
OWL

Read

• Semantic Web Programming: chapter 4, 5

• Foundations of Semantic Web Technologies: chapter 4, 5.

Supplementary reading:

• OWL Pizzas: Practical Experience of Teaching OWL-DL:Common Er-
rors & Common Patterns

1 From the lecture

Using the following individuals, classes and properties:

• John

• Jane

• Man

• Woman

• Person

• Animal

• Dog

• hasParent

• likes

Write the following statements using description logic (DL) syntax:

1. A man is a person

2. A woman is a person

3. John is a man

1

http://www.cs.man.ac.uk/~rector/papers/common_errors_ekaw_2004.pdf
http://www.cs.man.ac.uk/~rector/papers/common_errors_ekaw_2004.pdf

4. Jane is a woman

5. John likes Jane

6. All persons have a parent

7. Nothing is both a person and a dog

8. Dogs are animals and have only parents that are themselves dogs

Solution

1. Man v Person

2. Woman v Person

3. Man(John)

4. Woman(Jane)

5. likes(John, Jane)

6. Person v ∃hasParent.>

7. Dog u Person v ⊥

8. Dog v Animal u ∀hasParent.Dog

Now we will take our family ontology one step further by adding more
semantics using OWL. First, for a soft start and to get into Protégé, ontology
editing and OWL, we will start by looking at an existing tutorial ontology,
the pizza ontology.

2 The Pizza ontology

The pizza ontology is a well-known ontology in the semantic web community.
It is developed for educational purposes by the University of Manchester,
which is a leading university in the development of semantic technologies.

The pizza ontology and a tutorial that uses it is found at

• http://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes

• http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/
protg-owl-tutorial/

The tutorial is primarily for learning how to use Protégé 4. Use it to get
help on how to use Protégé in the coming exercises.

2

http://protegewiki.stanford.edu/wiki/Protege4Pizzas10Minutes
http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/
http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/

2.1 Exercise

Open the pizza ontology in Protégé. Take some time to browse the class
hierarchy, the property hierarchies and the individuals and note how the
ontology describes the domain of pizzas.

2.2 Exercise

Find Margherita and see how it is defined as a pizza with only cheese and
tomato topping. Look at the definition of VegetarianPizza. Is a Margherita
pizza a vegetarian pizza? Why / why not?

Solution

Margherita as it is declared is a vegetarian pizza. It has Mozzarella-topping
and it has Tomato-topping and all toppings must come from these two. If
you remove the universial quantifier, however, it is no longer a vegitarian
pizza due to the Open World assumption.

2.3 Exercise

Find hasIngredient. What is the domain and range of this property? What
are the subproperties of hasIngredient? What is the inverse property of
hasIngredient? What property characteristics does hasIngredient have?

Solution

• Domain: Food

• Range: Food

• Inverse property: isIngredientOf

• property characteristic: Transitive i.e., if the tomato sauce has the
ingredient tomato and the pizza has the ingredient tomato sauce, then
it follows that the pizza must have the ingredient tomato.

2.4 Exercise

Classify the ontology by choosing a reasoner and then "classify" in the rea-
soner menu. In the "Inferred class hierarchy" two classes show up as sub-
classes of owl:Nothing. Answer the following questions:

• In general, what is the difference between the asserted class hierarchy
and the inferred class hierarchy?

• What does it mean for a class to be a subclass of owl:Nothing?

3

http://protege.stanford.edu/ontologies/pizza/pizza.owl

• Explain why these two classes appear as subclasses of owl:Nothing.

• Find Margherita in the inferred class hierarchy and see which classes
are inferred as superclasses of Margherita.

Solution

• The asserted class hierarchy is the hierarchy shows the taxonomy of
the ontology expressed using subClassOf axioms in the ongology. The
inferred hierarchy shows the taxonomy as inferred by the reasoner.

• A class is unsatisfiable. It cannot contain any instances.

