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Today

1. The deep learning revolution

2. Deep feed-forward neural networks 

3. Convolutional NNs and image processing

4. Recurrent NNs and language processing
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10.1 The deep-learning 
revolution
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and Machine Learning
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Deep learning

• A sub-class of neural nets

• No exact definition:
• More an attitude/approach than a 

defined class

• Normally: at least two hidden 
layers

• Often: a much more specific 
architecture
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The revolution

• Deep learning breakthrough 10 
years ago

• It spawned the great interest in 
AI we have seen the last years
• One started to talk about AI again

– not only ML

• Images:
• Image classification
• Object detection
• Scene understanding

• Language:
• Speech recognition
• Machine translation

• Game playing

• Applications:
• Self-driving cars
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Image Net
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Image source: https://miro.medium.com/max/1000/1*7kCZemEOdR_5K32Z7mtDCg.jpeg

Images Classes

The whole Image Net 15,000,000 22,000

The image 
classification challenge

Ca 1,500,000 1000



The Image Net Competition

• 2012: Alex Net:

• won the competition

• lowered the error rate from 26% to 16%

• Based on deep NNs

• Started an immediate renewed interest in 
neural nets 

• Started an interest in AI in the population at 
large

• In 2014, GoogLeNet: 7%

• 2015: the winner <4%

• Better than humans
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https://en.wikipedia.org/wiki/File:ImageNet_error_rate_history_(just_systems).svg



Image recognition today

• Google: https://cloud.google.com/vision

• MicroSoft: https://visual-recognition-code-pattern.ng.bluemix.net/
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Speech recognition

• This was the second big revolution

• There was large progress in the 1990s:
• Bill Gates predicted we could get rid of the 

keyboard 10 years later

• It was established a large company in 
Norway: Nordisk Språkteknologi

• Too early!

• With deep learning, we got speech 
recognition which works (from 2015)

• This made these gadgets possible

9

https://www.youtube.com/watch?v=KkOCeAtKHIc


Other applications

• Since then, deep learning has been applied to nearly all areas where 
ML is applied

• The improvements are not always as great as for image recognition 
and speech

• But DL performs on top in nearly all ML tasks
• At least where you have large amounts of data
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History of neural networks

Three main epochs:

1. The beginning (→ 1969)

2. Backpropagation (1986-)

3. Deep learning (2011→ )

• Marsland, originally 2009, lacks (3)
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NN.1: The beginning (→ 1969)

• 1958, Rosenblatt invented the 
perceptron

• 1969, Minsky & Papert, The 
perceptron:
• Networks without hidden layers 

can only learn linear classifiers

• Networks with hidden layers are 
probably impossible to train

• Less interest in perceptrons 
afterwards
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Marvin Minsky (1927-2016)
AI pioneer, MIT AI Lab



NN.2: Backpropagation (1986-)

• 1986, Rummelhart, Hinton, 
Williams (re)invented 
backpropagation

• An immediate enormous interest 
by researchers

• But the practical results weren't 
impressing, and the interest 
diminished
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NN.3: Deep learning

• In the 1990s and 2000s other 
approaches to ML was preferred 
in usage and developed, e.g., 
logistic regression, SVM

• But some brave and stubborn 
researchers continued the work 
on neural nets, including Hinton, 
and got their rewards around 
2010
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Why did NNs finally succeed?

• Better models

• More data

• More powerful machines

• GPUs 
• (graphical processing units)
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10.2 Deep feed-forward 
Neural networks
IN3050/IN4050 Introduction to Artificial Intelligence 

and Machine Learning
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Deep feed-forward NN

• Several hidden layers

• The number of nodes in 
each layer may vary

• Fully-connected: edges 
from each node in one 
layer to each node in the 
next layer
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Weight matrices

• One matrix of weights for 
each layer

18

Input 
layer

Hidden 
layer 1

Hidden 
layer 2

Hidden 
layer n

Output 
layer 

Biases

𝑊(3) 𝑊(4)𝑊(2)𝑊(1)



The hidden nodes - forwards

• Same activation function at all 
hidden layers: 𝑔
• Logistic or ReLU or…

• At node j in layer k:
1. First sum of weighted inputs:

• ℎ𝑗
(𝑘)

= σ𝑖=0
𝑚(𝑘−1)

