IR : i i & @
@ Ui0O ¢ University of Oslo E

C

institutt for informatikk

N3050/IN4050 -

Y‘%l ntroduction to

o Artificial Intelligence
and Machine Learning
Lecture 8

Multi-layer neural networks and backpropagation
Jan Tore Lgnning

8.1 Feed-forward
Neural networks

IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

Today

Feed-forward neural networks (Multi-layer Perceptron)
Matrix representations of neural networks

The Backpropagation Algorithm

Finer details

Al S

More on Evaluation

The neural inspiration

* So far inspired by one neuron
* That does not make intelligence

The human brain, roughly
« 10! Neurons
* 10'* Synapses
* The strength is the interactions

 Neural Networks

Dendrite
Axon Terminal
Node_of
Cell body Ranvier
&/
(D
Axon Schwann cell

Myelin sheath
Nucleus

https://simple.wikipedia.org/wiki/Neuron#/media/File:Neuron.svg

https://simple.wikipedia.org/wiki/Neuron#/media/File:Neuron.svg

Artificial Neural Networks

* Inspired by the brain = -1 -1

* Does not pretend to be a model
of the brain

* The simplest model is the
* Feed forward network, also called ~--~-
* Multi-layer Perceptron

S
22

Hidden Layer Output Layer

Input Layer

A

Feed forward network

* An input layer o ' -
* An output layer: the predictions |

* One or more hidden layers

* Connections from nodes in one
layer to nodes in the next layer
(from left to right)

e The connections are marked
with weights

Hidden Layer Output Layer

Input Layer

A

Going forwards (predictions)

* There is one input node for each -1)
feature/dimension in an input vector: T

(X1, X5, o) X))

* In addition, an input bias node xy = —1

* The input values are multiplied with the
weights and summed into each hidden node.

* There is some processing in the hidden node.

i Output Layer
* The output values of the hidden nodes are fed Eaden Liyer ¥ d

to the next layer. Input Layer

A

* (etc.)

One hidden unit

1. First sum of weighted inputs :
¢ 7= ;ZOWL'XL' = WwW-X

2. Then the result is run through
an activation function, g to
produce g(z) = g(w - x)

* The activation function could be It is the non-linearity of the
the step function, activation function which makes it
* c.f. the XOR-example: possible for MILP to predict non-

e Marsland sec 3.4..2 & start ch. 4 linear decision boundaries

A differentiable activation function

* |t is unclear how to update the

weights if g isn’t differentiable

150

* One option is to use the logistic .
(sigmoid) function 100 |
. . 1 0.75 1
Y= O-(Z) - 1+e~—WX 0.50 -
 Differentiable 025 -
*y =y -y)
—0.25 -

* (There are alternative activation 050 f——

functions.)

One hidden node

1. First sum of weighted inputs:
¢ 7= ’iﬁowl-xi = WwW-X

2. Then

ry=9g(2) =0(z) = —

1+e~W¥

10

Going forwards (predictions)

* After the processing in the
hidden layer, the output is taken
as input to the next layer

* One must also add a bias term
at this layer. |
« Observe that this has to be done: (/" Hidden Layer OutputLayer

* During processing Inpﬁf Layer

* E.g., over again each time we process
the same traning iem A

11

Output layer

* Several possibilities, depending
on the task, including:
* Regression
* Binary classification
* Multi-label classification
* Multi-class classification

* From the last layer to the output
layer is like the same tasks
without multiple layers!

e c.f. Marsland, sec. 4.2.3

Hidden Layer Output Layer

Input Layer

A

12

1. Regression

* One output node

 No activation function
e = activation function is the identity
function

* Observe that this can predict
non-linear functions!

Hidden Layer Output Layer

Input Layer

A

13

2. Binary classification

* One output node
e Logistic activation function
* Similar to logistic regression

* Can produce non-linear decision
boundaries

Hidden Layer Output Layer

Input Layer

A

14

3. Multi-label classification

e Several output nodes
e Logistic activation function

e Can be made multi-class
classification by one vs. rest.

* The model Marsland considers

\ | X4+o0

) /\ \/‘\» X+ o
>

Hidden Layer Output Layer

Input Layer

A

15

4. Multi-class classification

e Several output nodes -

* Sum the weighted inputs at each
nodes

* The sums are brought together
in the soft-max &

Hidden Layer Output Layer

Input Layer

>

16

3.2 Matrix representations

IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

17

Representing the connections

— —

wp1 Wp2 --- Won

H.I]..]. - '“._:']._n

[-.rﬂ@ T2 - T | Wa1 Wz v UWon | = 3'1 o zn |

| Wm,1l Wy2 - Wyn

* We use a matrix to represent the connections

* Element w; ; is the connection:

