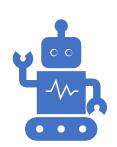


UiO **University of Oslo**



IN3050/IN4050 -Introduction to Artificial Intelligence and Machine Learning Ethical Issues, Risks and Fundamental Limitations Kai Olav Fllefsen

The next weeks

- Next week: We'll go through the suggested solution to the trial exam
- The week after: We'll go through last year's exam
- We encourage you to **try them yourselves** first

Cooling down the Hype

So far in this course:

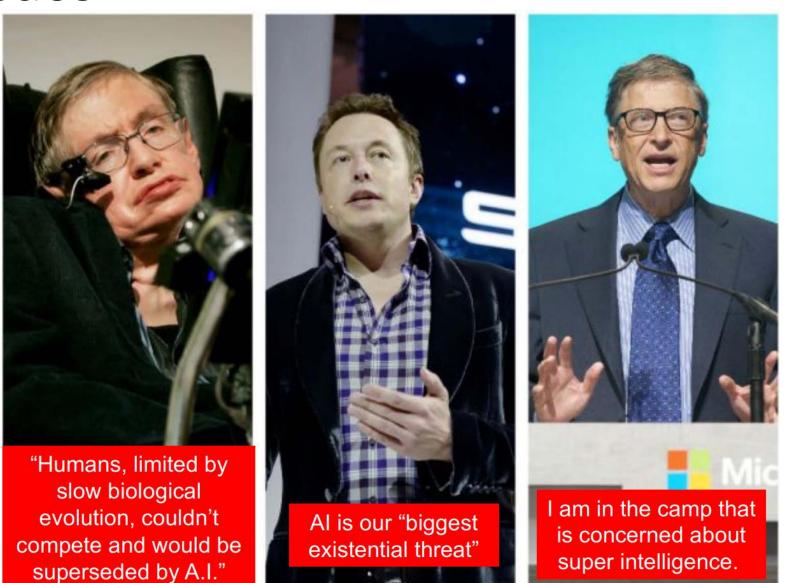
- What AI systems are good at
- Useful/beneficial things Al can do

Next week:

- Limitations of Al
- Potential dangers/negative effects of AI

Risks/Ethical Issues

- Job loss
- Superintelligence
- Biases/fairness
- Consciousness
- Ethical dilemmas
- Privacy



Limitations/Challenges for Future Al Researchers

- Robustness
- Understanding «common sense»
 - Language
 - Images
 - Causality
- Explainability
- Continuous learning
- Extremely data-inefficient learning

Fig. 6. Author 3 predicted(90.2%) as famous Norwegian cross country skier Petter Northug.

Today's plan

- Focus a key Al limitation
- Present state-of-the-art research into solving it
 - Using many techniques you learned in the course
- 2 goals:
 - Another example of the relevance of the techniques you have seen
 - A «bridge» into more advanced AI courses

Limitations/Challenges for Future Al Researchers

- Robustness
- Understanding «common sense»
 - Language
 - Images
 - Causality
- Explainability
- Continuous learning
- Extremely data-inefficient learning

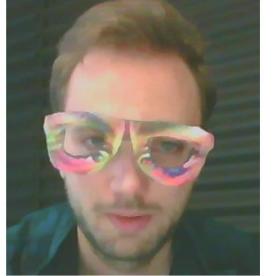
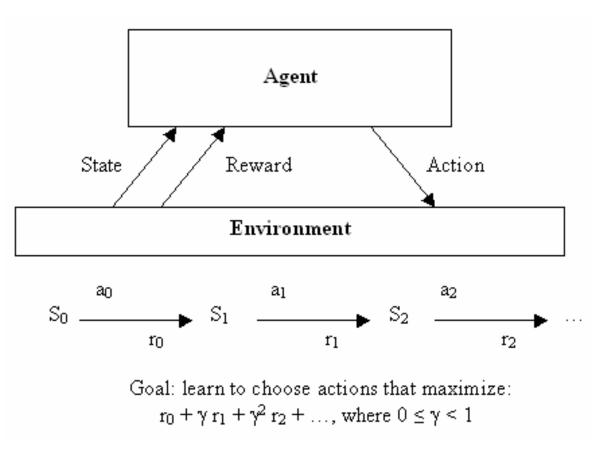


Fig. 6. Author 3 predicted(90.2%) as famous Norwegian cross country skier Petter Northug.