𝑤𝑖,𝑗
(𝑘)
𝑎𝑖
(𝑘−1)

2. Then  𝑎𝑗
(𝑘)

= 𝑔(ℎ𝑗
(𝑘)
)

• (For the record: 𝑎𝑖
(0)

= 𝑥𝑖)
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Forwards

• Each hidden layer behaves 
like the hidden layer when 
there is only one

• The output layer
• behaves like the output 

layer when there is only one 
hidden layer

• How? depends on the task
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Update

• Compare output values 
to target values: 𝐿(𝒚, 𝒕)

• 𝐿 is a loss-function
• (There are alternative loss 

functions)

• If 𝒚 = 𝒕 then 𝐿 𝒚, 𝒕 = 0
• No update

• The larger difference 
between 𝒚 and 𝒕, the 
larger loss and update
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Update

• All weights are updated 
according to their contribution 
to the loss

• 𝑤𝑖,𝑗
(𝑘)

= 𝑤𝑖,𝑗
(𝑘)

− 𝜂
𝜕

𝜕𝑤𝑖,𝑗
(𝑘) 𝐿 t, 𝑦

• Use partial derivatives + chain 

rule for calculating  
𝜕

𝜕𝑤𝑖,𝑗
(𝑘) 𝐿 t, 𝑦
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Update

• At the last layer with activation 
function 𝑓, 

i.e., 𝑦𝑗 = 𝑓 𝑧𝑗 , 𝑧𝑗 = σ𝑖𝑤𝑖,𝑗
(4)
𝑎𝑖
(3)

•
𝜕

𝜕𝑤𝑖,𝑗
(4) 𝐿 t, 𝑦 =

𝜕

𝜕𝑦𝑗
𝐿 t, 𝑦

𝜕

𝜕𝑧𝑗
𝑓(𝑧𝑗)𝑎𝑖

(3)

• (eventually:) 𝑤𝑖,𝑗
(4)
= 𝑤𝑖,𝑗

(4)
− 𝜂𝛿𝑗

(4)
𝑎𝑖
(3)
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At the hidden layer

• At the hidden layer with activation 
function 𝑔, 

i.e., 𝑎𝑗 = 𝑔 ℎ𝑗 , ℎ𝑗 = σ𝑖𝑤𝑖,𝑗
(𝑘)
𝑎𝑖
(𝑘−1)

• 𝛿𝑗
(𝑘)

=
𝜕

𝜕𝑎𝑗
𝑔(𝑎𝑗)σ𝑚 𝛿𝑚

(𝑘+1)
𝑤𝑚
(𝑘+1)

• (eventually:)

𝑤𝑖,𝑗
(𝑘−1)

= 𝑤𝑖,𝑗
(𝑘−1)

− 𝜂𝛿𝑗
(𝑘)
𝑎𝑖
(𝑘−1)

• Follow the same recipe for all 
hidden layers (as we did last week)
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Vanishing gradient problem

• The derivative of the logistic 
function (and the tanh) is close to 0 
except in a small interval around 0
• It gets easily saturated

• At each backwards step calculating 
the deltas, we multiply with the 
derivative of the activation function

• The gradient comes close to 0. 
Unbearable slow update, or no 
update at all.
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Rectified linear unit, ReLU

• Alternative activation functions in the 
hidden layers

• 𝑅𝑒𝐿𝑈 𝑥 = max 𝑥, 0

• 𝑅𝑒𝐿𝑈′ 𝑥 = 1 for 𝑥 > 1

• 𝑅𝑒𝐿𝑈′ 𝑥 = 0 for 𝑥 < 1

• Use 0 for 𝑅𝑒𝐿𝑈′ 0

• ReLU is the preferred method in deep 
networks
• (There are various modified versions of ReLU)
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At the hidden layer

• At the hidden layer with activation 
function 𝑔 = ReLU, 

i.e., 𝑎𝑗 = 𝑔 ℎ𝑗 , ℎ𝑗 = σ𝑖𝑤𝑖,𝑗
(𝑘)
𝑎𝑖
(𝑘−1)

• 𝛿𝑗
(𝑘)

=
𝜕

𝜕𝑎𝑗
𝑔(𝑎𝑗)σ𝑚 𝛿𝑚

(𝑘+1)
𝑤𝑚
(𝑘+1)

