
IN3050/IN4050 -
Introduction to
Artificial Intelligence
and Machine Learning
Lecture 10

Glimpses beyond: Deep Neural Networks

Jan Tore Lønning

Today

1. The deep learning revolution

2. Deep feed-forward neural networks

3. Convolutional NNs and image processing

4. Recurrent NNs and language processing

2

10.1 The deep-learning
revolution
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

3

Deep learning

• A sub-class of neural nets

• No exact definition:
• More an attitude/approach than a

defined class

• Normally: at least two hidden
layers

• Often: a much more specific
architecture

4

ML

Neural nets

Deep
learning

AI

The revolution

• Deep learning breakthrough 10
years ago

• It spawned the great interest in
AI we have seen the last years
• One started to talk about AI again

– not only ML

• Images:
• Image classification
• Object detection
• Scene understanding

• Language:
• Speech recognition
• Machine translation

• Game playing

• Applications:
• Self-driving cars

5

Image Net

6
Image source: https://miro.medium.com/max/1000/1*7kCZemEOdR_5K32Z7mtDCg.jpeg

Images Classes

The whole Image Net 15,000,000 22,000

The image
classification challenge

Ca 1,500,000 1000

The Image Net Competition

• 2012: Alex Net:

• won the competition

• lowered the error rate from 26% to 16%

• Based on deep NNs

• Started an immediate renewed interest in
neural nets

• Started an interest in AI in the population at
large

• In 2014, GoogLeNet: 7%

• 2015: the winner <4%

• Better than humans

7

https://en.wikipedia.org/wiki/File:ImageNet_error_rate_history_(just_systems).svg

Image recognition today

• Google: https://cloud.google.com/vision

• MicroSoft: https://visual-recognition-code-pattern.ng.bluemix.net/

8

https://cloud.google.com/vision
https://visual-recognition-code-pattern.ng.bluemix.net/

Speech recognition

• This was the second big revolution

• There was large progress in the 1990s:
• Bill Gates predicted we could get rid of the

keyboard 10 years later

• It was established a large company in
Norway: Nordisk Språkteknologi

• Too early!

• With deep learning, we got speech
recognition which works (from 2015)

• This made these gadgets possible

9

https://www.youtube.com/watch?v=KkOCeAtKHIc

Other applications

• Since then, deep learning has been applied to nearly all areas where
ML is applied

• The improvements are not always as great as for image recognition
and speech

• But DL performs on top in nearly all ML tasks
• At least where you have large amounts of data

10

History of neural networks

Three main epochs:

1. The beginning (→ 1969)

2. Backpropagation (1986-)

3. Deep learning (2011→)

• Marsland, originally 2009, lacks (3)

11

NN.1: The beginning (→ 1969)

• 1958, Rosenblatt invented the
perceptron

• 1969, Minsky & Papert, The
perceptron:
• Networks without hidden layers

can only learn linear classifiers

• Networks with hidden layers are
probably impossible to train

• Less interest in perceptrons
afterwards

12

Marvin Minsky (1927-2016)
AI pioneer, MIT AI Lab

NN.2: Backpropagation (1986-)

• 1986, Rummelhart, Hinton,
Williams (re)invented
backpropagation

• An immediate enormous interest
by researchers

• But the practical results weren't
impressing, and the interest
diminished

13

NN.3: Deep learning

• In the 1990s and 2000s other
approaches to ML was preferred
in usage and developed, e.g.,
logistic regression, SVM

• But some brave and stubborn
researchers continued the work
on neural nets, including Hinton,
and got their rewards around
2010

14

Why did NNs finally succeed?

• Better models

• More data

• More powerful machines

• GPUs
• (graphical processing units)

15

10.2 Deep feed-forward
Neural networks
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

16

Deep feed-forward NN

• Several hidden layers

• The number of nodes in
each layer may vary

• Fully-connected: edges
from each node in one
layer to each node in the
next layer

17

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer n

Output
layer

Biases

Weight matrices

• One matrix of weights for
each layer

18

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer n

Output
layer

Biases

𝑊(3) 𝑊(4)𝑊(2)𝑊(1)

The hidden nodes - forwards

• Same activation function at all
hidden layers: 𝑔
• Logistic or ReLU or…

• At node j in layer k:
1. First sum of weighted inputs:

• ℎ𝑗
(𝑘)

= σ𝑖=0
𝑚(𝑘−1)

𝑤𝑖,𝑗
(𝑘)
𝑎𝑖
(𝑘−1)

2. Then 𝑎𝑗
(𝑘)

= 𝑔(ℎ𝑗
(𝑘)
)

