Today's Plan
IN3060/4060 — Semantic Technologies — Spring 2019 @ Introduction
Lecture 4: The SPARQL Query Language
© Recap: RDF
Vidar Norstein Klungre © SPARQL by Example
6th February 2018 @ SPARQL Systematically

© Executing SPARQL Queries in Jena
UNIVERSITY OF

OsLo
t @ Wrap-up

d d DEPARTMENT OF

c INFORMATICS

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Outline SPARQL

@ Introduction
@ SPARQL Protocol And RDF Query Language

e Standard language to query graph data represented as RDF triples

@ W3C Recommendations
e SPARQL 1.0: W3C Recommendation 15 January 2008
e SPARQL 1.1: W3C Recommendation 21 March 2013

@ This lecture is about SPARQL 1.0.

@ Documentation:
e Syntax and semantics of the SPARQL query language for RDF.
http://www.w3.org/TR/rdf-sparql-query/

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

http://www.w3.org/TR/rdf-sparql-query/

Outline Recap: RDF triples

@ The W3C representation of knowledge in the Semantic Web is RDF
(Resource Description Framework)

© Recap: RDF . -
RDF talks about resources identified by URIs.

In RDF, all knowledge is represented by triples (aka statements or
facts)

A triple consists of subject, predicate, and object
The subject maybe a resource or a blank node

The predicate must be a resource

The object can be a resource, a blank node, or a literal

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February / IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Recap: RDF
Recap: RDF Literals Recap: RDF Blank Nodes

Blank nodes are like resources without a URI

There is a city in Germany called Berlin
_:x a geo:City
_:X geo:containedIn geo:germany

@ Can only appear as object in the object in the triple.

o Literals can be)
_:x geo:name "Berlin"

geo:contained

e Plain, without language tag:
geo:berlin geo:name "Berlin"
e Plain, with language tag:
geo:germany geo:name "Deutschland"@de .
geo:germany geo:name "Germany"Qen .
e Typed, with a URI indicating the type:
geo:berlin geo:population "3431700"""xsd:integer .

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Recap: Jena

Jena is a Semantic Web programming framework for Java.

Open source.

°
°

@ API to extract data from and write to RDF graphs.

@ Includes an engine to query RDF graphs through SPARQL.
°

Interfaces for main RDF elements Resource, Property, Literal,
Statement, Model

IN3060/4060 :: Spring 2019

The RDF graphs are represented as an abstract Model.

Lecture 4 :: 6th February

Recap: Jena

objectS I RDFNode

[
1 Literal

Model|1 Statement| subject Resource +lexicalForm: String
+URI: String +language: String

? +datatypeURI: String

Property

*

predicate

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Recap: Vocabularies

@ Best Practices: Reuse vocabularies to ease interoperability.

e People are more familiar with them

e Can be queried more easily

e The semantics must be clear, shouldn't twist the meaning too much.
@ Good starting point:

e Linked Open Vocabularies: http://lov.okfn.org/
e Schema.org: https://schema.org

IN3060/4060 :: Spring 2019

Recap: RDF and RDFS Vocabularies

Prefix rdf :<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
Prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>
They need to be declared like all others.

Examples:

geo:berlin rdf:type geo:City .
geo:containedIn a rdf:Property .
geo:berlin rdfs:label geo:City .

@ Note that the keyword “a” is an alternative for rdf : type.

Lecture 4 :: 6th February

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

http://lov.okfn.org/
https://schema.org
rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
rdfs: <http://www.w3.org/2000/01/rdf-schema#>

Recap: RDF Recap: RDF

Recap: Friend Of A Friend Recap: Dublin Core
° People)/personal information, f”en;is' see e Metadata for documents, see http://dublincore.org/.
http://www.foaf-project.or
}_) proJ 8 @ Prefix dc:<http://purl.org/dc/terms/>
o Prefix foaf:<http://xmlns.com/foaf/0.1/>
| cant el : @ Important elements:
@ Important elements:
P . . . creator a document’s main author
Person a person, alive, dead, real, imaginary created the creation date
name name of a person (also firstName, familyName) title title of document
mbox mailbox URL of a person description a natural language description
knows a person knows another
@ Examples:

@ Examples:

<https://w3id.org/scholarlydata/.../iswc2016/paper/research/resparch-
dc:creator
<https://w3id.org/scholarlydata/person/ernesto-jimenez-ruiz>;
dc:created "2016-10-20"
dc:description "ISWC research paper number 146"Qen ;

<https://w3id.org/scholarlydata/person/ernesto-jimenez-ruiz>
a foaf:Person ;
foaf:name "Ernesto Jiménez-Ruiz"
foaf:mbox <mailto:ernestoj@ifi.uio.no> ;
foaf :knows <http://heim.ifi.uio.no/martingi/foaf#me> .