Reinforcement Learning



No Understanding of the Environment -> Fragile Policy

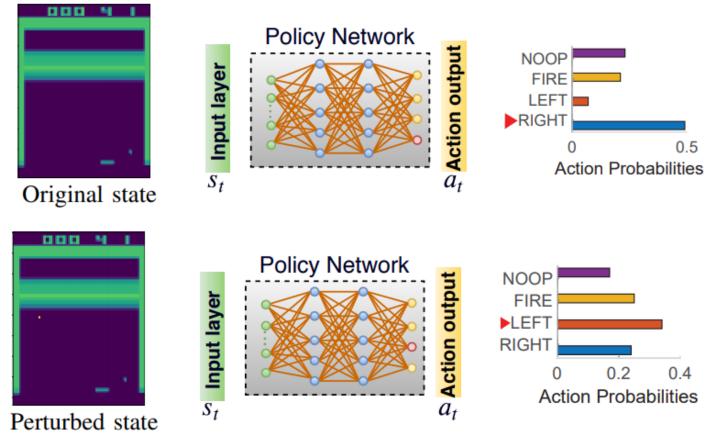
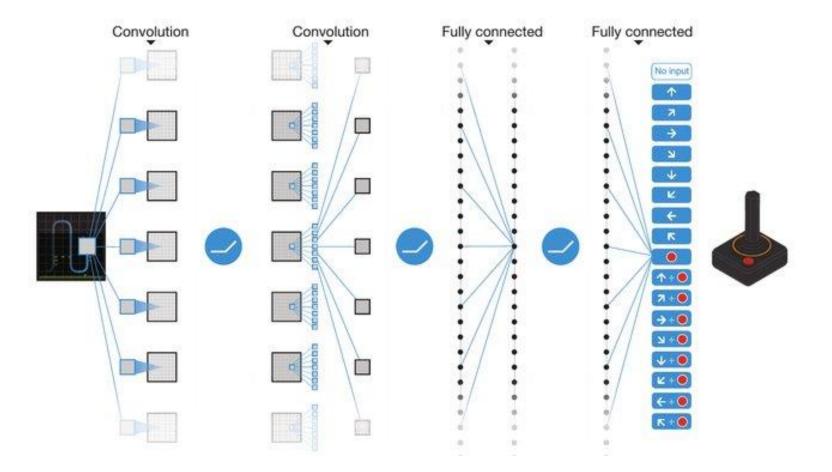


Fig. 1: The visualization of the single pixel attack on Breakout.

Qu, Xinghua, et al. "Minimalistic Attacks: How Little it Takes to Fool Deep Reinforcement Learning Policies." *IEEE Transactions on Cognitive and Developmental Systems* (2020).

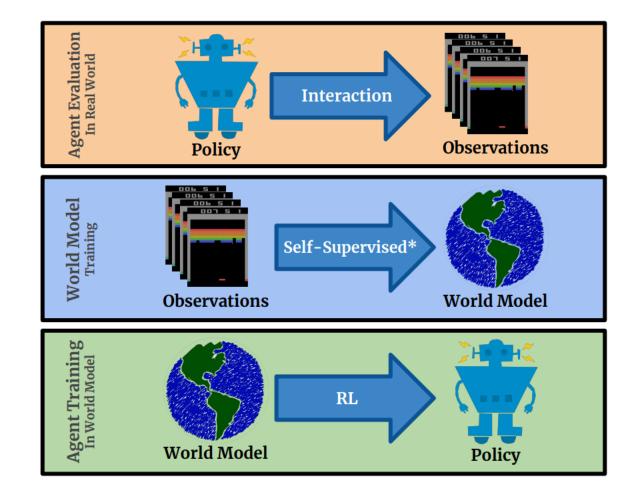
Model-free Reinforcement Learning: Learn without an explicit predictive model



05.05.2021

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." *nature* 518.7540 (2015): 529-533.

Model-based Reinforcement Learning:



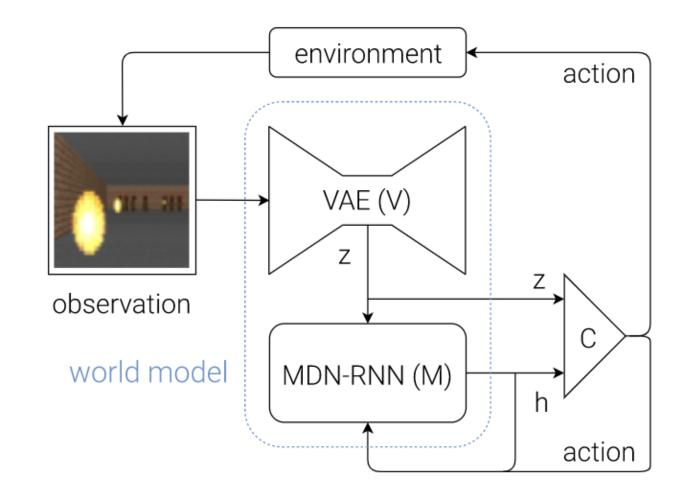
Kaiser, Lukasz, et al. "Model-based reinforcement learning for atari." arXiv preprint arXiv:1903.00374 (2019).