• (For the record: 𝑎𝑖
(0)

= 𝑥𝑖)

19

𝑎1
(𝑘−1)

𝑎2
(𝑘−1)

𝑎3
(𝑘−1)

-1

Σ 𝑔

𝑤0,𝑗
(𝑘)

ℎ𝑗
(𝑘)

𝑎𝑗
(𝑘)

𝑤1,𝑗
(𝑘)

𝑤2,𝑗
(𝑘)

𝑤3,𝑗
(𝑘)

Forwards

• Each hidden layer behaves
like the hidden layer when
there is only one

• The output layer
• behaves like the output

layer when there is only one
hidden layer

• How? depends on the task

20

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer n

Output
layer

Biases

𝑊(3) 𝑊(4)𝑊(2)𝑊(1)

Update

• Compare output values
to target values: 𝐿(𝒚, 𝒕)

• 𝐿 is a loss-function
• (There are alternative loss

functions)

• If 𝒚 = 𝒕 then 𝐿 𝒚, 𝒕 = 0
• No update

• The larger difference
between 𝒚 and 𝒕, the
larger loss and update

21

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer n

Output
layer

Biases

𝑊(3) 𝑊(4)𝑊(2)𝑊(1)

Target
values

Update

• All weights are updated
according to their contribution
to the loss

• 𝑤𝑖,𝑗
(𝑘)

= 𝑤𝑖,𝑗
(𝑘)

− 𝜂
𝜕

𝜕𝑤𝑖,𝑗
(𝑘) 𝐿 t, 𝑦

• Use partial derivatives + chain

rule for calculating
𝜕

𝜕𝑤𝑖,𝑗
(𝑘) 𝐿 t, 𝑦

22

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer n

Output
layer

Biases

𝑊(3) 𝑊(4)𝑊(2)𝑊(1)

Target
values

Update

• At the last layer with activation
function 𝑓,

i.e., 𝑦𝑗 = 𝑓 𝑧𝑗 , 𝑧𝑗 = σ𝑖𝑤𝑖,𝑗
(4)
𝑎𝑖
(3)

•
𝜕

𝜕𝑤𝑖,𝑗
(4) 𝐿 t, 𝑦 =

𝜕

𝜕𝑦𝑗
𝐿 t, 𝑦

𝜕

𝜕𝑧𝑗
𝑓(𝑧𝑗)𝑎𝑖

(3)

• (eventually:) 𝑤𝑖,𝑗
(4)
= 𝑤𝑖,𝑗

(4)
− 𝜂𝛿𝑗

(4)
𝑎𝑖
(3)

23

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer n

Output
layer

Biases

𝑊(3) 𝑊(4)𝑊(2)𝑊(1)

Target
values

𝛿𝑗
(4)

At the hidden layer

• At the hidden layer with activation
function 𝑔,

i.e., 𝑎𝑗 = 𝑔 ℎ𝑗 , ℎ𝑗 = σ𝑖𝑤𝑖,𝑗
(𝑘)
𝑎𝑖
(𝑘−1)

• 𝛿𝑗
(𝑘)

=
𝜕

𝜕𝑎𝑗
𝑔(𝑎𝑗)σ𝑚 𝛿𝑚

(𝑘+1)
𝑤𝑚
(𝑘+1)

• (eventually:)

𝑤𝑖,𝑗
(𝑘−1)

= 𝑤𝑖,𝑗
(𝑘−1)

− 𝜂𝛿𝑗
(𝑘)
𝑎𝑖
(𝑘−1)

• Follow the same recipe for all
hidden layers (as we did last week)

24

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer n

Output
layer

Biases

𝑊(4)𝑊(2)𝑊(1)

Target
values

Vanishing gradient problem

• The derivative of the logistic
function (and the tanh) is close to 0
except in a small interval around 0
• It gets easily saturated

• At each backwards step calculating
the deltas, we multiply with the
derivative of the activation function

• The gradient comes close to 0.
Unbearable slow update, or no
update at all.

