

Frank Veenstra

Swarms and Developmental Systems

Overview

- Biological background
 - Genotype-to-phenotype mapping
- Artificial Developmental Systems
 - Chemistry based approaches (Morphogens)
 - Rewrite systems (L-System)
 - Neural networks (CPPN)
- Swarm Intelligence
 - Particle Swarm Optimization
 - Ant Colony Optimization
 - Reconfigurable Robots

Exercises

- Particle swarm optimization
- Reaction-diffusion model (Gray-scott algorithm)

Analogize to optimize or analogize to understand

Evolution emerges through **reproduction**:

• Storage, processing and transfer of biological information

Genotype-to-phenotype mapping

UiO Department of Informatics

University of Oslo

Fitness Landscape

Biological Organization

UiO Department of Informatics

University of Oslo

Source: Pfeiffer and Bongard (2006) how the body shapes the way we think

Developmental Systems and Swarms

- Developmental systems act on the genotype to phenotype mapping.
 - Ontogenetic time-scale:
 - In biology from a fertilized egg to a adult organism
- And extended genotype to phenotype map can define collective behaviors seen in swarms

Developmental Systems

- Reuse of information
 Compact storage
- Modularity
- Self-similarity
- Symmetry
- Scalability

Morphogens

- Morphogenesis:
 - The development of morphological characteristics
- Reaction-diffusion models
 through self-inhibition

Alan Turing (1952) The Chemical Basis of Morphogenesis

Morphogens

 Reaction-diffusion models through self-inhibition

https://www.youtube.com/watch?v=MR79V9UmM6s

Morphogens

Embryogenesis

Heterochrony

Heterochrony: Developmental change in timing or rate of events

Evolution of Heterochrony

Homologous Evolution

18

Conserved Developmental plans

Phylotypic Stage

UiO Department of Informatics

University of Oslo

Locked in Imperfection (1)

Locked in Imperfection (2)

Summary concepts on development

- Morphogens: chemicals that influence development
- Heterochrony: timed expression of morphogens
- Homologous evolution: Shared genetic ancestry

Chemistry inspired developmental systems

- Morphogens
- Reaction-diffusion: Exercise using *Gray-Scott* algorithm

Vascular Morphogenesis

Zahadat et al., 2017, Vascular Morphogenesis Controller: A Generative Model For Developing Morphology of Artificial Structures

Morphogenesis through light sensing

(a) growing tall in a calm environment

ronment

(d) identical parameter set grows the structure differently in different light setups

(e) finding the brightest layer in a layered environment

Zahadat et al., 2017, Vascular Morphogenesis Controller: A Generative Model ForDeveloping Morphology of Artificial Structures

https://www.youtube.com/watch?v=MR79V9UmM6s

Leaf Phyllotaxis

28

Repetition, Self-Similarity and Modularity

Repetition, Self-similarity and Modularity

Przemyslaw Prusinkiewicz, 2014, Self-Similarity In Plants: Integrating Mathematical And Biological Perspectives

Fractals

Mandelbrot set

$$- f(c)z = z^2 + c$$

- Behavior of 0 under iteration f(c)
- c is a complex number

Rewriting systems:

- Koch-curve
- Flow-snake
 (Gosper-curve)

Artificial Development

- Rewriting systems

 L-System
- Chemistry based approaches
 - Turing patterns

UiO Department of Informatics

University of Oslo

- Rewriting Systems
 - Sequential (Formal Grammar)
 - Parallel (Lindenmayer-System)

 $A \rightarrow AB$

$B \rightarrow A$

Simple rewrite	e L-system
AB	AB
AA	ABA
ABAB	ABAAB
AAAA	ABAABABA
ABABABAB	ABAABABAABAAB

33

An example L-System

- Alphabet: {a,b}
- Production rules (grammar)
 - a->ab
 - b->a
- Axiom b
- Each symbol is replaced once each iteration

L-Systems for generating graphics: turtle graphics

Read the string produced by the L-System from left to right changing the state of the turtle

© 2000 Logo Foundation

Example L-system for Drawing

- Alphabet: {F, f, +, -}
- F: move the turtle forward (drawing a line)
- f: move the turtle forward (don't draw)
- +/-: turn right/left (by some angle)
- What would FfFfFfFf do?
- What would F+F+F+H do?