• 𝛿𝑗
(𝑘)

= σ𝑚 𝛿𝑚
(𝑘+1)

𝑤𝑚
(𝑘+1)

for 𝑥 > 0

• 𝛿𝑗
(𝑘)

= 0 for 𝑥 ≤ 0
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10.3 Convolutional NNs 
and image processing
IN3050/IN4050 Introduction to Artificial Intelligence 

and Machine Learning

28



The MNIST data set (lecture 5 example)

Domain

• Hand-written digits

Labels
• To each hand-

written picture of a 
digit, predict the 
correct digit

• There are 10 
different classes

• 60,000 training
images

• 10,000 test images

• Each picture 28x28
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https://en.wikipedia.org/wiki/MNIST_database
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Image Net

30
Image source: https://miro.medium.com/max/1000/1*7kCZemEOdR_5K32Z7mtDCg.jpeg

Images Classes

The whole Image Net 15,000,000 22,000

The image 
classification challenge

Ca 1,500,000 1000



Image classification - input

• An image can be represented as 𝑚 × 𝑛 many 
pixels e.g., 28 × 28

• If it is in colors, each pixel can be three 
numbers, e.g., between 0 and 255, 
• e.g. (100, 50, 135) 

• We can represent this in a neural net with 
𝑚 × 𝑛 × 3 input nodes

• Challenge:
• A small change to the picture, e.g., rotation or 

dislocation changes the input values on each node
• How can it then generalize?
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Warning!

• The following example is highly 
simplified and slightly misleading

• It does not show the convolutional 
network 

• It considers a simplified problem

• But:
• The solution of this problem illustrates one 

step to the solution of the more complex 
problem
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A very simplified example

The problem

• Positive class if it contains at least 
one subfigure of exactly this shape 
and size

• How can a classifier which takes 
pixels as input recognize this?

• There is no similarity in the pixels.
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Approach for solution

• Positive class if it contains at least 
one subfigure of exactly this shape 
and size

• Split the task in two:
• For each 5x5 subpicture, decide 

whether it has this shape or not

• Answer whether the picture has at 
least one such subpicture
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The filter

• We slide a 5x5 window over the 
picture:
• Report the result each time

• We can solve this task:
• Determine whether the picture 

contains exactly this 5x5 subfigure
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Positive examples Negative examples
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https://www.sciencedirect.com/topics/computer-science/convolutional-layer



The network

• 400 (=20x20) input nodes
• One per pixel

• 256 = (16x16) hidden nodes
• One per 5x5 rectangle

• 25 edges to each hidden node
• One for each pixel in the node

• (Not fully connected)

• Fully connected hidden layer to 
output node
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Example continued

• First: There are only 
• 25x256 connections in the first layer, 

and not 400x256

• 256 connections in the second layer

• The clue: Each hidden node should 
learn the same:

• 𝑤𝑖,𝑗 = 𝑤𝑖+𝑘,𝑗+𝑘

• We use the same (26x1) weight matrix 
for all hidden nodes, which we update 
through backprop.

• This matrix is called a filter.
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A more complex task

• Positive class if it contains any of the two 
5x5 patterns

• What now?

• We can have several filters
• Each of them can learn one specific pattern

• We can put a numeric calculation on top of 
them in the final fully connected layer

• ‘’More than 3 of pattern 1 and 2 or less of 
pattern 2, none of pattern 3,etc.’’

• We can also handle colors by having three 
cells per pixel
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Towards convolutional networks

So far

• Does not handle:
• Rotations
• Variation in size:

• We want to identify the same shape 
across various sizes

• Small distortions
• Including perspective

• Etc.

The convolutional network

• Use filters as indicated

• Several layers

• Recognize
1. Simple patterns, e.g., 5x5 pixels
2. Lines, curves
3. Contours
4. Figures
5. Etc.
• (The results at each layer do not have 

such a crisp interpretation).
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“Neural network” models of AI process signals by sending them through a network of nodes 

analogous to neurons. 

M. Mitchell Waldrop PNAS 2019;116:4:1074-1077

©2019 by National Academy of Sciences



Typical architecture (simplified)

• Four types of layers:
1. Convolutions (filters)

2. Pooling (Down sampling)

3. Fully-connected layers

4. RelU layers
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https://en.wikipedia.org/wiki/Convolutional_neural_network



Filters

• We have already considered them.