Model-Based RL

- Aims to solve some key problems with model-free RL:
 - 1) It requires very large amounts of training data
 - 2) It can allow efficient *transfer learning*: A single predictive model could be used to learn new tasks in the same environment.
 - 3) It can make agents more robust as they *understand* their effect on the environment
- Even so, model-free approaches have so far been most successful.

World Models

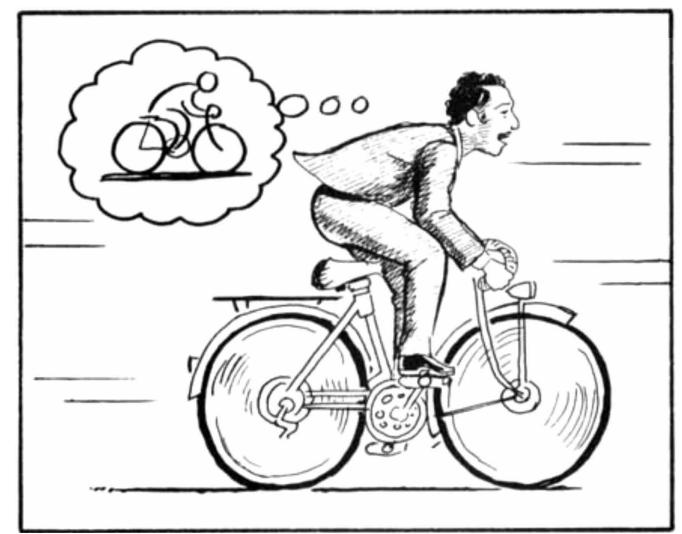
- We'll look at a SOA Modelbased RL algorithm
- It illustrates several topics from this course:
 - Autoencoders
 - RNNs
 - (Neuro)evolution
 - Reinforcement Learning
 - Unsupervised Learning



David Ha & Jürgen Schmidhuber: «World Models», NeurIPS 2018 https://worldmodels.github.io/

The idea

- With a predictive model of our world, we can make better decisions
- We can learn a large predictive model of the world in an *unsupervised fashion*
- Then, we can learn a simpler controller using RL and input from the predictive model

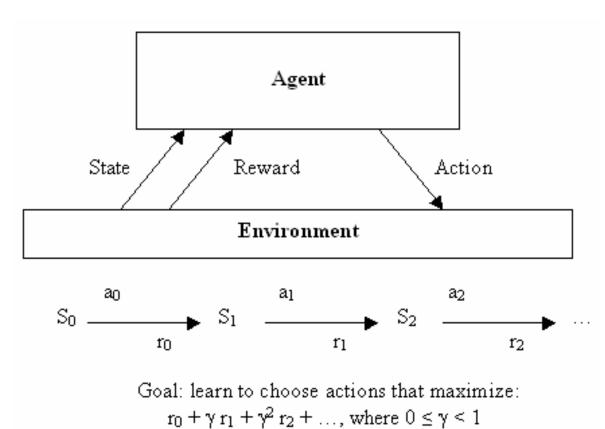


Source: https://worldmodels.github.io/4

The RL environments

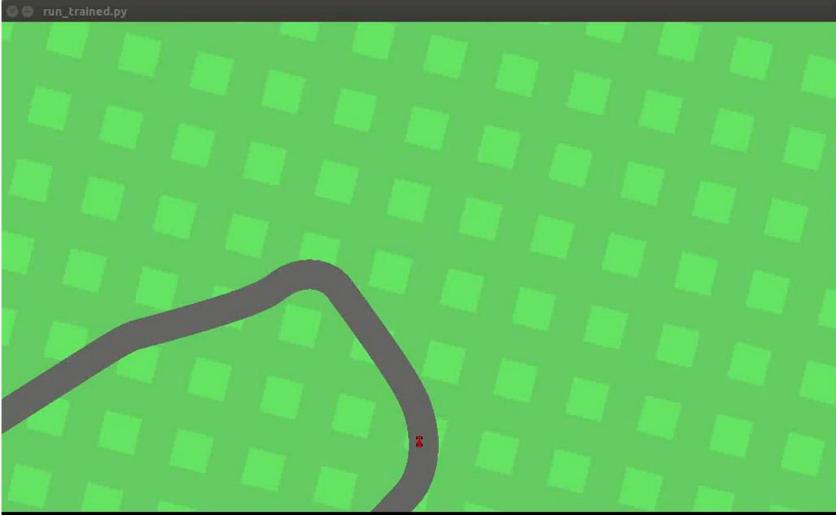


Reinforcement Learning - Reminder



0007

Quiz: What are states, actions, rewards?



