Model Semantics

Read

• Foundations of Semantic Web Technologies: chapter 3, 2.

1 From the lecture

- a) What does RDFS add to RDF?
- b) What is formal semantics?
- c) Why do we need a model semantics for RDF/RDFS?
- d) What does a DL-interpretation consist of?

Solution

- a) RDFS adds the concept of classes and a predefined vocabulary to add statements about classes
- b) The study of how to model the meaning of a calculus
- c) Can not afford ambiguity in interpreting RDF, it would be application dependent.
- d) See Section 2.2.

2 Definitions

First, some notation and definitions collected from the lecture slides.

2.1 Syntax: Triple abbreviations

Triple pattern	Triple instance	Abbreviation
indi prop indi .	$i_1 \ r \ i_2$	$r(i_1, i_2)$
indi rdf:type class .	i_1 rdf:type C	$C(i_1)$
class rdfs:subClassOf class .	$C \; \mathtt{rdfs} \colon \mathtt{subClassOf} \; D$	$C \sqsubseteq D$
<pre>prop rdfs:subPropertyOf prop .</pre>	$r \; {\tt rdfs:subPropertyOf} \; s$	$r \sqsubseteq s$
<pre>prop rdfs:domain class .</pre>	$r \; \mathtt{rdfs:domain} \; C$	dom(r,C)
<pre>prop rdfs:range class .</pre>	$r \; \mathtt{rdfs:range} \; C$	rg(r,C)

2.2 Interpretation

An interpretation \mathcal{I} consists of:

- A set $\Delta^{\mathcal{I}}$, called the domain \mathcal{I}
- For each individual URI i, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
- For each class URI C, a subset $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
- For each property URI r, a relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

2.3 Validity in Interpretations (RDF)

Given an interpretation \mathcal{I} , define \models as follows:

- $\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
- $\mathcal{I} \models C(i) \text{ iff } i^{\mathcal{I}} \in C^{\mathcal{I}}$

2.4 Validity in Interpretations, cont. (RDFS)

Given an interpretation \mathcal{I} , define \models as follows:

- $\mathcal{I} \models C \sqsubseteq D \text{ iff } C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- $\mathcal{I} \models r \sqsubseteq s \text{ iff } r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
- $\bullet \ \mathcal{I} \models \mathsf{dom}(r,C) \ \mathrm{iff} \ \mathsf{dom} \ r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- $\mathcal{I} \models \operatorname{rg}(r, C)$ iff $\operatorname{rg} r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

3 Exercises

In these exercises use the notation and definitions above in your answers.

3.1 Exercise

Let Γ be the RDF graph below.

- 1. Create an interpretation \mathcal{I}_1 such that $\mathcal{I}_1 \models \Gamma$.
- 2. Create an interpretation \mathcal{I}_2 such that $\mathcal{I}_2 \not\models \Gamma$.
- 3. Create an interpretation \mathcal{I}_3 such that $\mathcal{I}_3 \models \Gamma$ and $|\Delta^{\mathcal{I}_3}| = 1$, i.e., the domain of the interpretation contains only one element.

Solution

- 1. There are many interpretations that satisfy the statements in the RDF graph. This is one:
 - $\Delta^{\mathcal{I}} = \{1, 2, 3, 4, 5\}$
 - ullet :Tweety $^{\mathcal{I}}=1,$:Nixon $^{\mathcal{I}}=3$:Tux $^{I}=4$
 - \bullet :Bird $^{\mathcal{I}}=\{1,2,4,5\},$:Republican $^{\mathcal{I}}=\{3,5\},$:Quacker $^{\mathcal{I}}=\{3,5,4\}$
 - :listensTo $^{\mathcal{I}}=\{\langle 3,1\rangle\},$:likes $^{\mathcal{I}}=\{\langle 1,4\rangle,\langle 3,4\rangle\}$
- 2. There are also many ways to construct an interpretation that does not satisfy the RDF graph. Here are some examples of how:
 - $\bullet \ : \texttt{Tweety} \ ^{\mathcal{I}} \not \in : \texttt{Bird} \ ^{\mathcal{I}}$
 - ullet :Nixon $^{\mathcal{I}}
 ot\in \mathtt{:Republican}$ $^{\mathcal{I}}$
 - ullet :Nixon $^{\mathcal{I}}
 ot\in \mathtt{:Quacker}$ $^{\mathcal{I}}$
 - $\bullet \ \langle \ : \mathtt{Nixon}^{\ \mathcal{I}}, \ : \mathtt{Tweety}^{\ \mathcal{I}} \rangle \not \in : \mathtt{listensTo}^{\ \mathcal{I}}$
 - $\bullet \ \langle \ : \mathtt{Tweety} \ ^{\mathcal{I}}, \ : \mathtt{Tux} \ ^{\mathcal{I}} \rangle \not \in : \mathtt{likes} \ ^{\mathcal{I}}$
- 3. Let
 - $\Delta^{\mathcal{I}} = \{b\}$ (some set with one element.)
 - ullet :Tweety $^{\mathcal{I}}=:$ Nixon $^{\mathcal{I}}=:$ Tux $^{\mathcal{I}}=b$
 - ullet :Bird $^{\mathcal{I}}=$:Republican $^{\mathcal{I}}=$:Quacker $^{\mathcal{I}}=\Delta^{\mathcal{I}}$
 - ullet :listensTo $^{\mathcal{I}}=$:likes $^{\mathcal{I}}=\Delta^{\mathcal{I}} imes\Delta^{\mathcal{I}}$