Bracketed L-Systems

- Alphabet: {F, f, +, -, [,]}
- [: push the current state (x, y, heading of the turtle) onto a pushdown stack
-]: pop the current state of the turtle and move the turtle there without drawing
- Enables branching structures!
L-System

2

Axiom: F
Grammar: F>F[+F]F[-F][F]
Turn angle = 30 degrees

Come up with your own rules!

Go to: https://onlinemathtools.com/l-system-generator

- Alphabet: {F, f, +, -, [,]}
- [: push the current state (x, y, heading of the turtle) onto a pushdown stack
-]: pop the current state of the turtle and move the turtle there without drawing

Axiom: F

Grammar: F>F[+F]F[-F][F] Turn angle = 30 degrees

Types of L-Systems

- Context free: production rules refer only to an individual symbol
- Context-sensitive: production rules can depend on the symbol's neighbors
- Deterministic: one production rules for each symbol
- Non-deterministic: several production rules for a symbol
- Parametric: a symbol references a parameter list

Examples of Stochasticity

Ecomod by Aleš Zamuda

https://www.youtube.com/watch?v=O0HUQR1mTbg https://www.youtube.com/watch?v=qiogqd2PIW0

Unity's Speed Tree

UiO Department of Informatics

University of Oslo

Figure 7: Distributions of leaves, from left to right: stacked (1), staggered (2), spiral (3), bunched (4), and coniferous (5).

Image taken from: Aleš Zamuda and Janez Brest (2014) Vectorized Procedural Models for Animated Trees Reconstruction using Differential Evolution

Evolving L-Systems

- Mutation
 - Axiom
 - Production Rules
 - Probabilities
 - Angles
- Fitness
 - Phototropism
 - Bilateral symmetry
 - Proportion of branching points

Evolved L-Systems

Evolved L-Systems

2D L-Systems

• (Matrix rewriting systems)

Terrain interpretation of 2D L-Systems

- Letters are interpreted for lowering or raising corners of a square
- E.g. A=+0.5, B=-0.5 B Α B Α В Α A B В A B A B Α В Α A B В Α

UiO **Content of Informatics**

University of Oslo

Six rewritings of A>ABBA, B>AABB

Infinite resolution!

Evolving robots created from L-System

Hornby and Pollack 2001

Direct Encoding L-System

Evolved Phenotypes With Max 5 Modules

Rewriting Graph Grammars

- 1: Identify lefthand subgraph
- 2: Remove edges
- 3: Transform graph
- 4: Copy edges
- 5: Remove marks

UiO Department of Informatics

University of Oslo

Directed graph for evolving virtual creatures

Genotype: directed graph.

Phenotype: hierarchy of 3D parts.

• Simulate cell division to create networks

Parallel division

Sequential division

Gruau (1994) Neural Network Synthesis Using Cellular Encoding And The Genetic Algorithm

A Neural Network as a Developmental Abstraction?

 Compositional Pattern Producing Network (CPPN)

Helms and Clune, 2017, Improving HybrID: How to best combineindirect and direct encoding in evolutionary algorithms

A Neural Network as a Developmental Abstraction?

http://picbreeder.org/

Using CPPNs to create robots

See this link for how CPPNs can be used to create soft-robots: https://www.youtube.co m/watch?v=EXuR_soD nFo

Auerbach JE, Bongard JC (2014) Environmental Influence on the Evolution of Morphological Complexity in Machines.