• They work as in the simplified 
example.

• Several layers.

• They are called filters because there 
is a tradition of using such (man-
made) filters in image processing

• In the ConvNets, the filters are 
learned
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Traditional man-made filters
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https://en.wikipedia.org/wiki/Kernel_(image_processing)



Pooling
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https://en.wikipedia.org/wiki/File:Max_pooling.png



Pooling

• Variants:
• Max pooling

• Average
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https://en.wikipedia.org/wiki/File:RoI_pooling_animated.gif



Typical architecture (simplified)

• How many layers?

• How many nodes?

• The relationship between 
the layers?

• This is more an art than science

• The better and better solutions 
to Image Net in general grew 
larger and larger

• More than 100 layers
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https://en.wikipedia.org/wiki/Convolutional_neural_network



GoogLeNet
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Enlarged at next page



GoogLeNet
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Convolutional networks for text classification

• ConvNets originally developed for images

• Also applied to texts:
• The window is 1-dimensional: n words, or n characters from a sentence

• It exploit that the same word or sequence of n words may occur at various 
places

• The networks are normally not very deep.
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Learning Convolutional NNS

• The learning is done as for other multi-layer neural nets by 
backpropagation.
• We know how to do that.

• In Frameworks, like TensorFlow, PyTorch, etc., 
• we only have to specify the forward architecture.

• The framework takes cares of the backpropagation

• We must specify various hyperparameters, though, like learning rate and 
regularization.
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Properties of convolutional networks

‘’Traditional’’ ML

• The models had strong inductive 
biases, e.g., linear models

• The researchers had to put 
much effort into feature 
engineering, to fit the data to 
the model to get results
• (We have mostly avoided that by 

using simple datasets.)

• Man-made filters in an example

Convolutional NNs

• The model can learn the 
representations, e.g., it learns 
the filters.

• More flexible models, less bias
• (but still some bias in the 

architecture chosen)

• Demands more training data

• More machine power
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Where can I learn more?

• IN5400 – Machine Learning for Image Analysis (spring semester)

• On the web, e.g.,
• Stanford: CS231n: Convolutional Neural Networks for Visual Recognition

• (Coursera course)
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http://cs231n.stanford.edu/


10.4 Recurrent NNs and 
language processing
IN3050/IN4050 Introduction to Artificial Intelligence 

and Machine Learning
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RNNs

• Recurrent Neural Networks

• Applications in Language Technology, examples

• The small print
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‘The times they are a-changin’

• Today, recurrent networks are 
heavily used, e.g., in Language 
Technology

57

There are two things that we can 
do: add some backwards 
connections, so that the output 
neurons connect to the inputs 
again, or add more neurons. The 
first leads into recurrent 
networks. These have been 
studied, but are not commonly 
used. (Marsland, p. 71)



Recurrent  neural nets

58

Image source: https://en.wikipedia.org/wiki/Recurrent_neural_network

The network

The processing 
during time

• Model sequences/temporal phenomena

• A cell may send a signal back to itself – at the next 
moment in time



Recurrent  neural nets

• The state ℎ𝑡 in the cell at time 𝑡 is determined by:
• the input 𝑥𝑡 at time 𝑡

• together with the state ℎ𝑡−1 at time 𝑡 − 1
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Image source: https://en.wikipedia.org/wiki/Recurrent_neural_network

The network

The processing 
during time



Forwards

• 𝑥1, 𝑥2, … , 𝑥𝑛 is the input 
sequence

• Each U, V and W are edges with 
weights (matrices)

• Forward: 
1. Calculate ℎ1 from ℎ0 and 𝑥1.

