UiO: University of Oslo

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning
Background A:
Vectors and Matrices
Jan Tore Lønning

A. 1 Vectors

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

In addition: Vectors, matrices, NumPy

- Efficient code: both writing and execution
- A@B can replace three nested loops
- GPUs - parallel processing
- NumPy:
- Based on vectors and matrices
- Used by Marsland
- Libraries for ML, including Deep Learning
- Necessary for a deeper understanding
- in particular, of complex neural networks
- Tensor generalizes vectors and matrices

Vectors

- An n -dimensional vector is an array of n scalars (real numbers)
- $\left(x_{1}, x_{2}, \ldots x_{n}\right)$
- Two operations on vectors
- Scalar multiplication
- $a\left(x_{1}, x_{2}, \ldots x_{n}\right)=\left(a x_{1}, a x_{2}, \ldots a x_{n}\right)$
- Addition
- $\left(x_{1}, x_{2}, \ldots x_{n}\right)+\left(y_{1}, y_{2}, \ldots y_{n}\right)=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots x_{n}+y_{n}\right)$

Euclidean vectors

- Also called geometric or spatial vectors

- 2D or 3D
- Characterized by
- length
- direction
- Used in physics for e.g.
- forces, speed, acceleration, etc.

Figures from Wikipedia

The connection

- Vectors with the same length and direction are considered equivalent
- A vector can be described by
- start- and end-point
- $\boldsymbol{u}=(A, B)=((2,5),(6,8))$
- $\boldsymbol{w}=((0,0),(4,3))$
- end-point
- $\boldsymbol{w}=E=(4,3)$
- the numeric form we use for addition and scalar multiplication

Norm of a vector

The norm (length) of a vector

- $\left\|\left(x_{1}, x_{2}, \ldots x_{n}\right)\right\|=\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}+\cdots+x_{n}{ }^{2}}$
- This is called L2-norm

Possible to operate with other norms, e.g., L1-norm ("Manhattan")

- $\left\|\left(x_{1}, x_{2}, \ldots x_{n}\right)\right\|_{1}=\left|x_{1}\right|+\left|x_{1}\right|+\ldots+\left|x_{n}\right|$
- used in machine learning e.g., for regularization

Cosine

- $\cos (A)=\frac{b}{h}$
- $\sin (A)=\frac{a}{h}$

Cosine

Also defined for obtuse (non-acute) angles:

- $\cos (u)=C_{1}=0.5$
- $\cos (v)=D_{1}=$

$$
\sqrt{1-0.5^{2}} \approx-0.9
$$

Cosine

Observations:

- $\cos (0)=1$
- $\cos (u)=0$ iff $u=\frac{\pi}{2}=90^{\circ}$
- $0<\cos (u)<1$ iff $0<u<\frac{\pi}{2}$
- $\cos (u)<0$ iff $\frac{\pi}{2}<u \leq \pi$

Dot product

$\cdot\left(x_{1}, x_{2}, \ldots x_{n}\right) \cdot\left(y_{1}, y_{2}, \ldots y_{n}\right)=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{i=1}^{n} x_{i} y_{i}$

- This is a scalar (real number) - not a vector
- $\boldsymbol{x} \cdot \boldsymbol{y}=\|\boldsymbol{x}\|\|\boldsymbol{y}\| \cos (u)$ where u is the angle between the two vectors
- $\cos (u)=\frac{x \cdot y}{\|x\|\|y\|}$
- In 2D and 3D we can prove this
- In higher dimensions, we can use this to define cosine
- and show that cosine gets the expected properties

Lines and vectors

- A line through the origin can be defined:

1. $c x+d y=0$, for some c, d
2. $(x, y)=t\left(a_{1}, a_{2}\right)$ for any t
3. $X \cdot N=(x, y) \cdot\left(n_{1}, n_{2}\right)=0$

- $n_{1}=c, n_{2}=d$
- Observe that
- $X_{1} \cdot N>0$
- $X_{2} \cdot N<0$

-4	-3	-2	-1	0	1	2	3	4	5

Linear classification

Last week

1. An adder (including bias) :

$$
\begin{aligned}
& h=\sum_{i=0}^{m} w_{i} x_{i} \\
& =w_{0} x_{0}+w_{2} x_{2}+\cdots+w_{m} x_{m}
\end{aligned}
$$

1. An activation function,

Predict

$$
o=g(h)=\left\{\begin{array}{l}
1 \text { if } h>0 \\
0 \text { if } h \leq 0
\end{array}\right.
$$

- The weights can be considered a vector $\boldsymbol{w}=\left(w_{0}, \ldots, w_{m}\right)$
- Adding as dot product $h=\sum_{i=0}^{m} w_{i} x_{i}=\boldsymbol{w} \cdot \boldsymbol{x}$
- Predict
- 1 iff $0<\angle(\boldsymbol{w}, \boldsymbol{x})<\frac{\pi}{2}$
- Otherwise: zero