25

Rectified linear unit, ReLU

• Alternative activation functions in the
hidden layers

• 𝑅𝑒𝐿𝑈 𝑥 = max 𝑥, 0

• 𝑅𝑒𝐿𝑈′ 𝑥 = 1 for 𝑥 > 1

• 𝑅𝑒𝐿𝑈′ 𝑥 = 0 for 𝑥 < 1

• Use 0 for 𝑅𝑒𝐿𝑈′ 0

• ReLU is the preferred method in deep
networks
• (There are various modified versions of ReLU)

26

At the hidden layer

• At the hidden layer with activation
function 𝑔 = ReLU,

i.e., 𝑎𝑗 = 𝑔 ℎ𝑗 , ℎ𝑗 = σ𝑖𝑤𝑖,𝑗
(𝑘)
𝑎𝑖
(𝑘−1)

• 𝛿𝑗
(𝑘)

=
𝜕

𝜕𝑎𝑗
𝑔(𝑎𝑗)σ𝑚 𝛿𝑚

(𝑘+1)
𝑤𝑚
(𝑘+1)

• 𝛿𝑗
(𝑘)

= σ𝑚 𝛿𝑚
(𝑘+1)

𝑤𝑚
(𝑘+1)

for 𝑥 > 0

• 𝛿𝑗
(𝑘)

= 0 for 𝑥 ≤ 0

27

Input
layer

Hidden
layer 1

Hidden
layer 2

Hidden
layer n

Output
layer

Biases

𝑊(4)𝑊(2)𝑊(1)

Target
values

10.3 Convolutional NNs
and image processing
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

28

The MNIST data set (lecture 5 example)

Domain

• Hand-written digits

Labels
• To each hand-

written picture of a
digit, predict the
correct digit

• There are 10
different classes

• 60,000 training
images

• 10,000 test images

• Each picture 28x28

29

https://en.wikipedia.org/wiki/MNIST_database

0
1
2
3
4
5
6
7
8
9

https://en.wikipedia.org/wiki/MNIST_database

Image Net

30
Image source: https://miro.medium.com/max/1000/1*7kCZemEOdR_5K32Z7mtDCg.jpeg

Images Classes

The whole Image Net 15,000,000 22,000

The image
classification challenge

Ca 1,500,000 1000

Image classification - input

• An image can be represented as 𝑚 × 𝑛 many
pixels e.g., 28 × 28

• If it is in colors, each pixel can be three
numbers, e.g., between 0 and 255,
• e.g. (100, 50, 135)

• We can represent this in a neural net with
𝑚 × 𝑛 × 3 input nodes

• Challenge:
• A small change to the picture, e.g., rotation or

dislocation changes the input values on each node
• How can it then generalize?

31

m

n

3

Warning!

• The following example is highly
simplified and slightly misleading

• It does not show the convolutional
network

• It considers a simplified problem

• But:
• The solution of this problem illustrates one

step to the solution of the more complex
problem

32

A very simplified example

The problem

• Positive class if it contains at least
one subfigure of exactly this shape
and size

• How can a classifier which takes
pixels as input recognize this?

• There is no similarity in the pixels.

33

Positive examples Negative examples

Approach for solution

• Positive class if it contains at least
one subfigure of exactly this shape
and size

• Split the task in two:
• For each 5x5 subpicture, decide

whether it has this shape or not

• Answer whether the picture has at
least one such subpicture

34

Positive examples Negative examples

The filter

• We slide a 5x5 window over the
picture:
• Report the result each time

• We can solve this task:
• Determine whether the picture

contains exactly this 5x5 subfigure

35

Positive examples Negative examples

36
https://www.sciencedirect.com/topics/computer-science/convolutional-layer

The network

• 400 (=20x20) input nodes
• One per pixel

• 256 = (16x16) hidden nodes
• One per 5x5 rectangle

• 25 edges to each hidden node
• One for each pixel in the node

• (Not fully connected)

• Fully connected hidden layer to
output node

37

.

.

.

.

.

.

400

256

Example continued

• First: There are only
• 25x256 connections in the first layer,

and not 400x256

• 256 connections in the second layer

• The clue: Each hidden node should
learn the same:

• 𝑤𝑖,𝑗 = 𝑤𝑖+𝑘,𝑗+𝑘

• We use the same (26x1) weight matrix
for all hidden nodes, which we update
through backprop.

• This matrix is called a filter.

38

.

.

.

.

.

.

A more complex task

• Positive class if it contains any of the two
5x5 patterns

• What now?

• We can have several filters
• Each of them can learn one specific pattern

• We can put a numeric calculation on top of
them in the final fully connected layer

• ‘’More than 3 of pattern 1 and 2 or less of
pattern 2, none of pattern 3,etc.’’

• We can also handle colors by having three
cells per pixel

39

Positive examples Negative examples

Towards convolutional networks

So far

• Does not handle:
• Rotations
• Variation in size:

• We want to identify the same shape
across various sizes

• Small distortions
• Including perspective

• Etc.

