
IN3050/IN4050 -
Introduction to
Artificial Intelligence
and Machine Learning
Background A:
Vectors and Matrices

Jan Tore Lønning

A.1 Vectors
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

2

In addition: Vectors, matrices, NumPy

• Efficient code: both writing and execution
• A@B can replace three nested loops

• GPUs – parallel processing

• NumPy:
• Based on vectors and matrices

• Used by Marsland

• Libraries for ML, including Deep Learning

• Necessary for a deeper understanding
• in particular, of complex neural networks

• Tensor generalizes vectors and matrices

3

Vectors

• An n-dimensional vector is an array of n scalars (real numbers)
• 𝑥1, 𝑥2, … 𝑥𝑛

• Two operations on vectors
• Scalar multiplication

• 𝑎 𝑥1, 𝑥2, … 𝑥𝑛 = 𝑎𝑥1, 𝑎𝑥2, … 𝑎𝑥𝑛

• Addition

• 𝑥1, 𝑥2, … 𝑥𝑛 + 𝑦1, 𝑦2, … 𝑦𝑛 = 𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … 𝑥𝑛 + 𝑦𝑛

4

Euclidean vectors

• Also called geometric or spatial
vectors

• 2D or 3D

• Characterized by
• length

• direction

• Used in physics for e.g.
• forces, speed, acceleration, etc.

5

Figures from Wikipedia

The connection

• Vectors with the same length
and direction are considered
equivalent

• A vector can be described by
• start- and end-point

• 𝒖 = 𝐴, 𝐵 = 2,5 , 6,8

• 𝒘 = 0,0 , 4,3

• end-point
• 𝒘 = 𝐸 = 4,3

• the numeric form we use for
addition and scalar multiplication

6

Norm of a vector

The norm (length) of a vector

• 𝑥1, 𝑥2, … 𝑥𝑛 = 𝑥1
2 + 𝑥2

2 +⋯+ 𝑥𝑛
2

• This is called L2-norm

Possible to operate with other norms, e.g.,
L1-norm ("Manhattan")

• 𝑥1, 𝑥2, … 𝑥𝑛 1 = 𝑥1 + 𝑥1 +…+ 𝑥𝑛
• used in machine learning e.g., for

regularization

7

Cosine

• cos 𝐴 =
𝑏

ℎ

• sin 𝐴 =
𝑎

ℎ

8

Cosine

Also defined for obtuse (non-acute)
angles:

• cos 𝑢 = 𝐶1 = 0.5

• cos 𝑣 = 𝐷1 =

1 − 0.52 ≈ −0.9

9

Cosine

Observations:

• cos 0 = 1

• cos 𝑢 = 0 iff 𝑢 =
𝜋

2
= 90°

• 0 < cos 𝑢 < 1 iff 0 < 𝑢 <
𝜋

2

• cos 𝑢 < 0 iff
𝜋

2
< 𝑢 ≤ 𝜋

10

Dot product

• 𝑥1, 𝑥2, … 𝑥𝑛 ∙ 𝑦1, 𝑦2, … 𝑦𝑛 = 𝑥1𝑦1 + 𝑥2𝑦2 +⋯+ 𝑥𝑛𝑦𝑛 = σ𝑖=1
𝑛 𝑥𝑖𝑦𝑖

• This is a scalar (real number) – not a vector

• 𝒙 ∙ 𝒚 = 𝒙 𝒚 cos(𝑢) where 𝑢 is the angle between the two vectors

• cos 𝑢 =
𝒙∙𝒚

𝒙 𝒚

• In 2D and 3D we can prove this

• In higher dimensions, we can use this to define cosine
• and show that cosine gets the expected properties