Perceptron update

- Point Z gets wrong class
- When updating for Z, we add a small vector pointing in the direction of Z to W
- Hence, we tilt the decision boundary line towards Z

Example

- The example from the perceptron algorithm
- Positive class $g(h)=1$ iff
- $w_{1} x_{1}+w_{0} x_{0}=$
$\left(w_{0}, w_{1}\right) \cdot\left(x_{0}, x_{1}\right)>0$
- Initial vector:

$$
\mathbf{w}=\left(w_{1}, w_{0}\right)=(-1,-1)
$$

- Updated vector:
$\mathbf{w}^{\prime}=\left(w_{1}, w_{0}\right)=(-0.8,-1.1)$

Vectors in NumPy

- Vectors
- In [1]: import NumPy as np
- In [2]: a = np.array([1,2,3])
- In [3]: a
- Out[3]: $\operatorname{array}([1,2,3])$
- Scalar multiplication
- In [7]: c = 5.0
- In [8]: c*a
- Out[8]: $\operatorname{array([~5.,~10.,~15.])~}$
- Vector addition:
- In [4]: b = np.array((4.5, 6, 7))
- In [5]: b
- Out[5]: array([4.5, 6. , 7.])
- In [6]: a+b
- Out[6]: $\operatorname{array}([5.5,8 ., 10]$.

Dot-product in NumPy

- Three ways:
- np.dot(a,b)
- a.dot(b)
- a @ b
- @ is most readable for complex expressions

Implementing the forward step

Pure python implementation

- x and weights as lists (or tuples)
- forward = sum([self.weights[i]*x[i]

```
for i in range(self.dim)])
```

NumPy-implementation

- x and weights as NumPy-arrays
- forward = self.weights @ x

The perceptron update step

Pure python implementation

- for i in range(dim):

$$
\text { weights[i] += eta } *(\mathrm{t}-\mathrm{y}){ }^{*} \mathrm{x}[\mathrm{i}]
$$

NumPy-implementation

- weights += eta * (t - y) * x
- x and weights as NumPy-arrays
- eta, t, y as scalars (floats)

For more

- See
- Geometry and linear algebra for IN3050/IN4050
- Next: Matrices

A. 2 Matrices

IN3050/IN4050 Introduction to Artificial Intelligence and Machine Learning

Matrix

- A rectangular array of numbers
- m rows
- n columns
- A $m \times n$-matrix ("m by n ")
(In programming, e.g., Python and NumPy, we typically count from 0 to n-1)
1
2
3
\vdots
$m$$\left[\begin{array}{cccc}1 & 2 & \cdots & n \\ a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ a_{31} & a_{32} & \ldots & a_{3 n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]$

Matrix operations

- Addition: $\left[\begin{array}{lll}11 & 12 & 13 \\ 21 & 22 & 23\end{array}\right]+\left[\begin{array}{lll}11 & 22 & 33 \\ 21 & 22 & 23\end{array}\right]=\left[\begin{array}{lll}22 & 34 & 46 \\ 42 & 44 & 46\end{array}\right]$
- Multiplication by scalars $5 B=5\left[\begin{array}{lll}11 & 12 & 13 \\ 21 & 22 & 23\end{array}\right]=\left[\begin{array}{ccc}55 & 60 & 65 \\ 105 & 110 & 115\end{array}\right]$

Transposed

- If $B=\left[\begin{array}{lll}11 & 12 & 13 \\ 21 & 22 & 23\end{array}\right]$,
the transposed of B is
- $B^{T}=\left[\begin{array}{ll}11 & 21 \\ 12 & 22 \\ 13 & 23\end{array}\right]$
- Interchanges rows and columns

Notation

- Alternative notation for the element (a scalar) in row i and column j of matrix A:
- $a_{i, j}$
- $A_{i, j}$
- $A[i, j]$
- The last two are useful for multiplication:
- $(A B)_{i, j}$
- $(A B)[i, j]$
$\left.\begin{array}{c}1 \\ 2 \\ 3 \\ 3 \\ m\end{array} \begin{array}{cccc}1 & 2 & \cdots & n \\ a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ a_{31} & a_{32} & \cdots & a_{3 n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]$

[^0]
Notation 2

- We can use $A[i,:]$ for the vector consisting of the elements in row i :
- $A[i,:]=\left(a_{i, 1}, a_{i, 2}, \ldots, a_{i, n}\right)$
- $A[:, j]$ for the vector consisting of the elements in column j :
- $A[:, j]=\left(a_{1, j}, a_{2, j}, \ldots, a_{m, j}\right)$
$\left.\begin{array}{c}1 \\ 2 \\ 2 \\ 3 \\ m\end{array} \begin{array}{cccc}1 & 2 & \cdots & n \\ a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ a_{31} & a_{32} & \cdots & a_{3 n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]$

