𝑥𝑖

37

෍
𝑣𝑖,𝑗

𝑥𝑖

𝑎𝑗 𝑤𝑗.1

𝛿𝑜(𝜅)

𝛿-term at the node
marked with 𝑎𝑗

Putting it together: the Algorithm

• Use the loss function and the derivative of the activation function to
compute the delta term at the final node(s), here: 𝛿𝑜 𝜅1 = 𝑦 − 𝑡

• Compute the delta terms for each node in the hidden layer, from the
delta term(s) and the hidden layer and the weights at the connections
• here: 𝛿 ℎ𝑖𝑑𝑑𝑒𝑛𝑗 = 𝛿𝑜 𝜅1 𝑤𝑗,1 𝑎𝑗(1 − 𝑎𝑗)

• Update the weights by the deltas:
• 𝑤𝑖,1 = 𝑤𝑖,1 − 𝜂𝛿𝑜 𝜅1 𝑎𝑖
• 𝑣𝑖,𝑗 = 𝑣𝑖,𝑗 − 𝜂𝛿 ℎ𝑖𝑑𝑑𝑒𝑛𝑗 𝑥𝑖

38

2. Binary classification, take one

• Like Marsland, and regression, for
loss use (SE):
𝐿𝑆𝐸 𝐭, 𝒚 =

1

2
σ𝑗=1
𝑁 𝑡𝑗 − 𝑦𝑗

2

• The only difference to regression is
the logistic activation function: 𝑦 =
𝜎(𝑥) =

1

1+𝑒−𝑥

• Since the derivative of this is
𝑦 1 − 𝑦 , we get

• 𝛿𝑜 𝜅1 = 𝑦 − 𝑡 𝑦 1 − 𝑦

• The rest is as for regression

39

Σ + 𝜎

2. Binary classification, take two

• Use instead cross-entropy loss
(cf. Lecture 7, Marsland 4.6.6)

•
𝜕

𝜕𝑦
𝐿𝐶𝐸 t, 𝑦 = −

𝑡−𝑦

𝑦 1−𝑦

• Logistic activation

• 𝛿𝑜 𝜅1 = −
𝑡−𝑦

𝑦 1−𝑦
𝑦 1 − 𝑦 =

(𝑦 − 𝑡)

• The rest is as for regression and
take one

40

Σ + 𝜎

3. Multi-label classification

• Several output nodes

• Logistic activation function

• The model Marsland considers

• 𝐿𝑆𝐸 𝐭, 𝒚 =
1

2
σ𝑗=1
𝑁 𝑡𝑗 − 𝑦𝑗

2

• (The index 𝑗 here, runs over the
output nodes.)

• We still look at one input only

41

Σ + 𝜎

Σ + 𝜎

Σ + 𝜎

3. Multi-label classification

• (SE loss, logistic output
activation)

• We compute a delta term at
each output node, 𝜅𝑗:

• 𝛿𝑜 𝜅𝑗 = 𝑦𝑗 − 𝑡𝑗 𝑦𝑗 1 − 𝑦𝑗

42

Σ + 𝜎

Σ + 𝜎

Σ + 𝜎

3. First layer

• (SE loss,
logistic output activation)

• 𝛿 ℎ𝑖𝑑𝑑𝑒𝑛𝑗 =

• 𝑎𝑗(1 − 𝑎𝑗) σ𝑖=1
𝑛 𝛿𝑜(𝜅𝑖)𝑤𝑗,𝑖

• i.e., sum of delta at output
weighted by the connections
between them

• The rest as for the others

43

Σ + 𝜎

Σ + 𝜎

Σ + 𝜎

𝑣𝑖,𝑗

𝑥𝑖

𝑎𝑗

Putting it together: the Algorithm

• Use the loss function and the derivative of the activation function to
compute the delta term at the final node(s),
• here:𝛿𝑜 𝜅𝑗 = 𝑦𝑗 − 𝑡𝑗 𝑦𝑗 1 − 𝑦𝑗 for each node 𝜅𝑗for 𝑗 = 1,… , 𝑛

• Compute the delta terms for each node in the hidden layer,
• here: 𝛿 ℎ𝑖𝑑𝑑𝑒𝑛𝑗 = 𝑎𝑗(1 − 𝑎𝑗) σ𝑖=1

𝑛 𝛿𝑜(𝜅𝑖)𝑤𝑗,𝑖 for 𝑗 = 1,… , 𝑘

• Update the weights by the deltas in both layers
• 𝑤𝑖,𝑗 = 𝑤𝑖,𝑗 − 𝜂𝛿𝑜 𝜅𝑗 𝑎𝑖
• 𝑣𝑖,𝑗 = 𝑣𝑖,𝑗 − 𝜂𝛿 ℎ𝑖𝑑𝑑𝑒𝑛𝑗 𝑥𝑖