11

Lines and vectors

• A line through the origin can be
defined:
1. 𝑐𝑥 + 𝑑𝑦 = 0, for some 𝑐, 𝑑

2. 𝑥, 𝑦 = 𝑡 𝑎1, 𝑎2 for any 𝑡

3. 𝑋 ∙ 𝑁 = 𝑥, 𝑦 ∙ 𝑛1, 𝑛2 = 0
• 𝑛1 = 𝑐, 𝑛2 = 𝑑

• Observe that
• 𝑋1 ∙ 𝑁 > 0

• 𝑋2 ∙ 𝑁 < 0

12

Linear classification

Last week

1. An adder (including bias) :

ℎ =

𝑖=0

𝑚

𝑤𝑖𝑥𝑖

= 𝑤0𝑥0 +𝑤2𝑥2 +⋯+𝑤𝑚𝑥𝑚
1. An activation function,

Predict

• The weights can be considered a
vector 𝒘 = (𝑤0, , … , 𝑤𝑚)

• Adding as dot product
ℎ = σ𝑖=0

𝑚 𝑤𝑖𝑥𝑖 = 𝒘 ∙ 𝒙

• Predict

• 1 iff 0 < ∠(𝒘, 𝒙) <
𝜋

2

• Otherwise: zero

13

𝑜 = 𝑔 ℎ = ቊ
1 𝑖𝑓 ℎ > 0
0 𝑖𝑓 ℎ ≤ 0

Perceptron update

• Point Z gets wrong class

• When updating for Z, we add a
small vector pointing in the
direction of Z to W

• Hence, we tilt the decision
boundary line towards Z

14

Example

• The example from the
perceptron algorithm

• Positive class 𝑔 ℎ = 1 iff

• 𝑤1𝑥1 +𝑤0𝑥0 =
𝑤0, 𝑤1 ∙ 𝑥0, 𝑥1 > 0

• Initial vector:
𝐰 = 𝑤1, 𝑤0 =(-1,-1)

• Updated vector:
𝐰′ = 𝑤1, 𝑤0 = −0.8, −1.1

15

Vectors in NumPy

• Vectors
• In [1]: import NumPy as np

• In [2]: a = np.array([1,2,3])

• In [3]: a

• Out[3]: array([1, 2, 3])

• Scalar multiplication
• In [7]: c = 5.0

• In [8]: c*a

• Out[8]: array([5., 10., 15.])

• Vector addition:
• In [4]: b = np.array((4.5, 6, 7))

• In [5]: b

• Out[5]: array([4.5, 6. , 7.])

• In [6]: a+b

• Out[6]: array([5.5, 8. , 10.])

16

Dot-product in NumPy

• Three ways:
• np.dot(a,b)

• a.dot(b)

• a @ b

• @ is most readable for complex
expressions

17

Implementing the forward step

Pure python implementation

• x and weights as lists (or tuples)

• forward = sum([self.weights[i]*x[i]
for i in range(self.dim)])

NumPy-implementation

• x and weights as NumPy-arrays

• forward = self.weights @ x

18

The perceptron update step

Pure python implementation

• for i in range(dim):
weights[i] += eta * (t - y) * x[i]

NumPy-implementation

• weights += eta * (t - y) * x
• x and weights as NumPy-arrays

• eta, t, y as scalars (floats)

19

For more

• See

• Geometry and linear algebra for IN3050/IN4050

• Next: Matrices

20

A.2 Matrices
IN3050/IN4050 Introduction to Artificial Intelligence

and Machine Learning

21

MATRIX

22

Matrix

• A rectangular array of numbers
• m rows

• n columns

• A 𝑚 × 𝑛 –matrix ("m by n")

23

(In programming, e.g., Python and
NumPy, we typically count from 0 to
n-1)

Matrix operations

• Addition:
11 12 13
21 22 23

+
11 22 33
21 22 23

=
22 34 46
42 44 46

• Multiplication by scalars 5𝐵 = 5
11 12 13
21 22 23

=
55 60 65
105 110 115

24

Transposed

• If 𝐵 =
11 12 13
21 22 23

,

the transposed of B is

• 𝐵𝑇 =
11 21
12 22
13 23

• Interchanges rows and columns

25

Notation

• Alternative notation for the
element (a scalar) in row i and
column j of matrix A:
• 𝑎𝑖,𝑗
• 𝐴𝑖,𝑗
• 𝐴[𝑖, 𝑗]