At each time step, our agent receives an **observation** from the environment.

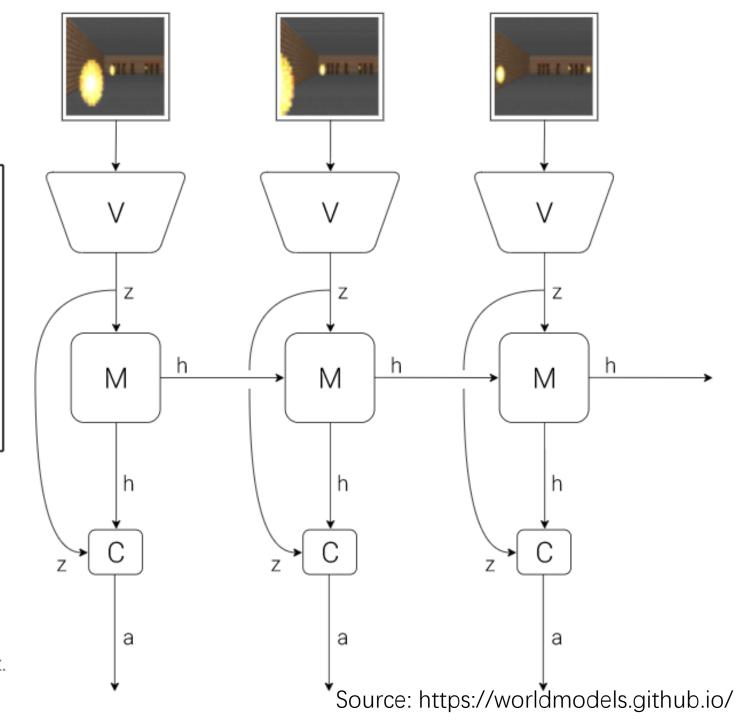
World Model

The Vision Model (V) encodes the high-dimensional observation into a low-dimensional latent vector.

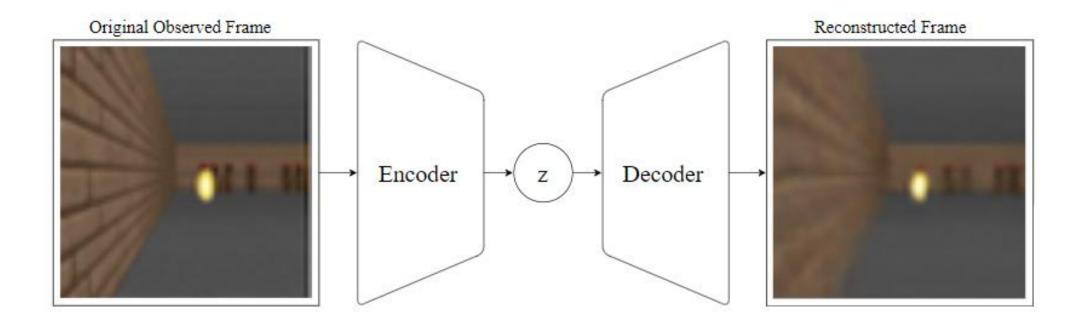
The Memory RNN (M) integrates the historical codes to create a representation that can predict future states.

A small **Controller (C)** uses the representations from both **V** and **M** to select good actions.

The agent performs actions that go back and affect the environment.



V: Variational AutoEncoder (VAE)



Flow diagram of a Variational Autoencoder. [31, 32]

Source: https://worldmodels.github.io19

Demo

<u>https://worldmodels.github.io/</u>

At each time step, our agent receives an **observation** from the environment.