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February / IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Outline SPARQL by Example

e SPARQL Protocol And RDF Query Language
e Try it out:
© SPARQL by Example https://www.w3.org/wiki/SparqlEndpoints
DBLP http://dblp.13s.de/d2r/snorql/
DBpedia http://dbpedia.org/sparql
Lenka http://data.lenka.no/sparql
EBIl https://www.ebi.ac.uk/rdf/

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February / IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

http://www.foaf-project.org/
foaf: <http://xmlns.com/foaf/0.1/>
http://dublincore.org/
dc: <http://purl.org/dc/terms/>
https://www.w3.org/wiki/SparqlEndpoints
http://dblp.l3s.de/d2r/snorql/
http://dbpedia.org/sparql
http://data.lenka.no/sparql
https://www.ebi.ac.uk/rdf/

SPARQL by Example SPARQL by Example

Simple Examples Simple Examples (cont.)

@ DBLP contains computer science publications:
http://dblp.uni-trier.de/

@ Vocabulary of RDF (con)version: dc:creator, dc:title,
foaf :name, etc.

Publications by people called “Ernesto Jimenez-Ruiz"

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

@ Web service: http://dblp.13s.de/d2r/snorql/ SELECT 7pub WHERE {
e Endpoint: http://dblp.13s.de/d2r/sparql ?ejr foaf:name "Ernesto Jimenez-Ruiz"
?pub dc:creator 7ejr .
People called “Ernesto Jimenez-Ruiz" }
PREFIX foaf: <http://xmlns.com/foaf/0.1/> _
SELECT DISTINCT 7ejr WHERE { Answer: =

? ej r f Oaf :name " Erne sto J imeneZ—RuiZ " <http://dblp.13s.de/d2r/resource/publications/journals/ijdsn/MartiSMJ12>
<http://dblp.13s.de/d2r/resource/publications/journals/biomedsem/Jimenez-RuizGHL11>

} <http://dblp.13s.de/d2r/resource/publications/journals/dke/Jimenez-RuizGHL11>

Answer:

7ejr
<http://dblp.13s.de/d2r/resource/authors/Ernesto_Jimenez-Ruiz>
p p

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

SPARQL by Example SPARQL by Example

Simple Examples (cont.) Simple Examples (cont.)
Names of people who have published with “Ernesto Jimenez-Ruiz”
Titles of publications by people called “Ernesto Jimenez-Ruiz" SELECT DISTINCT ?collab WHERE {
SELECT ?title WHERE { ?ejr foaf:name "Ernesto Jimenez-Ruiz"
?ejr foaf:name "Ernesto Jimenez-Ruiz" . ?pub dc:creator 7ejr
?pub dc:creator 7ejr . ?pub dc:creator 7other
?pub dc:title 7title . ?7other foaf:name 7collab.
}) }
Answer: Answer:
7title ?collab
"Localization of Mobile Sensors and Actuators for Intervention in Low-Visibility Conditions"""xsd:string "Ernesto Jimenez-Ruiz"
"Logic-based assessment of the compatibility of UMLS ontology sources."”"xsd:string "Jorge Sales"
"Supporting concurrent ontology development: Framework, algorithms and tool."""xsd:string "Ian Horrocks"
"Bernardo Cuenca Grau"

"Rafael Berlanga Llavori"

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

http://dblp.uni-trier.de/
http://dblp.l3s.de/d2r/snorql/
http://dblp.l3s.de/d2r/sparql

SPARQL by Example

Graph Patterns

The previous SPARQL query as a graph:

foaf :name I . .
| "Ernesto Jimenez-Ruiz"

foaf:
o 7?collab

Pattern matching: assign values to variables to make this a sub-graph of
the RDF graph!

SPARQL by Example

Graph with blank nodes

Variables not SELECTed can equivalently be blank:

foaf :name

"Ernesto Jimenez-Ruiz"

foaf:
oonmele ?collab

Pattern matching: assign values to variables and blank nodes to make
this a sub-graph of the RDF graph!