• CheeseyPizza, VegetarianPizzaEquivalent1, VegetarianPizzaEquivalent2,
and 3 anonymous ancestors. . .

2.5 Exercise

Add a new class Grandiosa as a subclass of NamedPizza. "Grandiosa" is a
pizza with (use the SubClass Of-axiom):

• hasTopping some HamTopping,

• hasTopping some TomatoTopping and

• hasTopping some CheeseTopping.

• Classify the ontology. What superclasses are inferred as superclass of
Grandiosa?

• Explain why.

• What happens if you, instead of using the subClassAxiom, use Equiv-
alent To-axiom? Why?

Solution

The axiom:
hasTopping some HamTopping and hasTopping some TomatoTopping
and hasTopping some CheeseTopping

• Superclasses: CheeseyPizza, InterestingPizza, MeatyPizza

• CheeseyPizza, because it is a pizza and has CheeseTopping, InterestingPizza
because it has at least three ingredients, and MeatyPizza because it
has a meatTopping (hamTopping is subClass of meatTopping).

4

• If you use the Equivalent To-axiom, you will find that Capriccosa,
LaReine, Parmense, and Siciliana are classified as “Grandiosas”. This
is because by using the Equivalent-To-axiom, we are saying that any
pizza with ham, tomato and cheese-topping is a Grandiosa. These four
pizzas all have ham, tomato, and cheese, so even though they have
additional toppings, the reasoner will classify them as “Grandiosas”.
This is probably not what we want.

2.6 Exercise

State in the ontology that a Grandiosa pizza comes from Norway (Subclass
of), and that Norway is different from the other countries already present
in the pizza ontology. Then create a Subclass Of Pizza Norwegian that is
defined as (Equivalent To) pizza that comes from Norway. Apply reasoning
and explain the results.

Solution

Grandiosa is classified as Norwegian.

3 Family relations in OWL

So far we have only been allowed to use RDFS vocabulary to describe fam-
ily relations. Now we will extend our description using OWL constructs.
OWL is more expressive than RDFS and allows us to express many more
restrictions on properties and class membership than RDFS does.

In this exercise we will only use OWL (1) DL vocabulary (and not OWL
2, which will be next week’s exercises). This language is explained in W3C’s
OWL Web Ontology Language Reference, which may be a valuable resource
for these exercises. OWL Web Ontology Language Overview contains a list
of the constructs available in RDFS and the different dialects of OWL 1:
OWL lite, OWL DL and OWL Full. See also W3C’s "portal" on OWL.

You may use Protégé as your editor, but you are also welcome to use
a plain text editor to the exercises. Note that there are different OWL
languages and that different editors have different tastes. If you are using
Protégé as editor, consult the Protégé pizza tutorial. If your using a plain
text editor, use the OWL validator and try also regularly to open your file
in Protégé. If you have problems using Protégé, consult the Protégé OWL
Tutorial.

The OWL vocabulary we will use is listed below. The list is a slightly
compacted version of the one found on OWL Web Ontology Language
Overview. Almost all items in the list will be put to use in these exercises.

• RDFS Features: Class, rdfs:subClassOf, rdf:Property, rdfs:subPropertyOf,
rdfs:domain, rdfs:range, Individual

5

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/2004/REC-owl-features-20040210/#s2
http://www.w3.org/2004/OWL/
http://visualdataweb.de/validator/
http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/
http://owl.cs.manchester.ac.uk/publications/talks-and-tutorials/protg-owl-tutorial/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/

• Header Information: Ontology, imports

• Annotation Properties, rdfs:label, rdfs:comment, rdfs:seeAlso,
rdfs:isDefinedBy, AnnotationProperty, OntologyProperty

• Class Axioms: oneOf, dataRange, disjointWith, unionOf, complementOf,
intersectionOf

• (In)Equality: equivalentClass, equivalentProperty, sameAs,
differentFrom, AllDifferent, distinctMembers

• Property Characteristics: ObjectProperty, DatatypeProperty, inverseOf,
TransitiveProperty, SymmetricProperty, FunctionalProperty,
InverseFunctionalProperty

• Property Restrictions: Restriction, onProperty, allValuesFrom,
someValuesFrom,
minCardinality, maxCardinality, cardinality, hasValue

• Datatypes: XSD datatypes

For each of the modelling exercises below express the exercise text as a
set of description logic (DL) axioms.