3.2 Exercise

Let Γ be the RDFS graph listed below.

- 1. Create an interpretation \mathcal{I}_1 such that $\mathcal{I}_1 \models \Gamma$.
- 2. Create an interpretation \mathcal{I}_2 such that $\mathcal{I}_2 \not\models \Gamma$.

```
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
  @prefix owl: <http://www.w3.org/2002/07/owl#> .
  @prefix : <http://example.org#> .
  :Person
                                rdfs:Class .
   :Man
                                rdfs:Class;
7
             rdfs:subClassOf
                                :Person .
8
                                rdfs:Class;
   :Parent
9
             rdfs:subClassOf
                                :Person .
                                rdfs:Class ;
10
   :Father
11
              rdfs:subClassOf
                                 :Parent ;
12
              rdfs:subClassOf
                                 :Man .
                                 rdfs:Class;
13
    :Child
14
              rdfs:subClassOf
                                 :Person .
15
    :hasParent a
                                 rdf:Property;
16
              rdfs:domain
                                 :Person ;
17
              rdfs:range
                                 :Parent .
                                 rdf:Property;
18
    :hasFather a
              rdfs:subPropertyOf :hasParent ;
19
20
                                 :Father .
              rdfs:range
21
    :isChildOf a
                                 rdf:Property;
22
              rdfs:domain
                                 :Child;
23
                                 :Parent .
              rdfs:range
24
    :Ann
                                 :Person ;
25
              :hasFather
                                 :Carl .
26
    :Carl
                                 :Man .
```

Solution

1. One possible solution (i.e., there are many):

```
\bullet \ \Delta^{\mathcal{I}} = \{A,B,C\}
```

$$ullet$$
 :Ann $^{\mathcal{I}}=A,$:Carl $^{\mathcal{I}}=C$

• :Father
$$^{\mathcal{I}}=:$$
 Man $^{\mathcal{I}}=:$ Parent $^{\mathcal{I}}=\{C\},:$ Person $^{\mathcal{I}}=\{A,B,C\},:$ Child $^{\mathcal{I}}=\{B\},$

$$ullet$$
 :hasParent $^{\mathcal{I}}=$:hasFather $^{\mathcal{I}}=\{\langle A,C \rangle\}$:isChildOf $^{\mathcal{I}}=\emptyset$

2. Let, e.g.,:

- ullet :Person $^{\mathcal{I}}\subset :$ Child $^{\mathcal{I}}$
- ullet :Ann $^{\mathcal{I}}
 ot\in :$ Person $^{\mathcal{I}}$
- ullet :hasFather $^{\mathcal{I}} \not\subseteq$:hasParent $^{\mathcal{I}}$

3.3 Exercise

Let Γ be the RDFS graph entailments.n3. Show by way of model semantics the following claims:

- 1. $\Gamma \models$:Father rdfs:subClassOf :Person .
- $2. \Gamma \not\models : Ann \ a : Child .$
- 3. $\Gamma \models : Ann : hasParent : Carl .$
- 4. $\Gamma \models : \texttt{Carl a} : \texttt{Person}$.
- 5. $\Gamma \not\models : Carl : hasChild : Ann$.