The convolutional network

• Use filters as indicated

• Several layers

• Recognize
1. Simple patterns, e.g., 5x5 pixels
2. Lines, curves
3. Contours
4. Figures
5. Etc.
• (The results at each layer do not have

such a crisp interpretation).

40

41
https://en.wikipedia.org/wiki/File:Deep_Learning.jpg

“Neural network” models of AI process signals by sending them through a network of nodes

analogous to neurons.

M. Mitchell Waldrop PNAS 2019;116:4:1074-1077

©2019 by National Academy of Sciences

Typical architecture (simplified)

• Four types of layers:
1. Convolutions (filters)

2. Pooling (Down sampling)

3. Fully-connected layers

4. RelU layers

43

https://en.wikipedia.org/wiki/Convolutional_neural_network

Filters

• We have already considered them.

• They work as in the simplified
example.

• Several layers.

• They are called filters because there
is a tradition of using such (man-
made) filters in image processing

• In the ConvNets, the filters are
learned

44
https://www.sciencedirect.com/topics/computer-science/convolutional-layer

Traditional man-made filters

45
https://en.wikipedia.org/wiki/Kernel_(image_processing)

Pooling

46

https://en.wikipedia.org/wiki/File:Max_pooling.png

Pooling

• Variants:
• Max pooling

• Average

47

https://en.wikipedia.org/wiki/File:RoI_pooling_animated.gif

Typical architecture (simplified)

• How many layers?

• How many nodes?

• The relationship between
the layers?

• This is more an art than science

• The better and better solutions
to Image Net in general grew
larger and larger

• More than 100 layers

48

https://en.wikipedia.org/wiki/Convolutional_neural_network

GoogLeNet

49

Enlarged at next page

GoogLeNet

50

Convolutional networks for text classification

• ConvNets originally developed for images

• Also applied to texts:
• The window is 1-dimensional: n words, or n characters from a sentence

• It exploit that the same word or sequence of n words may occur at various
places

• The networks are normally not very deep.

51

Learning Convolutional NNS

• The learning is done as for other multi-layer neural nets by
backpropagation.
• We know how to do that.

• In Frameworks, like TensorFlow, PyTorch, etc.,
• we only have to specify the forward architecture.

• The framework takes cares of the backpropagation

• We must specify various hyperparameters, though, like learning rate and
regularization.

52

Properties of convolutional networks

‘’Traditional’’ ML

• The models had strong inductive
biases, e.g., linear models

• The researchers had to put
much effort into feature
engineering, to fit the data to
the model to get results
• (We have mostly avoided that by

using simple datasets.)

• Man-made filters in an example

Convolutional NNs

• The model can learn the
representations, e.g., it learns
the filters.

• More flexible models, less bias
• (but still some bias in the

architecture chosen)

• Demands more training data

• More machine power

53

Where can I learn more?

• IN5400 – Machine Learning for Image Analysis (spring semester)

• On the web, e.g.,
• Stanford: CS231n: Convolutional Neural Networks for Visual Recognition

• (Coursera course)

54

http://cs231n.stanford.edu/

10.4 Recurrent NNs and
language processing
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

55

RNNs

• Recurrent Neural Networks

• Applications in Language Technology, examples

• The small print

56

‘The times they are a-changin’

• Today, recurrent networks are
heavily used, e.g., in Language
Technology

57

There are two things that we can
do: add some backwards
connections, so that the output
neurons connect to the inputs
again, or add more neurons. The
first leads into recurrent
networks. These have been
studied, but are not commonly
used. (Marsland, p. 71)

Recurrent neural nets

58

Image source: https://en.wikipedia.org/wiki/Recurrent_neural_network

The network

The processing
during time

• Model sequences/temporal phenomena

• A cell may send a signal back to itself – at the next
moment in time

Recurrent neural nets

• The state ℎ𝑡 in the cell at time 𝑡 is determined by:
• the input 𝑥𝑡 at time 𝑡

• together with the state ℎ𝑡−1 at time 𝑡 − 1

59

Image source: https://en.wikipedia.org/wiki/Recurrent_neural_network

The network

The processing
during time

Forwards

• 𝑥1, 𝑥2, … , 𝑥𝑛 is the input
sequence

• Each U, V and W are edges with
weights (matrices)

• Forward:
1. Calculate ℎ1 from ℎ0 and 𝑥1.