3.1 Exercise

Make a new ontology file. Give it the namespace

http://www.ifi.uio.no/IN3060/family.owl#

Import the family RDFS file you wrote in Oblig 4.

3.1.1 Note

When I tried to import my family.ttl file in Protégé, all properties were
interpreted as annotation properties. Not all ontology editors and reasoners
interprets manages to handle RDFS as OWL, so you may have to convert
your family RDFS file to OWL. Changing all instances of rdfs:Class to
owl:Class and instances of rdf:Propery to either owl:ObjectProperty or
owl:DatatypeProperty should take care of most convertion problems.

Solution

I will be using a plain text editor to write the OWL file, so it is easily included
it in this document.

6

1 @prefix : <http://www.ifi.uio.no/IN3060/family.owl#> .
2 @prefix owl: <http://www.w3.org/2002/07/owl#> .
3 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
4 @prefix xml: <http://www.w3.org/XML/1998/namespace> .
5 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
6 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
7 @base <http://www.ifi.uio.no/INF3060/family.owl> .
8
9 <http://www.ifi.uio.no/IN3060/family.owl#> rdf:type owl:Ontology ;

10 owl:imports <http://www.ifi.uio.no/IN3060/family> .

3.2 Exercise

State that a person has at least one father and one mother.

3.2.1 Tip 1

The exercises are formulated in normal language on purpose. It is up to you
to decide how this is best expressed in OWL.

3.2.2 Tip 2

My solution (yours may be different) as a DL axiom:

Person v ∃hasFather.Person u ∃hasMother.Person

Solution

To state this in Protégé add an anonymous superclass to Person with the
expression

hasFather some Person
and hasMother some Person

With this we have stated that for every instance of the class Person
there must be a hasFather property instance to an instance of Person and
a hasMother property instance to a instance of Person. In N3 the same
statements look like:

12 foaf:Person rdfs:subClassOf [
13 owl:intersectionOf (
14 [rdf:type owl:Restriction ;
15 owl:onProperty fam:hasFather ;
16 owl:someValuesFrom foaf:Person
17]
18 [rdf:type owl:Restriction ;

7

19 owl:onProperty fam:hasMother ;
20 owl:someValuesFrom foaf:Person
21]
22)] .

Note that there may be many ways to express the same statement. The
statement can also been expressed by using minimum cardinality of 1 for
Person on both of hasFather and hasMother, in a similar fashion as the
solution above. In Protégé

hasFather min 1 Thing
hasMother min 1 Thing

3.3 Exercise

State that a person can only have one mother and only one father.

Solution

To state this I have used owl:FunctionalProperty and stated that both
:hasFather and :hasMother are functional properties. Quoting FunctionalProperty-
def:

A functional property is a property that can have only one
(unique) value y for each instance x, i.e. there cannot be two
distinct values y1 and y2 such that the pairs (x,y1) and (x,y2)
are both instances of this property.

This works since the domain of both properties is Person and the range
for :hasFather and :hasMother are :Father and :Mother respectively.

In DL it looks like this

≥2hasFather.> v ⊥ ≥2hasMother.> v ⊥

which can be translated to "nothing has to hasFather/hasMother relations".
In Protégé it is expressed by ticking the "Functional" box for each of the

properties. In N3 it looks like this:

23 fam:hasFather rdf:type owl:FunctionalProperty .
24 fam:hasMother rdf:type owl:FunctionalProperty .