Solution

- 1. $\Gamma \models :$ Father rdfs:subClassOf :Person .
 - $\Gamma \vDash :$ Father $\sqsubseteq :$ Man
 - $\Gamma \vDash : \operatorname{Man} \sqsubset : \operatorname{Person}$
 - By definition: $\mathcal{I} \models C \sqsubset D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
 - Thus, $\mathcal{I} \models$:Father \sqsubseteq :Man \sqsubseteq :Person iff Father $^{\mathcal{I}} \subseteq \operatorname{Man}^{\mathcal{I}} \subseteq \operatorname{Person}^{\mathcal{I}}$
 - By set theory, we know that for any interpretation $\mathcal{I} \models \Gamma$, any $x \in \operatorname{Father}^{\mathcal{I}}$ must also be in $\operatorname{Person}^{\mathcal{I}}$, thus $\operatorname{Father} \sqsubseteq \operatorname{Person}$
- 2. $\Gamma \not\models$:Ann a :Child .
 - $\Gamma \vDash :$ Ann a :Person
 - $\Gamma \vDash :Ann :hasFather :Carl$
 - $\Gamma \vDash$:hasParent rdfs:domain :Person
 - $\mathcal{I} \vDash Person(Ann) : \text{iff } Ann^{\mathcal{I}} \in Person^{\mathcal{I}}$
 - $\mathcal{I} \vDash hasFather(Ann, Carl)$ iff $\langle Ann^{\mathcal{I}}, Carl^{\mathcal{I}} \rangle \in hasFather^{\mathcal{I}}$
 - $\mathcal{I} \vDash dom(hasFather, Person)$ iff for all $\langle x, y \rangle \in hasFather^{\mathcal{I}}$, we have $x \in Person^{\mathcal{I}}$
 - By set theory there is no way to find that if x is in $\operatorname{Ann}^{\mathcal{I}} x$ must also be in $\operatorname{Child}^{\mathcal{I}}$, only that it is in $\operatorname{Person}^{\mathcal{I}}$.
- 3. $\Gamma \models : Ann : hasParent : Carl .$
 - $\Gamma \vDash hasFather(Ann, Carl)$
 - $\Gamma \vDash hasFather \sqsubseteq hasParent$
 - $\mathcal{I} \vDash \text{hasFather} \sqsubseteq \text{hasParent iff hasFather}^{\mathcal{I}} \subseteq \text{hasParent}^{\mathcal{I}}$

- We know that for any interpretaion $\mathcal{I} \vDash \Gamma$, by using set theory, if $\langle x, y \rangle \in \text{hasFather}^{\mathcal{I}}, \langle x, y \rangle$ must also be in hasParent $^{\mathcal{I}}$. Thus $\Gamma \vDash hasParent(Ann, Carl)$
- 4. $\Gamma \models : \texttt{Carl a} : \texttt{Person}$.
 - $\Gamma \vDash Man(Carl)$
 - $\Gamma \vDash \text{Man} \sqsubseteq \text{Person}$
 - $\mathcal{I} \models \operatorname{Man} \sqsubseteq \operatorname{Person} \text{ iff } \operatorname{Man}^{\mathcal{I}} \subseteq \operatorname{Person}^{\mathcal{I}}$
 - For any interpretation $\mathcal{I} \models \Gamma$ if $x \in \operatorname{Man}^{\mathcal{I}} x$ must also be in Person^{\mathcal{I}} because it is a subset. Thus, By set theory we find that $\Gamma \models Person(Carl)$.
- 5. $\Gamma \not\models : Carl : hasChild : Ann$.
 - There is nothing in Γ that indicates that :Carl :hasChild :Ann .

3.4 Exercise

Let Γ be the RDFS graph entailments.n3. As we have seen in a previous week's exercises, using the standardised RDFS semantics the entailment $\Gamma \models :\texttt{hasFather rdfs:domain :Person.}$ does not hold. Does it hold in our simplified semantics?

Solution

- $\Gamma \vDash \text{hasParent}$
- $\Gamma \vDash dom(hasParent, Person)$
- $\mathcal{I} \vDash \text{hasFather} \sqsubseteq \text{hasParent iff hasFather}^{\mathcal{I}} \subseteq \text{hasParent}^{\mathcal{I}}$
- $\mathcal{I} \vDash dom(hasParent, Person)$ iff for all $\langle x, y \rangle \in hasParent^{\mathcal{I}}$ we have that $x \in Person^{\mathcal{I}}$
- We have, by set theory that, for any interpretaion $\mathcal{I} \models \Gamma$, any $\langle x, y \rangle \in \text{hasFather}^{\mathcal{I}}$ must also be in hasParent $^{\mathcal{I}}$
- And for any interpration, $\mathcal{I} \vDash \Gamma$, if $\langle x, y \rangle \in \text{hasParent}^{\mathcal{I}} \ x \in Person^{\mathcal{I}}$, thus $\Gamma \vDash dom(hasFather, Person)$.