* from node i
* tonodej

* (Beware, some texts do it differently)

Hidden Layer Output Layer

Input Layer

18

Connections going into a node

Wy s Won
i T Win
|:.Tl} Ty Tp --- mm] ngl . W n :[zl@ zn]
| Wm o Wmn

19

Connections going out of a node

wp1 Wp2 - Won

Wy Wi - Wig |
[I @ ra - Tm] wi,l T—”E,E e wWa n = [A - D)]
| Wml Wm2 - Wmn |

20

Batch-processing

I1.0
2.0

| TN

I1.1 r1,2
2 L3 2
N1 ITND

LTN.m

A4

i, 1
.1
iWa 1

i W 1

w0
19

Wo o

Wi 2

W n
UM 7

wo 5

Wm.n

* In batch-processing we can multiply by weights and (i) sum the results

for (iii) each input item, and (ii) each hidden node in one operation

* Three nested loops by just: XV

21

Activation function

1o I11 I12
rao r21 raa2 --- I2m

L
\v

| IND ITN1 IN2 - INm

* Each z; ; is passed through the activation function: y; ; = g(z; ;)
* In NumPy this can be done by one operation: g(XW)

i, 1
.1
iWa 1

i W 1

wp 2
19

o o

W2

LR
UM 7

wo 5

Wm.n

* Reminder: g may be the logistic function, but doesn’t have to

e, g(z,;) =0(z;) =

1
1+e “LJ

22

Footnote: Notation

* Half of all texts follow us and Marsland with respect to notation
* The other half does differently

- we ____|Them

Connection from node i to node j W; j W; i
Data and weights XW WX
Applying activation function g(XWw) gWwXx)

* [t amounts to the same.
* But don’t mix them up!

23

institutt for informatikk

8.3 Learning by
Back-propagation

IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

Background

Marsland (p.74), “...just three things that you need to know...””:

1. If f(x) = %xz then f'(x) = x

2. If f(x) =cthenf'(x) =0

3. If f(x) = h(g(x)) then f'(x) = h'(g(x))g’'(x) (the chain rule)

He forgot

1
1+e~ WX’

theny’ = y(1—-y)

4. Ify=o0(z) =

In addition

We will make use of the following which we have already seen:
* The logistic regression model

* Gradient descent

* GD applied to

* Linear regression
* Logistic regression

* Loss-functions:
* MSE, Cross-Entropy

Training

* Given a set of training instances
¢ {(xl, tl)' (xz, tz),..., (xN, tN)}:

* Forwards:
* Run them forwards and get predictions Hidden Layer Output Layer
* Wuyn YN}
e Backwards Input Layer

e Use a suitable loss function and compare
these to the target values

o {ti,ty, ..., ty}
* Apply gradient descent to update the weights (partial derivatives)

27

How do we update the weights

Last layer The first layer

* (easy) * The big question:

* Like the same problems for * How do we update the first
linear regression or logistic layer?

regression without a hidden

 We don't have a loss (error) here
layer

. ST

Solution: Backpropagation '@ '@

-

Hidden Layer Output Layer

e Let's be a little more formal

e Let the matrix V be the

connections from input to
hidden and W from hidden to

output
o dim(V) = ((m+1) xk) Input Layer
+ dim(W) = ((k + 1) x n)
* Activation functions: * Let us in the following consider
* Hidden layers: g SGD where we update for one

* Hidden output layer: f input x = (X, X5, ... X;p)

29

Forwards (notation)

e Add bias and send e Add bias and send
o xT = (x0,%1, .. Xpy) c at = (ay,aq,ay,...,a;)

* through the first layer to get * through the second layer to get
« h=x"V = (hq, hy, ..., hy), where cz=a"W = (z, 2y, ..., Z,), Wwhere
* hi = XiZox;v; * Zj = - a;w; j
e kis the number of hidden nodes * nis the number of output nodes

* Apply activation function to get « Apply activation function to get
*a=g(h) = (ay,ay .., a), * ¥y =f(2) = 1Y2 - Yn)s

* where a; = g(hj) * where Yj = f(Zj)

Backwards: 1.Regression

* We will consider various output
tasks, starting with the simple
regression

* There is only one output node

* The output activation function,
f, is identity

Hidden Layer Output Layer

Input Layer

A

31

Backwards: Update last layer

* For loss, we use MSE, or, as Marsland, the simpler
1N 2
Sum of Squares Error (SE): Lep(t,y) = E jzl(tj — yj)
* (The index j here, runs over the input items. There is only one output node)

e We have seen that

Lss(t) = = Lss () (5=¥) = T (@ - 3 (-a;0)

* For SGD where we update for one input x = (x4, X, ... X;)

*Lsp(tY) = 2 Lsp (6) (50— 7) = (£ = ¥)(=a) = (v = (@)

awl 1 ow; 1

Backwards: Update last layer, ctd.

d
aWi’l

Leg(ty) = (y — t)(ay)

* We know from lect. 6 how to update
this (a corresponds to x then)

* But wait!