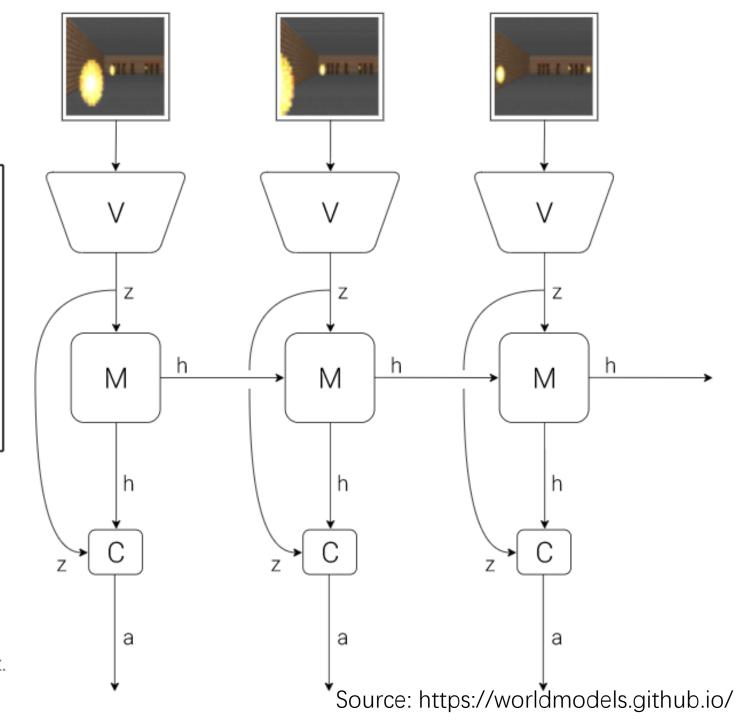
World Model

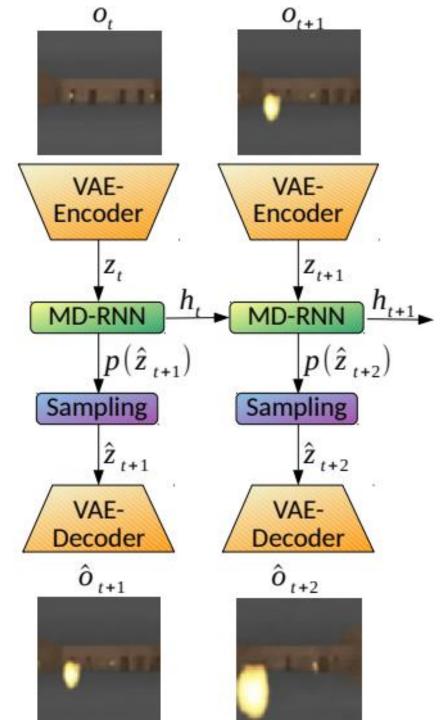
The Vision Model (V) encodes the high-dimensional observation into a low-dimensional latent vector.

The Memory RNN (M) integrates the historical codes to create a representation that can predict future states.

A small **Controller (C)** uses the representations from both **V** and **M** to select good actions.

The agent performs actions that go back and affect the environment.





At each time step, our agent receives an **observation** from the environment.

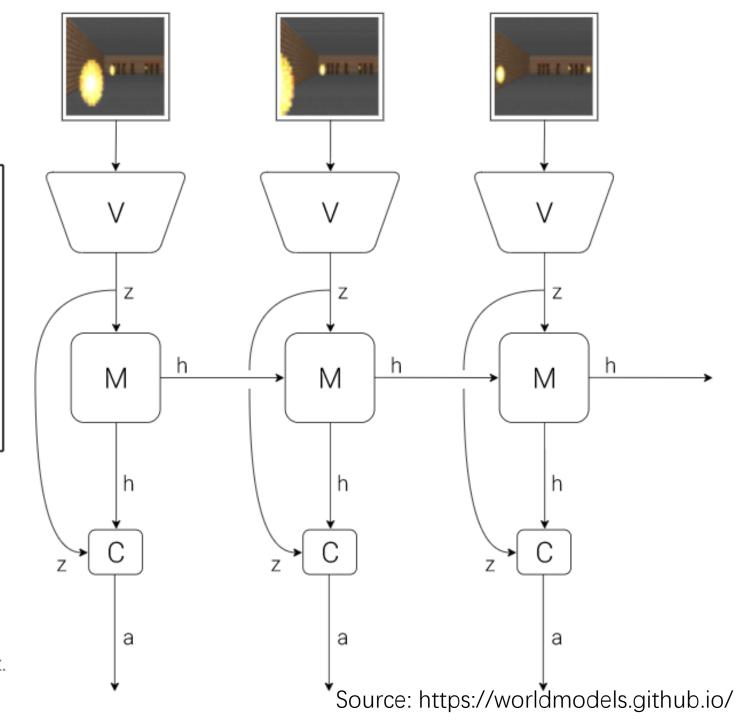
World Model

The Vision Model (V) encodes the high-dimensional observation into a low-dimensional latent vector.