• The last two are useful for
multiplication:
• (𝐴𝐵)𝑖,𝑗
• (𝐴𝐵)[𝑖, 𝑗]

26

https://en.wikipedia.org/wiki/Matrix_(mathematics)

Notation 2

• We can use 𝐴[𝑖, :] for the vector
consisting of the elements in
row 𝑖:
• 𝐴 𝑖, : = (𝑎𝑖,1, 𝑎𝑖,2, … , 𝑎𝑖,𝑛)

• 𝐴[: , 𝑗] for the vector consisting
of the elements in column 𝑗:
• 𝐴 : , 𝑗 = (𝑎1,𝑗 , 𝑎2,𝑗 , … , 𝑎𝑚,𝑗)

27

https://en.wikipedia.org/wiki/Matrix_(mathematics)

Matrix multiplication

• If
• A is a 𝑚 × 𝑛 matrix

• B is a 𝑛 × 𝑝 matrix

• Define the product 𝐶 = 𝐴𝐵
• A 𝑚 × 𝑝 matrix, where

• 𝑐𝑖,𝑗 = σ𝑟=1
𝑛 𝑎𝑖,𝑟𝑏𝑟,𝑗

= 𝐴 𝑖, : ∙ 𝐵[: , 𝑗]

28

Don’t use ∙ for matrix multiplication
Write 𝐴𝐵
Not 𝐴 ∙ 𝐵

https://en.wikipedia.org/wiki/Matrix_(mathematics)

Product dimensions (but don’t use the dot)

29

Von Quartl - Eigenes Werk, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=27646023

Column vectors

• A column vector is a nx1 matrix, e.g., C =
−1
2
4

• It is not a vector

• It can sometimes be convenient to use the column vector to
represent the vector
• 𝐶 1, : = (−1,2,4)
• This can simplify operations, reducing them to matrix multiplication
• Some books just take vectors to be column vectors
• But when we program e.g., in Python, we should distinguish between the
1 × 𝑛 matrix 𝐶 and the 𝑛-dimensional vector it represents 𝐶 1, :

30

Marsland's representation

• Each row represent the vector of one
data point

• 𝑋 𝑖, : = 𝒙𝑖 = (𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑚)

• Each datapoint has 𝑚 many features

• There are 𝑁 many datapoints
• (input vectors)

• The weight vector 𝒘 represented by a
column vector, 𝑊:

• 𝑊 1, : = 𝒘 = (𝑤1,1, 𝑤2,1, … , 𝑤𝑚,1)

• Use matrix multiplication to calculate
forward for all datapoints in one go.

• 𝑌 𝑖, 1 = 𝑦𝑖,1 = 𝒙𝑖 ∙ 𝒘

31

𝑋 𝑊 𝑇𝑌

Vector output

• Sometimes the target value to an
input vector 𝑥1, 𝑥2, … , 𝑥𝑚 is a
vector (𝑦1, 𝑦2, … , 𝑦𝑛)

• Then the weights can be
represented by matrix 𝑚 × 𝑛

32

Matrices in NumPy

In [3]: a =
np.array([[11,12,13,
[21,22,23]])

In [4]: a

Out[4]:

array([[11, 12, 13],

[21, 22, 23]])

In [5]: a.shape

Out[5]: (2, 3)

33

In [6]: a.T

Out[6]:

array([[11, 21],

[12, 22],

[13, 23]])

In [8]: c

Out[8]: array(
[0, 1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11])

In [9]:
d=c.reshape(3,4)

In [10]: d

Out[10]:

array([[0, 1, 2, 3],

[4, 5, 6, 7],

[8,9,10,11]])

Matrix multiplication in NumPy

In [4]: a

Out[4]:

array([[11, 12, 13],

[21, 22, 23]])

In [10]: d

Out[10]:

array([[0, 1, 2, 3],

[4, 5, 6, 7],

[8,9,10,11]])

34

• In [12]: a @ d

• Out[12]:

• array([[152, 188, 224, 260],

• [272, 338, 404, 470]])

For more

• See Geometry and linear algebra for IN3050/IN4050

• Practice using NumPy

35