Matrix multiplication

- If
- A is a $m \times n$ matrix
- B is a $n \times p$ matrix
- Define the product $C=A B$
- A $m \times p$ matrix, where
- $c_{i, j}=\sum_{r=1}^{n} a_{i, r} b_{r, j}$

$$
=A[i,:] \cdot B[:, j]
$$

> Don't use \cdot for matrix multiplication Write $A B$
> Not $A \cdot B$

$B=$| b_{11} | b_{12} | b_{13} |
| :--- | :--- | :--- |
| b_{21} | b_{22} | b_{23} |

Product dimensions (but don't use the dot)

Von Quartl - Eigenes Werk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=27646023

Column vectors

- A column vector is a nx1 matrix, e.g., $C=\left[\begin{array}{c}-1 \\ 2 \\ 4\end{array}\right]$
- It is not a vector
- It can sometimes be convenient to use the column vector to represent the vector
- $C[1,:]=(-1,2,4)$
- This can simplify operations, reducing them to matrix multiplication
- Some books just take vectors to be column vectors
- But when we program e.g., in Python, we should distinguish between the $1 \times n$ matrix C and the n-dimensional vector it represents $C[1,:]$

Marsland's representation

- Each row represent the vector of one data point
- $X[i,:]=\boldsymbol{x}_{i}=\left(x_{i, 1}, x_{i, 2}, \ldots, x_{i, m}\right)$
- Each datapoint has m many features
- There are N many datapoints
- (input vectors)
- The weight vector \boldsymbol{w} represented by a column vector, W :
- $W[1,:]=\boldsymbol{w}=\left(w_{1,1}, w_{2,1}, \ldots, w_{m, 1}\right)$
- Use matrix multiplication to calculate forward for all datapoints in one go.
- $Y[i, 1]=y_{i, 1}=\boldsymbol{x}_{i} \cdot \boldsymbol{w}$

Vector output

- Sometimes the target value to an input vector $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ is a vector $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$
- Then the weights can be represented by matrix $m \times n$

$$
\left[\begin{array}{rrlr}
x_{1,1} & x_{1,2} & \cdots & x_{1, m} \\
x_{2,1} & x_{2,2} & \cdots & x_{2, m} \\
\vdots & \vdots & \ddots & \vdots \\
x_{N, 1} & x_{N, 2} & \cdots & x_{N, m}
\end{array}\right] \quad\left[\begin{array}{rrrr}
w_{1,1} & w_{1,2} & \cdots & w_{1, n} \\
w_{2,1} & w_{2,2} & \cdots & w_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
w_{m, 1} & w_{m, 2} & \cdots & w_{m, n}
\end{array}\right]=\left[\begin{array}{rrrr}
y_{1,1} & y_{1,2} & \cdots & y_{1, n} \\
y_{2,1} & y_{2,2} & \cdots & y_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
y_{N, 1} & y_{N, 2} & \cdots & y_{N, n}
\end{array}\right]
$$

Matrices in NumPy

In [3]: a $=$
np.array $([[11,12,13$,
[21, 22, 23]])
In [4]: a
Out[4]:
$\operatorname{array([[11,~12,~13],~}$
$\quad[21,22,23]])$
In [5]: a.shape
Out[5]: $(2,3)$

In [6]: a.T
Out[6]:
$\operatorname{array}\left(\left[\begin{array}{ll}{[11, ~ 21],} \\ {[12, ~ 22], ~} \\ [13, ~ 23]])\end{array}\right.\right.$

$$
\begin{aligned}
& \text { In [8]: c } \\
& \text { Out[8]: array } \\
& \text { [0, 1, } 2,3,3,5,6, \\
& 7,8,9,10,11]) \\
& \text { In [9]: } \\
& d=c . \operatorname{reshape}(3,4) \\
& \text { In [10]: d } \\
& \text { Out[10]: } \\
& \operatorname{array}([[0,1,2,3], \\
& {[4,5,6,7],} \\
& [8,9,10,11]])
\end{aligned}
$$

Matrix multiplication in NumPy

```In [4]: a Out[4]: array([[11, 12, 13], [21, 22, 23]])```
```In [10]: d Out[10]: array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8,9,10,11]])```

- In [12]: a @ d
- Out[12]:
- array ([[152, 188, 224, 260],
- [272, 338, 404, 470]])

For more

- See Geometry and linear algebra for IN3050/IN4050
- Practice using NumPy

[^0]: https://en.wikipedia.org/wiki/Matrix_(mathematics)