The Memory RNN (M) integrates the historical codes to create a representation that can predict future states.

A small **Controller (C)** uses the representations from both **V** and **M** to select good actions.

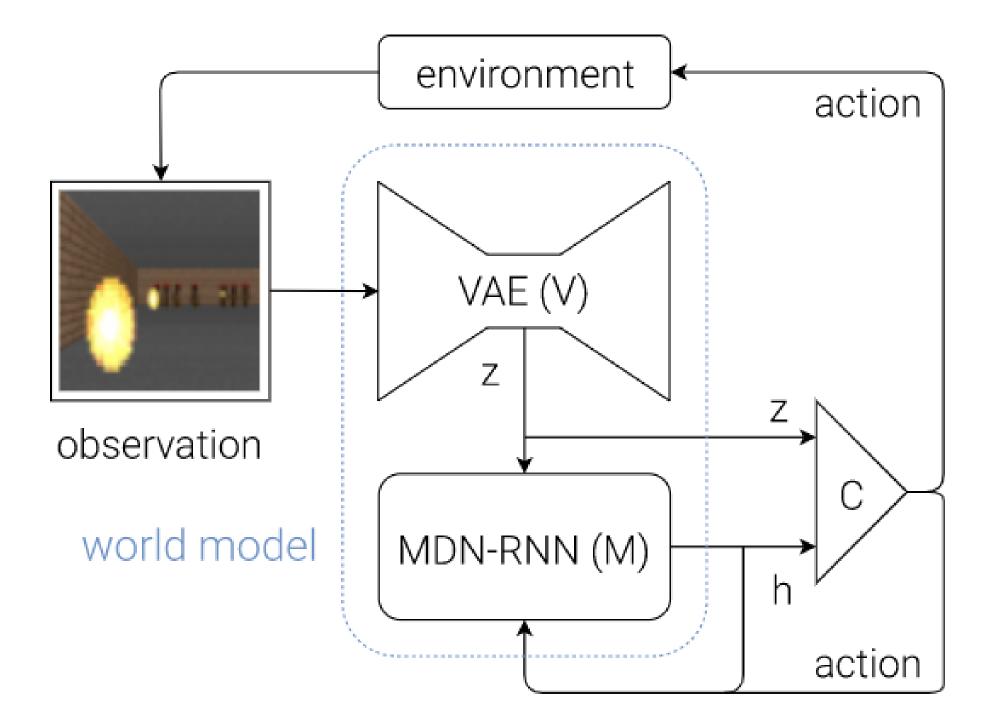
The agent performs actions that go back and affect the environment.



C is a simple single layer linear model that maps z_t and h_t directly to action a_t at each time step:

$$a_t = W_c \left[z_t \ h_t \right] \ + \ b_c$$

In this linear model, W_c and b_c are the weight matrix and bias vector that maps the concatenated input vector $[z_t \ h_t]$ to the output action vector a_t .³