We could also have stated this by using maximum cardinality:

hasFather max 1 Thing
hasMother max 1 Thing

8

http://www.w3.org/TR/owl-ref/#FunctionalProperty-def
http://www.w3.org/TR/owl-ref/#FunctionalProperty-def

3.4 Exercise

State that a woman can only have female as gender, and a man can only
have male as gender.

Solution

One way to express this in OWL is to say that all instances of Woman can only
have the value Female for the property hasGender. To do this we must make
an anonymous class that only contains the individual Female. In Protégé
this is done by using the curly brackets. The whole expression is for Woman

hasGender only {Female}

and for :Man

hasGender only {Male}

In DL:

Woman v ∀hasGender.{Female} Man v ∀hasGender.{Male}

In N3:

25 fam:Woman rdfs:subClassOf
26 [rdf:type owl:Restriction ;
27 owl:onProperty fam:hasGender ;
28 owl:allValuesFrom
29 [rdf:type owl:Class ;
30 owl:oneOf (fam:Female)
31]] .
32
33 fam:Man rdfs:subClassOf
34 [rdf:type owl:Restriction ;
35 owl:onProperty fam:hasGender ;
36 owl:allValuesFrom
37 [rdf:type owl:Class ;
38 owl:oneOf (fam:Male)
39]] .

3.5 Exercise

State that nothing can be both male and female.

9

Solution

This is done by adding :Male to the (empty) list of different individuals for
:Female. In RDF syntax the keyword is owl:differentFrom.

In DL one normally operate with a unique name assumption, so if differ-
ent constants represent different objects, but if not it would simply be:

Male 6= Female

In N3:

40 fam:Female owl:differentFrom fam:Male .

3.6 Exercise

Define the gender so that there can only be the genders man and woman.

Solution

State this by making the class Gender equivalent to the class {Female, Male}.
In RDF syntax owl:oneOf is used to define a class by listing all the members
of the class:

In DL:
Gender ≡ {Male, Female}

In N3:

41 fam:Gender owl:equivalentClass
42 [rdf:type owl:Class ;
43 owl:oneOf (fam:Male fam:Female)
44] .

3.7 Exercise

Explain what disjointness is. For all pair of classes in the family ontology,
add the correct disjoint axioms.

Solution

Quoting disjointWith-def:

owl:disjointWith is a built-in OWL property with a class de-
scription as domain and range. Each owl:disjointWith state-
ment asserts that the class extensions of the two class descrip-
tions involved have no individuals in common. Like axioms with
rdfs:subClassOf, declaring two classes to be disjoint is a partial
definition: it imposes a necessary but not sufficient condition on
the class.

10

http://www.w3.org/TR/owl-ref/#disjointWith-def

In our case it is safe to say that all the classes Family, Gender and Person
are pairwise disjoint, and that the classes Man and Woman are disjoint.

In DL:

Family uGender v ⊥ Family u Person v ⊥

Gender u Person v ⊥

Man uWoman v ⊥

which translates to "nothing is both man and woman".
In N3:

45 fam:Family owl:disjointWith fam:Gender, foaf:Person .
46 fam:Gender owl:disjointWith foaf:Person .
47 fam:Man owl:disjointWith fam:Woman .

3.8 Exercise

State that a person is either a man or a woman, but not both.

Solution

This translates to "the Person is equivalent to the union of Man and Woman,
and Man and Woman are disjoint".

The classes Man and Woman are already stated as disjoint, so we need only
define that Person is equivalent to the union of Man and Woman.

In DL:
Person ≡Man tWoman

In N3:

48 foaf:Person owl:equivalentClass
49 [rdf:type owl:Class ;
50 owl:unionOf (fam:Man fam:Woman)
51] .

3.9 Exercise

Explain what inverse properties are. For all the properties that exist in our
ontology, add the correct inverse property axioms. You are not supposed
to add new properties, only state that a property is the inverse of an other
property if they already exist in the ontology.