HyperNEAT

 Asks a CPPN about how assign weights to a neural network

Bezier Curve for Creating Robot Components

Collins et al., 2018, Towards the Targeted Environment-Specific Evolution of Robot Components

Developmental Systems

- Rewriting Systems
- Morphogens
- Neural Networks
- Bezier Curves

Swarm Intelligence

- Boids
- Particle Swarm Optimization
- Ant Colony Optimization
- Reconfigurable Robots

Swarm intelligence

- "The study of large collections of relatively simple agents that can collectively solve problems that are too complex for a single agent or that can display the robustness and adaptability to environmental variation displayed by biological agents".
- Brain of brains (hive mind)
- Emergent intelligence forms
- Hive mind
- Bees dance
- How swarms can enhance the intelligence in groups

Swarm intelligence

- "The study of large collections of relatively simple agents that can collectively solve problems that are too complex for a single agent or that can display the robustness and adaptability to environmental variation displayed by biological agents".
- Brain of brains (hive mind)

Floreano and Mattiussi (2008) Bio-inspired Artificial Intelligence

UiO **Content of Informatics**

University of Oslo

Human swarm intelligence similar to 'wisdom of the crowd'

Swarm Intelligence

- Emergent collective behavior:
 - Aggregation
 - Clustering
 - Foraging
 - Nest construction
- Extended phenotype:
 - How an animal's genes can affect the world
 - E.g. is a beehive is an extended part of a bee?

Boids

- Boid: 'bird-oid object'
- Three rules:
 - Separation: boids steer away from close neighbors
 - Alignment: boids steer towards the average heading of their neighbors
 - Cohesion: boids steer towards the average position of its neighbors
- Exhibit aggregation
- Sebastian Lague: https://www.youtube.com/watch?v=bqtqltqcQhw

Particle Swarm Optimization (PSO)

- Population based metaheuristic like evolutionary algorithms
- Candidate solutions are particles
- A particle contains *positional* and *velocity* parameters
 - Position defines the adjustable/mutable parameters of an individual
 - Velocity represents how these parameters are updated
- The positional parameters can be viewed as the *genotype* of individuals.

Gradient ascent/descent of particles

Particle Swarm Optimization (PSO)

- (eq 1) updates positional parameters x
- (eq 2) updates velocity parameters v
 - C1 and C2 are acceleration constants
 - *pb* and *gb* are the *particle's best* and *global best* positions found

$$x_{i,d}(it+1) = x_{i,d}(it) + v_{i,d}(it+1)$$
(1)

$$v_{i,d}(it+1) = v_{i,d}(it) + C_1 * Rnd(0,1) * [pb_{i,d}(it) - x_{i,d}(it)] + C_2 * Rnd(0,1) * [gb_d(it) - x_{i,d}(it)]$$
(2)

Caption:

i particle's index, used as a particle identifier;

- d dimension being considered, each particle has a position and a velocity for each dimension;
- it iteration number, the algorithm is iterative;

 $\boldsymbol{x}_{i,d}$ position of particle i in dimension d;

 $v_{i,d}$ velocity of particle i in dimension d;

 C_1 acceleration constant for the cognitive component;

- Rnd stochastic component of the algorithm, a random value between 0 and 1;
- $pb_{i,d}$ the location in dimension d with the best fitness of all the visited locations in that dimension of particle i;
- C_2 acceleration constant for the social component;

http://web.ist.utl.pt/gdgp/VA/pso.htm

Creating a PSO strategy

• See the PSO exercise online

$$x_{i,d}(it+1) = x_{i,d}(it) + v_{i,d}(it+1)$$
(1)

$$v_{i,d}(it+1) = v_{i,d}(it) + C_1 * Rnd(0,1) * [pb_{i,d}(it) - x_{i,d}(it)] + C_2 * Rnd(0,1) * [gb_d(it) - x_{i,d}(it)]$$
(2)

Ant Colony Optimization (ACO)

• **Stigmergy**: social communication through modification of the environment

Why swarm systems?

- **Continuous adaptation**: dynamic network routing and urban transportation
- Decentralized, Asynchronous
- Collective decision making

Reconfigurable robots

- Robots composed of modules that can change the shape of the robot to adjust its functionality
 - Possibly autonomously

Reconfigurable modular robots

Passive Approaches

Active swarm approaches

Useful evolutionary robotics

 Shape-changing: evaluation different body shapes

Summary

- Boids
- Particle Swarm Optimization
- Ant Colony Optimization
- Reconfigurable Robots

Take home message

- Design artificial systems considering the genotype to phenotype mapping
 - Compact storage
 - Reuse of information
 - Modularity
 - Decentralized controllers