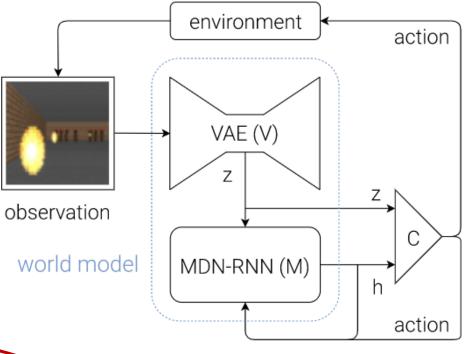


Training procedure

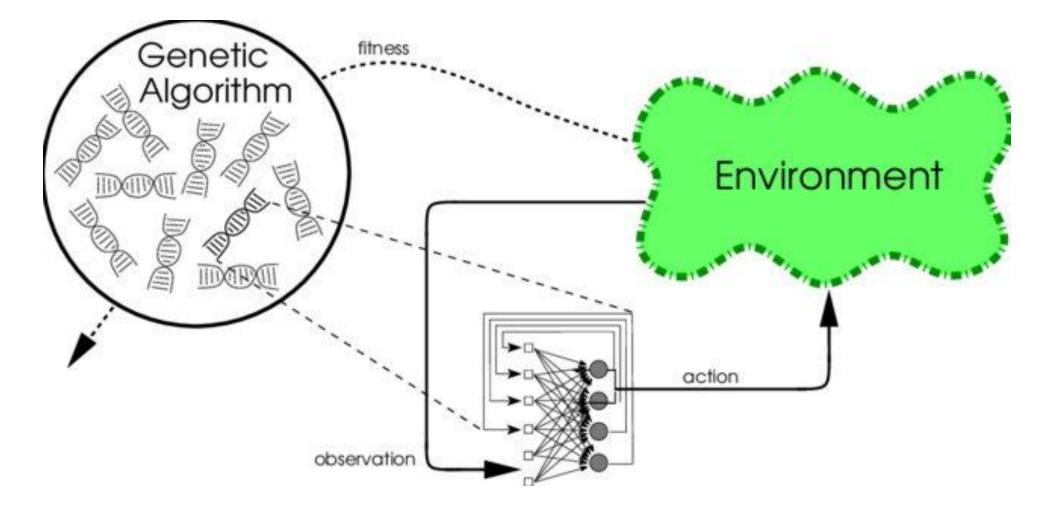
- 1. Collect 10,000 rollouts from a random policy.
- 2. Train VAE (V) to encode each frame into a latent vector $z \in \mathcal{R}^{32}$.
- 3. Train MDN-RNN (M) to model $P(z_{t+1} \mid a_t, z_t, h_t)$.

4. Evolve Controller (C) to maximize the expected cumulative reward of a rollout.

Model	Parameter Count
VAE	4,348,547
MDN-RNN	422,368
Controller	867



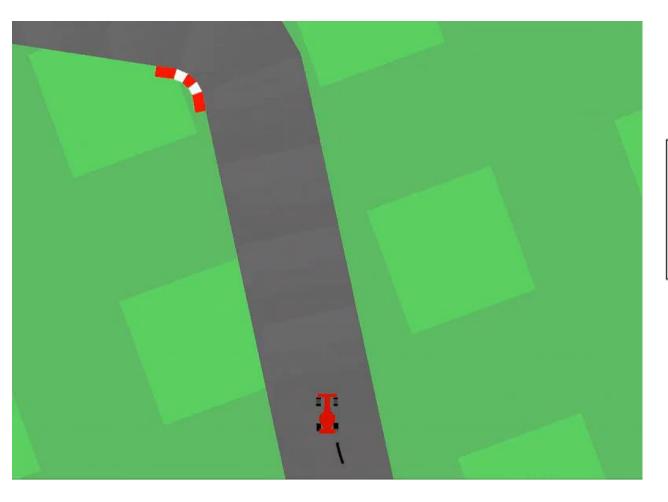
Neuroevolution

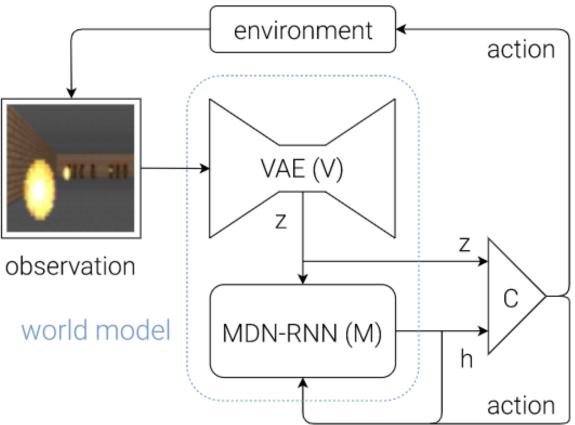


Source: https://link.springer.com/referenceworkentry/10.1007%2F978-0-387-30164-8_589