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Lecture 4 :: 6th February

IN3060/4060 :: Spring 2019

SPARQL Query with blank nodes

Names of people who have published with “Ernesto Jimenez-Ruiz”

SELECT DISTINCT 7collab WHERE {
_:ejr foaf:name "Ernesto Jimenez-Ruiz"
_:pub dc:creator _:ejr .
_:pub dc:creator _:other .
_:other foaf:name 7collab.

} v

The same with blank node syntax
SELECT DISTINCT ?collab WHERE {
[dc:creator [foaf:name "Ernesto Jimenez-Ruiz"] ,
[foaf :name ?collab]

Lecture 4 :: 6th February

IN3060/4060 :: Spring 2019

SPARQL Systematically

Outline

@ SPARQL Systematically

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Components of an SPARQL query

Prologue: prefix definitions Results form specification: (1) variable list, (2)
type of query (SELECT, ASK, CONSTRUCT, DESCRIBE), (3) remove
duplicates (DISTINCT, REDUCED) Dataset specification Query pattern:
graph pattern to be matched Solution modifiers: ORDER BY, LIMIT,
OFFSET

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT DISTINCT 7collab
FROM <http://dblp_dataset>
WHERE {

?ejr foaf:name "Ernesto Jimenez-Ruiz"

?pub dc:creator 7ejr .

?pub dc:creator 7other .

7other foaf:name 7collab .

FILTER (STR(7collab)!="Ernesto Jimenez-Ruiz")

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February
wpanw » U

Types of Queries (cont.)

ASK' Answer (yes/no) whether there is > 1 match
ASK WHERE {
?ejr foaf:name "Ernesto Jimenez-Ruiz" .

}

DESCRIBE Returns and RDF graph with data about matching resources
DESCRIBE 7ejr WHERE {
?ejr foaf:name "Ernesto Jimenez-Ruiz" .

}

Types of Queries

SELECT Compute table of bindings for variables
SELECT 7a 7b WHERE {
[dc:creator 7a ;
dc:creator 7b]

}

CONSTRUCT Use bindings to construct a new RDF graph
CONSTRUCT {
7?a foaf:knows 7b .
} WHERE {
[dc:creator 7a ;
dc:creator 7b]

Lecture 4 :: 6th February

IN3060/4060 :: Spring 2019

Solution Sequences and Modifiers

@ Permitted to SELECT queries only
@ SELECT treats solutions as a sequence (solution sequence)

@ Query patterns generate an unordered collection of solutions

@ Sequence modifiers can modify the solution sequence (not the
solution itself):
e Order
Projection
Distinct
Reduced
Offset
Limit

@ Applied in this order.

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

IN3060/4060 :: Spring 2019

Lecture 4 :: 6th February

ORDER BY

@ Used to sort the solution sequence in a given way:

e SELECT ... WHERE ... ORDER BY ...

@ ASC for ascending order (default) and DESC for descending order
o Eg

SELECT ?city ?pop WHERE {
7city geo:containedIn 7country ;
geo:population 7pop .
} ORDER BY ?country ?city DESC(?pop)

Standard defines sorting conventions for literals, URIs, etc.

Not all “sorting” variables are required to appear in the solution

Projection, DISTINCT, REDUCED

@ Projection means that only some variables are part of the solution
e Done with SELECT ?x 7y WHERE {7x 7y 7z...}
@ DISTINCT eliminates (all) duplicate solutions:
e Done with SELECT DISTINCT 7x 7y WHERE {?x 7y 7z...}
e A solution is a duplicate if it assigns the same RDF terms to all
variables as another solution.
@ REDUCED allows to remove some or all duplicate solutions
e Done with SELECT REDUCED ?x 7y WHERE {?x ?y ?7z...}
Motivation: Can be expensive to find and remove all duplicates
e Leaves amount of removal to implementation (e.g. consecutive
occurrences)
e Rarely used. ..

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

OFFSET and LIMIT

LIMIT: limits the number of results

OFFSET: position/index of the first returned result
Useful for paging through a large set of solutions

...but not useful for implementing paging in applications.

Can compute solutions number 51 to 60

Done with
SELECT ... WHERE {...} ORDER BY ...
LIMIT 10 OFFSET 50

@ LIMIT and OFFSET can be used separately
@ OFFSET not meaningful without ORDER BY.

