Semantics and reasoning

1 From the lecture

- 1. What is a counter-model? How can a counter-model be used to show that one set of triples is not entailed by another set of triples?
- 2. Explain briefly. What is the difference between entailment and inference?
- 3. How to we deal with literals in our "simplified semantics"?
- 4. How do we deal with blank nodes in our semantics?
- 5. What do we mean by monotonic reasoning?
- 6. What do we mean by a closed world assumption?
- 7. How can we interpret a SPARQL aggregation (count, sum etc.) query with an open world assumption?
- 8. What is soundness and completeness of a calculus?

Solution

- 1. A counter-model is an interpretation \mathcal{I} that we can use if we want to show that a set of triples \mathcal{T} is not entailed by another set of triples \mathcal{A} $(\mathcal{A} \not\models \mathcal{T})$. The model must describe the interpretation \mathcal{I} . And to show that $\mathcal{A} \not\models \mathcal{T}$, we must:
 - (a) prove that $\mathcal{I} \models \mathcal{A}$ using the semantics
 - (b) prove that $\mathcal{I} \not\models \mathcal{T}$ using the semantics
- 2. Entailment is defined by semantics. A triple is entailed if it is valid in all possible interpretations. Inference is what is possible to derive using inference rules. A triple is inferred if we can apply the rules (e.g., RDFS inference rules) to derive it.
- We divide properties into two disjoint types of resources:(a) Object properties and

- (b) Datatype properties
- We let Λ be the set of all literal values.
- The interpretation must have:
 - (a) For each object property URI r, a relation $r \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ (as before)
 - (b) For each data type property URI a, a relation $a \subseteq \Delta^{\mathcal{I}} \times \Lambda$
- 4. We define a blank node valuation β such that $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$ for every blank node ID b. And define the interpretation with the blank node valuation \mathcal{I}, β as in the lecture slides.
- 5. Monotonic reasoning is reasoning such that if \mathcal{B} is entailed by a set of triples \mathcal{A} , and we add another triple to \mathcal{A} , then \mathcal{B} is still entailed.
- 6. Closed world assumption: We assume that we have complete information/knowledge of the domain. If something is not in the knowledge base, it doesn't exist.
- 7. It is problematic, we can only say that, with the information at hand... The information can change at any moment.
- 8. Soundness: if the calculus says that something is entailed, it is really entailed (no wrong answers). Completeness: If something is entailed, it can be found using the calculus.

2 Literals and blank nodes

Let Γ be the RDF graph below. You will need to interpret both blank nodes and literals using the semantics laid out in the lectures.

- 1. Create an interpretation \mathcal{I}_1 such that $\mathcal{I}_1 \models \Gamma$.
- 2. Create an interpretation \mathcal{I}_2 such that $\mathcal{I}_2 \not\models \Gamma$.

```
@prefix : <http://www.example.org#> .
1
   @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2
3
4
   :Tweety rdf:type
                       :Bird .
5
   :Nixon
           rdf:type
                       :Republican .
6
   :Nixon
           rdf:type
                       :Quacker .
7
   :Nixon
           :listensTo :Tweety .
8
   :Nixon
           :likes
                       [ a :Bird ]
                                    .
9
   []
           :likes
                       :Nixon .
10
   :Nixon :hasNickname "Ric" .
11
    :Tweety :hasNickname "Mr. Man" .
    :Tweety :likes
12
                        :Tux .
```

Solution

New things to pay attention in this exercises are:

- Λ is the set of all literals. All literals are interpreted to themselves (i.e., there is no $\Lambda^{\mathcal{I}}$).
- We need to interpret blank nodes. For this we use a blank node valuation function β , which assigns values from $\Delta^{\mathcal{I}} \cup \Lambda$ to blank nodes: $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$ for all blank nodes b.

First, let's create an interpretation which satisfies Γ .

Since there are blank nodes in Γ the interpretation we give needs to interpret them, i.e., we need to find an interpretation \mathcal{I} such that there <u>exists</u> a blank node valuation β where $\mathcal{I}, \beta \models \Gamma$.

We let b_1 identify the blank node in

:Nixon :likes [a :Bird] .

and b_2 identify the blank node in

[] :likes :Nixon .

Construct the following interpretation \mathcal{I} :

- $\Delta^{\mathcal{I}} = \{Tweety, Nixon, aBird, Something, Tux\}$
- :Tweety $\mathcal{I} = Tweety$
- :Nixon $^{\mathcal{I}} = Nixon$
- :Tux $^{\mathcal{I}} = Tux$
- :Bird $\mathcal{I} = \{Tweety, aBird\}$
- :Republican $\mathcal{I} = \{Nixon\}$
- :Quacker $\mathcal{I} = \{Nixon\}$
- :listensTo $\mathcal{I} = \{\langle Nixon, Tweety \rangle\}$
- :likes $^{\mathcal{I}} = \{ \langle Nixon, aBird \rangle, \langle Something, Nixon \rangle, \langle Tweety, Tux \rangle \}$
- :hasNickname $\mathcal{I} = \{ \langle Nixon, "Rix" \rangle, \langle Tweety, "Mr. Man" \rangle \}$

Let

• $\beta(b_1) = aBird$, and

• $\beta(b_2) = Something.$

Then $\mathcal{I}, \beta \vDash \Gamma$, so we also have that $\mathcal{I} \vDash \Gamma$.

To construct a new interpretation such that $\mathcal{I} \not\vDash \Gamma$, let \mathcal{I} be as above, but let :Bird $\mathcal{I} = \emptyset$. Then there is nothing we can send the blank node b_1 to have $\mathcal{I}, \beta \vDash$:Nixon :likes [a :Bird] . (and also nothing to send :Tweety to), so this interpretation does not satisfy Γ : $\mathcal{I} \not\vDash \Gamma$.