* We first have to find how to update the
first layer.

33

Backwards: Update first layer: V, 1

y=f(z) =2z wherez=a'W
* a = g(h), where h = x*V

%)
LSE (t,)’)z

avi,j

'%LSE(t:.V)(° a) =

c’)vi,j

)
Lse(t,y) (% aj)

d
aaj

d
avi,j

. because(ak) =0fork #j

-1 -1‘

e

Hidden Layer Output Layer

Input Layer

A

34

Backwards: Update first layer: V, 2

cy=f(z) =2z, wherez=a*W

LSE(t y) (aa]) =
(t —)’)(—Wj,1) =y — t)(WJ,l)

 Observe similarities and differences to

~Lsp(6y) = 0 — (@)

* We caII the common part: (y — t) for the
delta term, 8, (k) of the end node k.

aa]

1 -1‘

N

/"e

Hidden Layer Output Layer

Input Layer

A

35

Backwards: Update first layer: V, 3

 a = g(h), where h = x*V -1 -1‘

- (9) Gom) 2 O @

e |f aj = g(h]) = O'(h]), then Hidden Layer Output Layer

° (ig): a(l — a.)
Oh; ! ! Input Layer

0
i (m Clj) = Clj(]. — aj)xi '

36

Backwards: Update first layer: V, 4

¢y = f (Z) = Z, Where z = atW . -1‘
o, =2C

* a=g(h), where h = x™V L4 \
0 (2

LSE(t y)_ aaj LSE(t y) (avu])=
Hidden Layer Output Layer

6vl]

) (y - t)(W],l)a](l — aj)xi "
| - ' Input Layer

OStENM aEENOCE —
marked with a

37

Putting it together: the Algorithm

e Use the loss function and the derivative of the activation function to
compute the delta term at the final node(s), here: §,(x;) = (y —t)

 Compute the delta terms for each node in the hidden layer, from the
delta term(s) and the hidden layer and the weights at the connections
* here: 6(hiddenj) = 6,(xq1) (Wj}l)aj(l — aj)
e Update the weights by the deltas:
* Wi = W1 — N6, (Kq)a;
¢ vi,j = vi,j — nd(hlddenj)xl

2. Binary classification, take one

* Like Marsland, and regression, for
loss use (SE):

Lse(ty) =% ﬂy=1(tj — yf)z

* The only difference to regression is
the logistic activation function: y =

1
O-(x) = 1+e=%

e Since the derivative of this is
y(1—1y), we get

+ §o(k) = (y —)y(1—y) input Layer

* The rest is as for regression —

Hidden Layer Output Layer

39

2. Binary classification, take two

e Use instead cross-entropy loss
(cf. Lecture 7, Marsland 4.6.6)

O __ (t=y)

* Logistic activation

. __ (=y) o) —
8o(ity) = =25 y(1—y)
(y—¢t)

.] Input Layer
* The rest is as for regression and

take one A

Hidden Layer Output Layer

40

3. Multi-label classification

* Several output nodes 1 1

* Logistic activation function w \

* The model Marsland considers \/‘\} to
_1gnN 2 . ANy YX+o

* Lsp(ty) = 52j=1(tj — }’j) ‘\‘ﬁ'/‘\‘\ o

* (The index j here, runs over the
output nodes.) Hidden Layer Output Layer

* We still look at one input only

Input Layer

A

3. Multi-label classification

* (SE loss, logistic output
activation)

 We compute a delta term at
each output node, k;:

* 8o(x5) = (v —)y (1 —)

X+ o

2>
/‘\‘¥ + 0

X+o
Hidden Layer Output Layer

Input Layer

A

42

3. First layer

* (SE loss,
logistic output activation)

» §(hidden;) =
¢ a](l — Clj) 27{;1 50 (Ki)Wj,i
* j.e., sum of delta at output

weighted by the connections
between them

* The rest as for the others

-1 -1

D6
o N

Hidden Layer Output Layer

Input Layer

A

43

Putting it together: the Algorithm

e Use the loss function and the derivative of the activation function to
compute the delta term at the final node(s),

. here:SO(Kj-) = (yj — tj)yj(l — yj) for each node kijforj =1,..,n
* Compute the delta terms for each node in the hidden layer,

* here: S(hiddenj) =a;(1—aj) Xi=1 6,(c)wj; forj=1,... .k
* Update the weights by the deltas in both layers

* wij = wij —18,(k;)a;

* V=V — nd(hiddenj)xi

By the way:
[wp1 W2 v Wi |
wyl Wps - Wig)
[i"ﬂ@ T e g:m] wyy1 Wz -+ UWon :[zl 29 e zn]
: R : ,

* To calculate Y72 wy ;6; by matrices, use
* [6(k1), 8(1¢2),.. 6 () WY

Congratulation!