Query patterns

e Different types of graph patterns for the query pattern (WHERE
clause):

Basic Graph Patterns (BGP)

Group Graph Patterns

Filters or Constraints (FILTER)

Optional Graph Patterns (OPTIONAL)

Union Graph Patterns (UNION, Matching Alternatives)

Graph Graph Patterns (RDF Datasets)

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Basic Graph Patterns (BGP) Group Graph Patterns

@ Group several patterns with { and }.

@ A group containing one basic graph pattern:

@ A Basic Graph Pattern is a set of triple patterns. {
® cg. _:pub dc:creator 7ejr
?7ejr foaf:name "Ernesto Jimenez-Ruiz" . _:pub dc:creator ?other .
_:pub dc:creator 7ejr . }
. . ? . .
-pub dc:creator Tother @ Two groups with one basic graph pattern each:
@ Scope of blank node labels is the BGP {
@ Basically: A match is a function that maps { _:publ dc:creator 7ejr . }
e every variable and every blank node in the pattern { _:pub2 dc:creator 7other . }
e to a resource, a blank node, or a literal in the RDF graph (an “RDF }
term™)

@ Note: Same name for two different blank nodes not allowed!

@ The scope of a FILTER constraint is the group where the filter
appears.

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Filters Filters: Functions and Operators

@ Groups may include constraints or filters
@ Reduces matches of surrounding group where filter applies o Usual binary operators: | |, &&, =, 1=, <, >, <=, >=, +, - %, /.
° E'%' @ Usual unary operators: !, +, -.
?x a dbpedia-owl:Place ; @ Unary tests: bound(?var), isURI(?var), isBlank(?var),
dbpprop:population ?pop . isLiteral(?7var).
FILTER (7pop > 1000000) @ Accessors: str(?var), lang(?var), datatype(?var)
o Eg. @ regex is used to match a variable with a regular expression. Always

{ use with str(?var). E.g.: regex(str(?name), "Os").

?x a dbpedia-owl:Document ;

dbpprop:abstract 7abs .

FILTER (lang(7abs) = "no")
b

Read the spec for details!

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Optional Patterns

@ Allows a match to leave some variables unbound (e.g. no data was
available)
@ A partial function from variables to RDF terms
@ Groups may include optional parts
o Eg
{
?x a dbpedia-owl:Document ;
dbpprop:date 7date
OPTIONAL {
?x dbpprop:abstract 7abs
FILTER (lang(?abs) = "no")
}

}
@ 7x and 7date bound in every match, 7abs bound if there is a
Norwegian abstract

@ Groups can contain several optional parts, evaluated separately
IN3060/4060 :: Spring 2019

Lecture 4 :: 6th February

Optional Patterns: Negation as Failure

@ Testing if a graph pattern is not expressed. ..

@ ... by specifying an OPTIONAL graph pattern that introduces a
variable,

@ and testing if the variable is not bound.

o Eg
{
?x foaf:givenName 7name .
OPTIONAL {
?x dc:date 7date
FILTER (!bound(?date))
}
+

o Called Negation as Failure in logic programming

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Matching Alternatives (UNION)

@ A UNION pattern matches if any of some alternatives matches

e Eg
{
{ ?book dc:creator 7author ;
dc:created 7date . }
UNION
{ 7?book foaf:maker 7author . }
UNION
{ 7author foaf:made 7book . }

IN3060/4060 :: Spring 2019

Lecture 4 :: 6th February

Graph Graph Patterns (RDF datasets)

@ SPARQL queries are executed against an RDF dataset
@ An RDF dataset comprises
e One default graph (unnamed) graph.
e Zero or more named graphs identified by an URI
@ FROM and FROM NAMED keywords allows to select an RDF dataset
by reference
e The default graph will consist of the RDF merge of the graphs
referred to in the FROM clauses,
e FROM NAMED clauses will define the different named graphs.
o Note that, if there is no FROM clause, but there are FROM NAMED
clauses, the default graph will be empty.
@ Keyword GRAPH makes the named graphs the active graph for
pattern matching
e A specific (named) graph can be used as active graph if its IRl is
provided.