2. Calculate 𝑦1 from ℎ1.

3. Calculate ℎ𝑖 from ℎ𝑖−1 and 𝑥𝑖, 
and 𝑦𝑖 from ℎ𝑖, for 𝑖 = 1,… , 𝑛
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From J&M, 3.ed., 2019



Forwards

• The same 𝑈, 𝑊, and 𝑉 for all layers

• 𝒉𝑡 = 𝑔 𝒉𝑡−1𝑈 + 𝒙𝑡𝑊

• 𝒚𝑡 = 𝑓 𝒉𝑡𝑉

• 𝑔 and 𝑓 are activation functions

• 𝑓 is often softmax, i.e., 
• 𝒚𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒉𝑡𝑉

• (There are also bias terms which we didn't include

in the formulas)
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From J&M, 3.ed., 2019



Training

• At each output node:
• Calculate the loss and the

• 𝛿-terms

• Back-propagate the error, e.g.
• the 𝛿-terms at ℎ2are calculated

• from the 𝛿-terms at ℎ3 by 𝑈 and 

• the 𝛿-terms at 𝑦2 by 𝑉

• Update 
• 𝑉 from the 𝛿-terms at all the 𝑦𝑖-s 

• 𝑈, 𝑊 from the 𝛿-terms at all the ℎ𝑖-s
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From J&M, 3.ed., 2019



RNNs

• Recurrent Neural Networks

• Applications in Language Technology, examples

• The small print
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Lecture 5: Language model

• Task: Predict the next word!

• Labels:
• A vocabulary of words:

• aardvark, …, mat, …, roof, …

• E.g., 100,000 words/labels

• Domain:
• Finite sequences of words

• Properties:
• 1 billion training instances

• Supervised learning
• But you do not have to hand-label 

the training data.

64

The cat is on the …



RNN Language model
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Autoregressive generation

• We could guess a 
whole sentence

• More interesting if we
have some
preconditions in
addition
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From J&M, 3.ed., 2019



Word embeddings

• How should words be 
represented?

• What is this?
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From J&M, 3.ed., 2019



One-hot encoding

• A word is a categorical feature.

• We assume a vocabulary of e.g., 100,000 different words.

• We could use a ‘’one-hot’’ encoding (‘’one out of n’’):
• 0, 0, 0,… , 1, … , 0

• One 1 and 99,999 many 0-s

• Different words, different positions

• But:
• Inefficient, so many features and weights

• No sharing between similar words
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Embeddings

• Represent each word with a vector of
• Reals
• A fixed number of positions, e.g., 100 

(typically, between 50 and 300)

• Try to get similar vectors for similar words
• Words can be considered similar if they occur in similar positions, e.g.,

• Milk, water, soda can all occur with She drank ____, a glass of ___, etc.

• These representations can be learned from a form of language 
modeling task: 
• Predict whether a neighboring word can occur together with this word
• We skip the details
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Embeddings applied

70

• These embeddings 
can be used for 
semantic similarities

• The figure is a 
projection of the 
100 or so 
dimensions into 2 
dimensions.

• http://vectors.nlpl.e
u/explore/embeddin
gs/en/

https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/

http://vectors.nlpl.eu/explore/embeddings/en/
https://www.shanelynn.ie/get-busy-with-word-embeddings-introduction/


Machine Translation

• Bi-text
• Text translated between two languages

• The translated sentences are aligned into sentence pairs

• Machine learning based translation systems are trained on large 
amounts of bitext
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Encoder-decoder based translation

• Concatenate the two sentences in a pair: 
• source sentence_<\s>_target sentence

• Train an RNN on these concatenated pairs

• Apply by reading a source sentences and from there predict a target 
sentence
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Machine translation

• We train an auto-regressive 
network on a pair of sentence:

• Source <s> Target

• To apply the translation system, 
we feed it the source sentence 
and harvest the target sentence
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RNNs

• Recurrent Neural Networks

• Applications in Language Technology, examples

• The small print
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Warnings: We have simplified

1. Long Short-Term Memory 
(LSTM) 
• RNNs have problems with

• Keep track of distant information

• Vanishing gradients.

• One way out is LSTMs

• An advanced architecture with 
additional layers and weights
• Not consider the details here

2. Often one uses several LSTMs
• E.g., BiLSTM:

• One LSTM left to rights

• One LSTM going right to left

• Stacked LSTMs
• Several layers with LSTMs

77



Warnings: We have simplified

3. The models for translation are 
more complex, using more
connections between the first 
and the second sentence

4. There have been proposed 
other deep learning 
architectures for machine 
translation
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Where can I learn more?

• IN4080 – Natural Language Processing (fall semester)
• Broad approach to NLP using both rules, traditional ML and some deep

learning

• IN5550 – Neural Methods in Natural Language Processing (spring)
• Advanced, deep learning

• HPC, large data sets
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