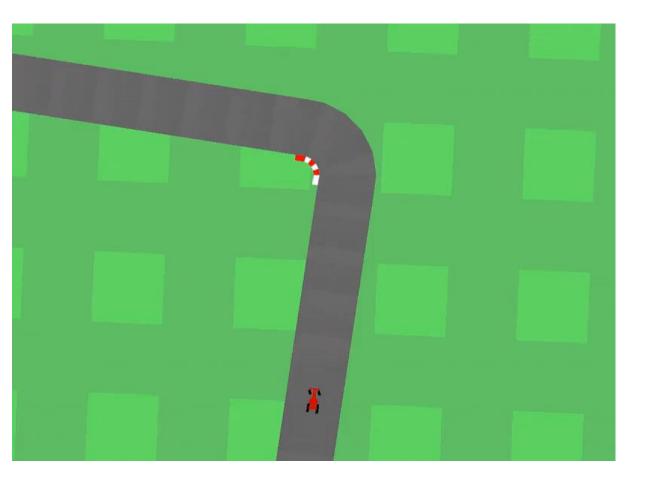
World models - Results

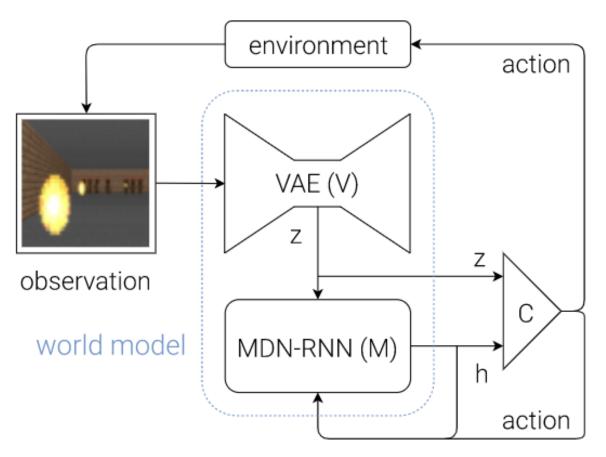
Carracing – z only





Carracing – z and h

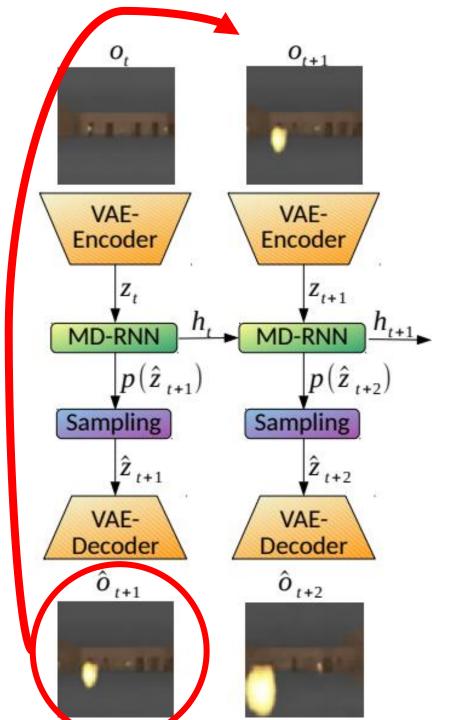




Method	Average Score over 100 Random Tracks
DQN [53]	343 ± 18
A3C (continuous) [52]	591 ± 45
A3C (discrete) [51]	652 ± 10
ceobillionaire's algorithm (unpublished) [47]	838 ± 11
V model only, z input	632 ± 251
V model only, z input with a hidden layer	788 ± 141
Full World Model, z and h	906 \pm 21

Dreaming:

Instead of an actual input, give the decoded, predicted next frame as input



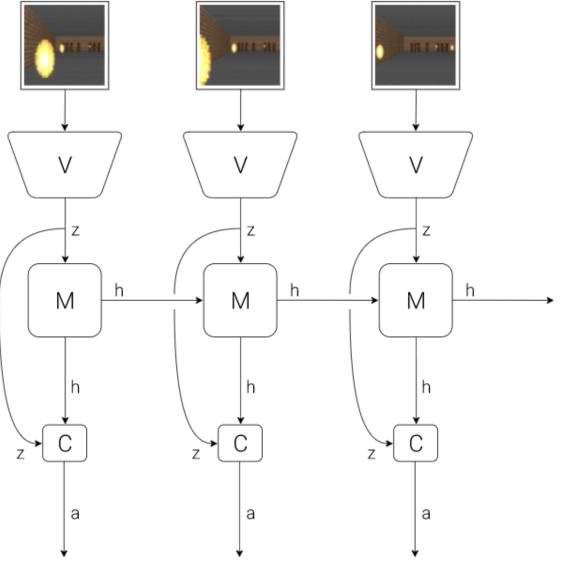
Dreaming demo

<u>https://worldmodels.github.io/</u>

The agent can even *learn* inside its own dream!

We optimize C as before, but now every episode is a «dreamt» sequence

C is optimized to control agent inside the dream-world



Policies learned in a dream also work in the real game!!

Next steps: Using World Models for learning real-world tasks

A neural net's hallucination of driving on a highway:

Summary

- «Understanding» the world a key limitation for deep learning, making it non-robust.
- Model-based learning may be a step on the way
- Model can predict the future and consequences of actions
- We saw a world model applying Reinforcement Learning, Unsupervised Learning, an Autoencoder, an RNN and NeuroEvolution