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

SPARQL Systematically

Default graph example

Add three RDF datasets to default graph
SELECT 7kname 7fname
FROM <http://data.lenka.no/dumps/fylke-geonames.ttl>
FROM <http://data.lenka.no/dumps/kommune-navn.ttl>
FROM <http:// .../dumps/kommunesentre-geonames.ttl>
WHERE {
?fylke a gd:Fylke ;
gn:officialName 7fname ;
gn:childrenFeatures 7kommune
7kommune a gd:Kommune ;
gn:officialName 7kname ;
FILTER (langMatches(lang(?fname), ’no’))
FILTER (langMatches(lang(?kname), ’no’))
}

Named graph example 1

Occurrences of Bob in different datasets
SELECT ?iri_graph ?bobNick
FROM NAMED <http://example.org/foaf/aliceFoaf>
FROM NAMED <http://example.org/foaf/bobFoaf>
WHERE {
{
GRAPH ?iri_graph {
?x foaf:mbox <mailto:bob@work.example>
?x foaf:nick 7bobNick .

SPARQL Systematically

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

SPARQL Systematically

Named graph example 2

Take coordinates from one source only

SELECT *
FROM <http://data.lenka.no/dumps/kommune-navn.ttl>
FROM <http://data.lenka.no/dumps/kommunesentre-geonames.ttl>
FROM NAMED <http://data.lenka.no/dumps/kommunesentre-geonames.ttl>
FROM NAMED <http://sws.geonames.org/6453350/about.rdf>
WHERE {
{
?feature gn:officialName "Lillehammer"@no .
} uNION {
7?feature gn:name "Lillehammer" .

}
OPTIONAL {
GRAPH <http://data.lenka.no/dumps/kommunesentre-geonames.tt1l> {
?feature pos:lat ?7lat ;
pos:long ?long ;
owl:sameAs 7other .
s
&
OPTIONAL {
?feature gn:population ?pop .
¥
}

Lecture 4 :: 6th February

IN3060/4060 :: Spring 2019

Outline

© Executing SPARQL Queries in Jena

Lecture 4 :: 6th February

IN3060/4060 :: Spring 2019

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Executing SPARQL Queries in Jena

SPARQL in Jena Constructing a Query and a QueryExecution

e SPARQL functionality bundled with Jena has separate Javadocs: _ .
@ Query objects are usually constructed by parsing:

http://jena.apache.org/documentation/javadoc/arq/ String qStr =

@ Main classes in package org.apache. jena.query "PREFIX foaf: <" + foafNS + ">"
e Query a SPARQL query + "SELECT 7a ?b WHERE {"
e QueryFactory for creating queries in various ways + " 7a foaf:knows 7b ."
e QueryExecution for the execution state of a query + "} ORDER BY 7a 7b";
e QueryExecutionFactory for creating query executions (to get Query q = QueryFactory.create(qStr);

QueryExecution instances)
DatasetFactory for creating dataset instances
o For SELECT queries: @ For each execution, a new QueryExecution is needed
@ QuerySolution, a single solution to the query.
@ ResultSet, all the QuerySolutions (an iterator)
@ ResultSetFormatter, turn a ResultSet into various forms: text, RDF
graph (Model, in Jena terminology) or plain XML QueryExecutionFactory.create(q, model);

CONSTRUCT and DESCRIBE return Models, ASK a Java boolean.

@ A Query can be used several times, on multiple models

@ To produce a QueryExecution for a given Query and Model:
QueryExecution qe =

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February / IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Executing a Query Example: SPARQL in Jena
String qStr = "SELECT 7a 7b ...";

Query q = QueryFactory.create(qStr);

QueryExecution contains methods to execute different kinds of
queries (SELECT, CONSTRUCT, etc.) QueryExecution qe =

@ E.g. for a SELECT query: QueryExecutionFactory.create(q, model);
ResultSet res = ge.execSelect();

try {
o E.g. for a CONSTRUCT query: ResultSet res = ge.execSelect();
Model construct_model = ge.execConstruct(); while(res.hasNext()) {
@ ResultSet is a sub-interface of Iterator<QuerySolution> QuerySolution soln = res.next();
. . . . RDFNode a = soln.get("7a");
° Que.rySolutlon has methods to get list of variables, value of single RDFNode b = soln.get("?b");
variables, etc. System.out.println(""+a+" knows "+b);
@ Important to call close() on query executions when no longer }
needed. } finally {
ge.close(Q);
}

