Mathematical foundations

Read the relevant lecure slides.

1 Sets

1.1 Exercise

What is the difference between \emptyset and $\{\emptyset\}$?

Solution

 \emptyset is the empty set, i.e, the set with no elements. $\{\emptyset\}$ is the set containing one element, the empty set.

1.2 Exercise

In this exercise we will use the following sets:

•
$$A = \{a, b, c, d\}$$

- $B = \{d, f, e, r, k\}$
- $C = \{r, e, m\}$
- $D = \{q, l\}$
- $E = \{\}$
- Δ is the universal set.

What is the cardinality of each of these sets?

List all the elements in the following sets:

- 1. $A \cup B$.
- 2. $A \cup (B \cap C)$.
- 3. $(A \cap B) \cup (C \cap A)$.
- 4. $B \setminus C$.
- 5. $C \setminus B$.
- 6. $D \cap \overline{E}$.
- 7. $D \cup \overline{E}$.

Solution

Cardinalities:

- 1. |A| = 4.
- 2. |B| = 5
- 3. |C| = 3.
- 4. |D| = 2.
- 5. $|E| = |\emptyset| = 0.$

Sets:

1. $A \cup B = \{a, b, c, d, e, f, k, r\}$ 2. $A \cup (B \cap C) = A \cup \{e, r\} = \{a, b, c, d, e, r\}.$ 3. $(A \cap B) \cup (C \cap A) = \{d\} \cup \emptyset = \{d\}$ 4. $B \setminus C = \{d, f, k\}.$ 5. $C \setminus B = \{m\}.$ 6. $D \cap \overline{E} = D \cap \Delta = D = \{q, l\}.$ 7. $D \cup \overline{E} = D \cup \Delta = \Delta.$

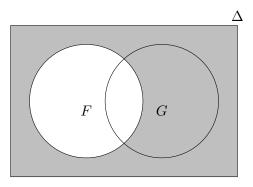
1.3 Exercise

Let F and G be two arbitrary sets and Δ the universal set. Draw Venn diagrams containing the sets F, G and Δ and shade the area representing the following sets:

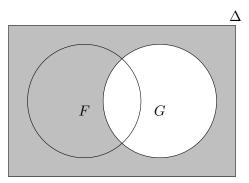
- 1. \overline{F} .
- 2. \overline{G} .
- 3. $\overline{(F \cup G)}$.
- 4. $\overline{F} \cap \overline{G}$.
- 5. $\overline{(F \cap G)}$.
- 6. $\overline{F} \cup \overline{G}$.

Solution

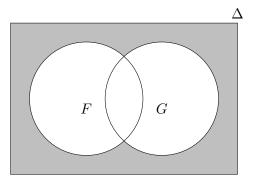
1. Exercise 1.



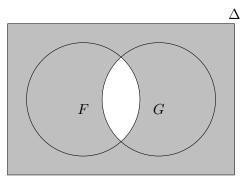
2. Exercise 2.



3. Exercise 3 and 4.



4. Exercise 5 and 6.



1.4 Exercise

Create three sets A, B and C such that the following hold:

- The union of A and B is $\{1,2,3,4\}.$
- The intersection of A and C is $\{3\}$.
- The union of B and C is $\{3,4,5,6\}.$
- The intersection of B and C is $\{4\}.$

Solution

- $A = \{1, 2, 3\}$
- $B = \{4\}$
- $C = \{3, 4, 5, 6\}$

1.5 Exercise

Let $A = \{1, 2, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\}$ and decide if the following hold

- $1 \in A$
- $2 \in A$
- $3 \in A$
- $\emptyset \in A$
- $\{1\} \in A$
- $\{1,3\} \in A$
- $\{1, 2, \{1, 2\}\} \in A$
- $\bullet \ \ \emptyset \subseteq A$
- $\{1\} \subseteq A$
- $\{1,3\} \subseteq A$
- $\{1, 2, \{1, 2\}\} \subseteq A$
- $\{\{1,2,3\}\} \in A$

Solution

- $1 \in A$ true
- $2 \in A$ true
- $3 \in A$ false
- $\emptyset \in A$ false
- $\{1\} \in A$ false
- $\{1,3\} \in A$ true
- $\{1, 2, \{1, 2\}\} \in A$ false
- $\emptyset \subseteq A$ true
- $\{1\} \subseteq A$ true
- $\{1,3\} \subseteq A$ false
- $\{1, 2, \{1, 2\}\} \subseteq A$ true
- $\{\{1, 2, 3\}\} \in A$ false

2 Relations

2.1 Exercise

Let A be the set $A = \{a, b, c, d, e, f\}$. Create non-empty relations R_i on A such that the conditions below hold.