11

Solution

Quoting inverseOf-def:

An axiom of the form P1 owl:inverseOf P2 asserts that for every
pair (x,y) in the property extension of P1, there is a pair (y,x) in
the property extension of P2, and vice versa.

To illustrate this let us use an example: If Homer is the husband of
Marge, than Marge must be the wife of Homer. If this is true in every
possible case, then hasHusband is the inverse of hasWife, from which it
follows that hasWife is the inverse of hasHusband.

In DL it is common to use ·− to indicate the inverse of a relation:

hasChild ≡ hasParent− hasHusband ≡ hasWife−

In N3:

52 fam:hasChild owl:inverseOf fam:hasParent .
53 fam:hasHusband owl:inverseOf fam:hasWife .

3.10 Exercise

Explain what it means for a property to be transitive or symmetric.
For all the properties in our ontology, if it is natural, state that they are

transitive and/or symmetric.
There is no standard way of asserting characteristics for properties in

DL, so you may skip this part. The more or less common way of assering
that a property P is asymmetric, symmetric, reflexive, reflexive or transitive
in DL literature is Asym(P), Sym(P), Ref(P), Irr(P) or Tra(P), respectively.

To say that two properties P1 and P2 are disjoint is commonly done in
DL literature with Dis(P1, P2).

Solution

A property R is symmetric if, for all a and b, a is related to b by R
means that also b is related to a by R. The symmetric properties are
in our case fam:isRelativeOf, fam:hasSibling and fam:hasSpouse. If
fam:hasSibling is symmetric, then if Bart is the sibling of Lisa, then Lisa
must be a sibling of Bart—which is reasonable.

A property R is transitive if, for all a, b and c, a is related to b by R
and b is related to c by R means that a is related to c by R. The transitive
properties are in the family ontology fam:hasBrother, fam:hasSister and
fam:hasSibling. If fam:hasSister is transitive then if Bart has a sister Lisa
and Lisa has a sister Maggie, than Maggie is also the sister of Bart—which
is also reasonable.

12

http://www.w3.org/TR/owl-ref/#inverseOf-def

54 fam:isRelativeOf rdf:type owl:SymmetricProperty .
55
56 fam:hasBrother rdf:type owl:TransitiveProperty .
57 fam:hasSister rdf:type owl:TransitiveProperty .
58 fam:hasSibling rdf:type owl:TransitiveProperty .
59 fam:hasSibling rdf:type owl:SymmetricProperty .
60
61 fam:hasSpouse rdf:type owl:SymmetricProperty .

3.11 Exercise

Is a subproperty of a transitive property necessarily also transitive? Explain
why / why not?

3.12 Exercise

Is a subproperty of a symmetric property necessarily also symmetric? Ex-
plain why / why not?

3.13 Exercise

Explain what it means for a property to be inverse functional.
For all properties in our ontology, state that they are inverse functional

if you believe that is correct.

Solution

Quoting InverseFunctionalProperty-def:

If a property is declared to be inverse-functional, then the ob-
ject of a property statement uniquely determines the subject
(some individual). More formally, if we state that P is an
owl:InverseFunctionalProperty, then this asserts that a value y
can only be the value of P for a single instance x, i.e. there
cannot be two distinct instances x1 and x2 such that both pairs
(x1,y) and (x2,y) are instances of P.

Assume foaf:name is inverse functional. Than all persons must have a
distinct name, which clearly is not correct. This is correct for the Simpson
instances of the family ontology, but it does not hold in general.

There is no property that is a good candidate for a inverse functional
property.

Note also that foaf:name is an owl:DatatypeProperty and such prop-
erties are not allowed as inverse functional in OWL DL.

13

http://www.w3.org/TR/owl-ref/#InverseFunctionalProperty-def

	From the lecture
	The Pizza ontology
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise

	Family relations in OWL
	Exercise
	Note

	Exercise
	Tip 1
	Tip 2

	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise