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February / IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

http://jena.apache.org/documentation/javadoc/arq/

Executing SPARQL Queries in Jena

Querying a Model, Dataset or Endpoint

@ Querying a model:
Model model = ModelFactory.createDefaultModel();
model.read("http://heim.ifi.uio.no/martingi/foaf");

QueryExecutionFactory.create(q, model);

@ Querying a Dataset:
String dftGraphURI =
"http://heim.ifi.uio.no/martingi/foaf"
List namedGraphURIs = new ArrayList() ;

namedGraphURIs.add("http://richard.cyganiak.de/foaf.rdf");
namedGraphURIs.add ("http://danbri.org/foaf.rdf");
Dataset dataset = DatasetFactory.create(dftGraphURI,
namedGraphURIs) ;
QueryExecutionFactory.create(q, dataset);

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Executing SPARQL Queries in Jena

SPARQL on the 'Net

https://wuw.w3.org/wiki/SparqlEndpoints
DBLP http://dblp.13s.de/d2r/snorql/
DBpedia http://dbpedia.org/sparql
Lenka http://data.lenka.no/sparql
EBI https://www.ebi.ac.uk/rdf/

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

@ Many sites (DBLP, dbpedia, dbtunes,...) publish SPARQL endpoints
@ l.e. SPARQL queries can be submitted to a database server that
sends back the results
@ Uses HTTP to submit URL-encoded queries to server
GET /sparql/?query=... HTTP/1.1
@ Actually defined via W3C Web Services, see
http://www.w3.org/TR/rdf-sparql-protocol/
e Try it out:

Executing SPARQL Queries in Jena

Querying a Model, Dataset or Endpoint (cont.)

@ Jena can also send SPARQL queries to a remote endpoint!
o Use sparqglService in QueryExecutionFactory
o Eg
String endpoint = "http://dblp.13s.de/d2r/sparql";
String gStr = "SELECT 7a 7b ...";
Query q = QueryFactory.create(qStr);

QueryExecution qe =
QueryExecutionFactory.sparqlService(endpoint,q) ;

try {
ResultSet res = qe.execSelect();

} finally {
ge.close(Q);
}

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Outline

© Wrap-up

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

http://www.w3.org/TR/rdf-sparql-protocol/
https://www.w3.org/wiki/SparqlEndpoints
http://dblp.l3s.de/d2r/snorql/
http://dbpedia.org/sparql
http://data.lenka.no/sparql
https://www.ebi.ac.uk/rdf/

Wrap-up More to come: SPARQL 1.1

SPARQL 1.1 became W3C Recommendations 21 March 2013.

@ Updates (add/delete triples)
SPARQL is a W3C-standardised query language for RDF graphs @ Service Descriptions
It is built around “graph patterns” @ Basic Federated query

Comes with a protocol to communicate with “endpoints” Subqueries.

Can be conveniently used with Jena and tens of other systems. Property paths (to shorten common queries)

°
°

@ Aggregate functions (count, sum, average,...)

@ Negation, set difference, i.e. something is not in a graph
°

Entailment regimes

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

Additional material DNV GL Summer Project 2019

DNV-GL

WHY DO YOU GET UP
e ~—__INTHE MORNING?

An Introduction to SPARQL by Olaf Hartig: http: =
//www.slideshare.net/olafhartig/an-introduction-to-sparql

@ Summer internship with DNV GL, Hgvik

SPARQL Query Language for RDF (SPARQL 1.0 W3C @ Interdisciplinary team of 8 MSc students
Recommendation): https://www.w3.org/TR/rdf-sparql-query/ @ Deadline 15 February

@ Topics: Big Data, Machine Learning, Artificial Intelligence, Natural
Language Processing and Ontologies.

https://careers-dnvgl.icims.com/jobs/11797/
dnv-gl-summer-project-2019/job

IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February IN3060/4060 :: Spring 2019 Lecture 4 :: 6th February

http://www.slideshare.net/olafhartig/an-introduction-to-sparql
http://www.slideshare.net/olafhartig/an-introduction-to-sparql
https://www.w3.org/TR/rdf-sparql-query/
https://careers-dnvgl.icims.com/jobs/11797/dnv-gl-summer-project-2019/job
https://careers-dnvgl.icims.com/jobs/11797/dnv-gl-summer-project-2019/job

	Introduction
	Recap: RDF
	SPARQL by Example
	SPARQL Systematically
	Executing SPARQL Queries in Jena
	Wrap-up