* You just survived
backpropagation!

* You how deserve a break and
cake!

I[\)iplﬂma

46

8.4 Finer details

IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

a7

Practical advices

* Scaling

* Initializing the weights

* Local minima

 Early stopping

e Batch, stochastic, mini-batch

* Number of hidden nodes and
hidden layers?

e Activation functions

48

Scaling

* Thez = w - x shouldn't be too Normalization
Iahrgelgorl tfgls to Wﬁrk' roughhly z] T Training data, dimension i:
Is; oulan't Ie muc r?orst an 1l X; = {X15 Xg, Xni)
¢ FOr eXxampie, normallzation * Let m be the mean value:
(scikit: standardscaler) of each .
feature *M =D X
* Let s be the standard deviation

Xji—m

* Define scale;(xj;) = -

e Use the same scaler on all test
data!

Initializing the weights

* The weights:
* should not be initialized to O
* should be initialized to random numbers
* should be initialized to numbers between -1 and 1
1

* In addition, Marsland recommends to multiply with N

* where m is the number of input nodes

Local minima

* The loss function for MLP is not
convex

* It can be caught in local minima

* Hence:

* Make several runs with different
initializations and compare the
results (mean and std.dev.)

* Consider methods for escaping
local minima, cf. lecture 2 and
adding momentum

Error
A

Errora

Early stopping

Validation

* The loss on the training data will
decrease during training Training

* There is a danger of overfitting Time to|stop training ~ Nyumber of epochs
by training for too long:
* The network knows the training set very well
* but does not generalize

e Use a validation set V different from the training set.
» After k rounds for some fixed k (e.g., 100):

* check the lossonV
* if the loss starts to increase, stop training!

Variations of gradient descent

* Mini-batch training: — Batch gradient descent
* Pick a subset of the training set of a — Mini-batch gradient Descent
certain size — Stochastic gradient descent

e Calculate the loss for this subset

* Make one move in the direction of
this gradient

* Repeat (an epoch)

* Batch training 12 s et ot st st
e Use the whole training set in each
epoch
* Stochastic gradient descent: * SGD/Mini-batch can be a way to

* Pick one datapoint at random and use avoid local minima
in each epoch

53

https://suniljangirblog.wordpress.com/2018/12/13/variants-of-gradient-descent/

Number of hidden nodes and hidden layers?

* Very much an empirical question

* Use an independent validation set

* Run with different settings and
evaluate on the validation set

oA
s

Hidden Layer Output Layer

P

7\

* Choose the settings which give the
best result

e Called hyper-parameter tuning

* (The hyper-parameters are the Input Layer
parameters that you have to set.)

54

Alternative activation functions in the hidden layer

100 4
—— tanh /77
0.75 4 logistic

050 1
025 4
000 A
-0.25 A
—0.50 4

-0.75 A

—1.00 4

-4 -2 0 2 1
* There are alternative activation functions

* One may use different functions at different
layers

eX—e™X

* tanh(x) = ———

e ReLU(x) = max(x, 0)
* RelLU is the preferred method in deep networks

—0.5

-1.0

30

25

20

15 4

10 1

05

0.0

= tanh
logistic
relu

10 4

& 4

06 4

044

02 4

00

=

— tanh der
logistic der
relu der

8.5 More on evaluation

IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

56

Evaluation measures

Yes NO
GFES Yes |tp p
ifier L n tn

* Accuracy: (tp+tn)/N

* Precision:tp/ (tp+fp)
* Recall: tp/ (tp+fn)

e F-score combines P and R

2PR 1
*F = p+r| ~ T2
R P

2
* F, called “harmonic mean’

* General form
1
° F —

1 1
CZE-F (1—a)§

e forsome 0<a<l1

’

57

58

Confusion matrix

gold standard labels
gold positive gold negative

svstem S}"Elﬂ[[l.
output posifive

gL A% Contingency table

Confusion matrix

gold labels
wgent nomal spam

wgent| § | 10 | 1

ourput nomal | 5 60 50

pam | 3| 30 | 200

i I'E'fﬂ.“ﬂ:i l'E'{':'l“JJ:::I'ETﬂ.“E.=
|3 50 200
' B+5+3 10460430 1450200

precisions= ————

T v
T

precisions=——-

iy &) Confusion matrix for a three-class caiegonzation task, showing for each pair of

classes (cy,c7), how many documents from oy were (in)cormectly assigned to o

* Precision, recall and f-
score can be
calculated for each
class against the rest