2. Calculate 𝑦1 from ℎ1.

3. Calculate ℎ𝑖 from ℎ𝑖−1 and 𝑥𝑖,
and 𝑦𝑖 from ℎ𝑖, for 𝑖 = 1,… , 𝑛

60

From J&M, 3.ed., 2019

Forwards

• The same 𝑈, 𝑊, and 𝑉 for all layers

• 𝒉𝑡 = 𝑔 𝒉𝑡−1𝑈 + 𝒙𝑡𝑊

• 𝒚𝑡 = 𝑓 𝒉𝑡𝑉

• 𝑔 and 𝑓 are activation functions

• 𝑓 is often softmax, i.e.,
• 𝒚𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒉𝑡𝑉

• (There are also bias terms which we didn't include

in the formulas)

61

From J&M, 3.ed., 2019

Training

• At each output node:
• Calculate the loss and the

• 𝛿-terms

• Back-propagate the error, e.g.
• the 𝛿-terms at ℎ2are calculated

• from the 𝛿-terms at ℎ3 by 𝑈 and

• the 𝛿-terms at 𝑦2 by 𝑉

• Update
• 𝑉 from the 𝛿-terms at all the 𝑦𝑖-s

• 𝑈, 𝑊 from the 𝛿-terms at all the ℎ𝑖-s

62

From J&M, 3.ed., 2019

RNNs

• Recurrent Neural Networks

• Applications in Language Technology, examples

• The small print

63

Lecture 5: Language model

• Task: Predict the next word!

• Labels:
• A vocabulary of words:

• aardvark, …, mat, …, roof, …

• E.g., 100,000 words/labels

• Domain:
• Finite sequences of words

• Properties:
• 1 billion training instances

• Supervised learning
• But you do not have to hand-label

the training data.

64

The cat is on the …

RNN Language model

65

The

cat

is

Autoregressive generation

• We could guess a
whole sentence

• More interesting if we
have some
preconditions in
addition

66

From J&M, 3.ed., 2019

Word embeddings

• How should words be
represented?

• What is this?

67

From J&M, 3.ed., 2019

One-hot encoding

• A word is a categorical feature.

• We assume a vocabulary of e.g., 100,000 different words.

• We could use a ‘’one-hot’’ encoding (‘’one out of n’’):
• 0, 0, 0,… , 1, … , 0

• One 1 and 99,999 many 0-s

• Different words, different positions

• But:
• Inefficient, so many features and weights

• No sharing between similar words

68

Embeddings

• Represent each word with a vector of
• Reals
• A fixed number of positions, e.g., 100

(typically, between 50 and 300)

• Try to get similar vectors for similar words
• Words can be considered similar if they occur in similar positions, e.g.,

• Milk, water, soda can all occur with She drank ____, a glass of ___, etc.

• These representations can be learned from a form of language
modeling task:
• Predict whether a neighboring word can occur together with this word
• We skip the details

69

Embeddings applied

70

• These embeddings
can be used for
semantic similarities

• The figure is a
projection of the
100 or so
dimensions into 2
dimensions.

• http://vectors.nlpl.e
u/explore/embeddin
gs/en/

https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/

http://vectors.nlpl.eu/explore/embeddings/en/
https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/

Machine Translation

• Bi-text
• Text translated between two languages

• The translated sentences are aligned into sentence pairs

• Machine learning based translation systems are trained on large
amounts of bitext

71

Encoder-decoder based translation

• Concatenate the two sentences in a pair:
• source sentence_<\s>_target sentence

• Train an RNN on these concatenated pairs

• Apply by reading a source sentences and from there predict a target
sentence

72

73

74

Machine translation

• We train an auto-regressive
network on a pair of sentence:

• Source <s> Target

• To apply the translation system,
we feed it the source sentence
and harvest the target sentence

75

RNNs

• Recurrent Neural Networks

• Applications in Language Technology, examples

• The small print

76

Warnings: We have simplified

1. Long Short-Term Memory
(LSTM)
• RNNs have problems with

• Keep track of distant information

• Vanishing gradients.

• One way out is LSTMs

• An advanced architecture with
additional layers and weights
• Not consider the details here

2. Often one uses several LSTMs
• E.g., BiLSTM:

• One LSTM left to rights

• One LSTM going right to left

• Stacked LSTMs
• Several layers with LSTMs

77

Warnings: We have simplified

3. The models for translation are
more complex, using more
connections between the first
and the second sentence

4. There have been proposed
other deep learning
architectures for machine
translation

78

Where can I learn more?

• IN4080 – Natural Language Processing (fall semester)
• Broad approach to NLP using both rules, traditional ML and some deep

learning

• IN5550 – Neural Methods in Natural Language Processing (spring)
• Advanced, deep learning

• HPC, large data sets

79