44

By the way:

• To calculate σ𝑗=1
𝑚 𝑤𝑙,𝑗𝛿𝑗 by matrices, use

• [𝛿(𝜅1), 𝛿(𝜅2),…𝛿(𝜅𝑛)]𝑾
𝑇

45

a1

a2

a3

-1

y2

y3

y4

y1

𝑤1,2

𝑤1,1

𝑤1,3

𝑤1,4

t2~

t2~

t2~

t2~

Congratulation!

• You just survived
backpropagation!

• You now deserve a break and
cake!

46

8.4 Finer details
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

47

Practical advices

• Scaling

• Initializing the weights

• Local minima

• Early stopping

• Batch, stochastic, mini-batch

• Number of hidden nodes and
hidden layers?

• Activation functions

48

Scaling

• The z = 𝒘 ∙ 𝒙 shouldn't be too
large for this to work, roughly 𝑧
shouldn't be much more than 1

• For example, normalization
(scikit: standardscaler) of each
feature

Normalization

• Training data, dimension 𝑖:
𝑋𝑖 = {𝑥1𝑖 , 𝑥2𝑖 , …𝑥𝑁𝑖}.

• Let 𝑚 be the mean value:

• 𝑚 =
1

𝑁
σ𝑗=1
𝑁 𝑥𝑗,𝑖

• Let 𝑠 be the standard deviation

• Define 𝑠𝑐𝑎𝑙𝑒𝑖(𝑥𝑗𝑖) =
𝑥𝑗𝑖−𝑚

𝑠

• Use the same scaler on all test
data!

49

Initializing the weights

• The weights:
• should not be initialized to 0

• should be initialized to random numbers

• should be initialized to numbers between -1 and 1

• In addition, Marsland recommends to multiply with
1

𝑚

• where m is the number of input nodes

50

Local minima

• The loss function for MLP is not
convex

• It can be caught in local minima

• Hence:
• Make several runs with different

initializations and compare the
results (mean and std.dev.)

• Consider methods for escaping
local minima, cf. lecture 2 and
adding momentum

51

Early stopping

• The loss on the training data will
decrease during training

• There is a danger of overfitting
by training for too long:
• The network knows the training set very well
• but does not generalize

52

• Use a validation set V different from the training set.

• After k rounds for some fixed k (e.g., 100):
• check the loss on V
• if the loss starts to increase, stop training!

Variations of gradient descent

• Mini-batch training:
• Pick a subset of the training set of a

certain size
• Calculate the loss for this subset
• Make one move in the direction of

this gradient
• Repeat (an epoch)

• Batch training
• Use the whole training set in each

epoch

• Stochastic gradient descent:
• Pick one datapoint at random and use

in each epoch

• SGD/Mini-batch can be a way to
avoid local minima

53

https://suniljangirblog.wordpress.com/2018/
12/13/variants-of-gradient-descent/

https://suniljangirblog.wordpress.com/2018/12/13/variants-of-gradient-descent/

Number of hidden nodes and hidden layers?

• Very much an empirical question

• Use an independent validation set

• Run with different settings and
evaluate on the validation set

• Choose the settings which give the
best result

• Called hyper-parameter tuning
• (The hyper-parameters are the

parameters that you have to set.)

54

Alternative activation functions in the hidden layer

• There are alternative activation functions

• One may use different functions at different
layers

• tanh 𝑥 =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥

• 𝑅𝑒𝐿𝑈 𝑥 = max 𝑥, 0

• ReLU is the preferred method in deep networks
55

8.5 More on evaluation
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

56

Evaluation measures

• Accuracy: (tp+tn)/N

• Precision:tp/(tp+fp)

• Recall: tp/(tp+fn)

• F-score combines P and R

• 𝐹1 =
2𝑃𝑅

𝑃+𝑅
=

1
1
𝑅
+
1
𝑃

2

• F1 called ‘’harmonic mean’’

• General form

• 𝐹 =
1

𝛼
1

𝑃
+(1−𝛼)

1

𝑅

• for some 0 < 𝛼 < 1

57

Is in C

Yes NO

Class

ifier

Yes tp fp

No fn tn

Confusion matrix

• Beware what the rows
and columns are:
• Marsland swaps them

58

Confusion matrix

• Precision, recall and f-
score can be
calculated for each
class against the rest

59