- 1. $R_1 = A \times A$
- 2. R_2 is reflexive.

- 3. R_3 is symmetric.
- 4. R_4 is transitive.
- 5. R_5 is irreflexive.

Solution

There is only one solution to R_1 and R_2 . There are many solutions to R_3 , R_4 and R_5 .

$$\begin{split} R_{1} &= \left\{ \begin{array}{l} \langle a, a \rangle, \langle a, b \rangle, \langle a, c \rangle, \langle a, d \rangle, \langle a, e \rangle, \langle a, f \rangle, \\ \langle b, a \rangle, \langle b, b \rangle, \langle b, c \rangle, \langle b, d \rangle, \langle b, e \rangle, \langle b, f \rangle, \\ \langle c, a \rangle, \langle c, b \rangle, \langle c, c \rangle, \langle c, d \rangle, \langle c, e \rangle, \langle c, f \rangle, \\ \langle d, a \rangle, \langle d, b \rangle, \langle d, c \rangle, \langle d, d \rangle, \langle d, e \rangle, \langle d, f \rangle, \\ \langle e, a \rangle, \langle e, b \rangle, \langle e, c \rangle, \langle e, d \rangle, \langle e, e \rangle, \langle e, f \rangle, \\ \langle f, a \rangle, \langle f, b \rangle, \langle f, c \rangle, \langle f, d \rangle, \langle f, e \rangle, \langle f, f \rangle \\ \end{array} \right\} \\ R_{2} &= \{ \langle a, a \rangle, \langle b, b \rangle, \langle c, c \rangle, \langle d, d \rangle, \langle e, e \rangle, \langle f, f \rangle \} \\ R_{3} &= \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle d, c \rangle, \langle c, d \rangle, \langle f, f \rangle \} \\ R_{4} &= \{ \langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle d, c \rangle, \langle c, d \rangle, \langle f, f \rangle, \langle b, b \rangle, \langle d, d \rangle, \langle c, c \rangle \} \\ R_{5} &= \{ \langle a, b \rangle, \langle c, d \rangle \} \end{split}$$

2.2 Exercise

Assume the normal intended interpretation. Which of the following relations are reflexive, transitive and/or symmetric?

- hasSister
- hasSibling
- hasFather
- hasParent
- hasAge
- hasSpouse
- likes

Solution

This is one normal interpretation:

- hasSister: transitive
- hasSibling: symmetric and transitive
- hasFather:
- hasParent:
- hasAge:
- hasSpouse: symmetric (transitive?)

• likes: symmetric, reflexive?

3 Propositional logic

3.1 Exercise

Let ϕ be the propositional formula $(P \land Q) \lor R \to S \land Q$.

- Create an interpretation \mathcal{I}_1 such that $\mathcal{I}_1 \models \phi$.
- Create an interpretation \mathcal{I}_2 such that $\mathcal{I}_2 \not\models \phi$.

Solution

- $I_1 = \{R, S, Q\}$
- $I_2 = \{R\}$

3.2 Exercise

- Find the truth table to the formula $(P \rightarrow Q) \rightarrow P$
- Find the truth table to the formula $(P \rightarrow Q) \lor (Q \rightarrow P)$
- What is there to note about the two formulae?

Solution

P	Q	$(P \to Q)$	\rightarrow	P
T	Т	Т	T	T
T	F	F	T	T
F	T	T	F	F
F	F	T	F	F

The formula is equivalent to P.

F	P Q	$(P \to Q)$	\vee	$(Q \to P)$
T	T	T	T	T
Τ	F	F	T	T
F	T	T	T	F
F	F	T	T	T

The formula is always true, it is a tautology.

3.3 Exercise

Decide the following entailment questions. If the answer is yes, then produce a proof, e.g., a truth table, which shows why the answer is yes. If the answer is no, then produce a countermodel, i.e., an interpretation which makes the first formula true and the second false.

- Does $P \lor Q$ entail Q?
- Does $P \wedge Q$ entail $P \vee Q$?
- Does $P \to (P \to Q)$ entail Q?

• Does $P \land \neg P$ entail Q?

Solution

- Does $P \lor Q$ entail Q? No.
- Does $P \wedge Q$ entail $P \vee Q$? Yes.
- Does $P \to (P \to Q)$ entail Q? No.
- Does $P \wedge \neg P$ entail Q? Yes.