
Validating RDF data

1 From the lecture

a) Why do we need a validation language for RDF?

b) Can you mention some approaches proposed for validation of RDF?

c) How is SHACL different from OWL?

d) What two main types of shapes used in SHACL and what do they de-
scribe?

Solution

a) We need to validate an RDF-graph if we want to make sure that some
data is in the dataset or that it is on a certain form (not only that it
exists).

b) Stardog ICV, Epistemic Description Logics, SPARQL, ShEx, SHACL

c) While OWL describes domain knowledge, vocabulary and properties.
SHACL checks the actual data in the database.

d) We have node shapes and property shapes. Nodes hapes declare con-
straints directly on a node. Property shapes declare constraints on values
associated with a node through a path.

2 Exercises: OWL and constraints

Consider this OWL statement Student v ∃enrolledIn.Course. It seems to
express the same thing as this SHACL constraint:

1 :StudentShape a sh:NodeShape ;
2 sh:targetClass :Student ;
3 sh:property [
4 sh:path :enrolledIn ;
5 sh:minCount 1 ;
6 sh:class :Course
7 ] .

They do, however, express two quite different things.

1



2.1 Exercise

Give an interpretation I1 and a set of triples A1 such that:

1. I1 � Student v ∃enrolledIn.Course

2. I1 � A1

3. A1 does not satisfy the SHACL constraint.

Solution

There are infinitely many possible solutions, one possibility is to let the
interpretation I1 be:

• ∆I1 = {1, 2, 3}

• 1I1 = 1, 2I1 = 2, 3I1 = 3

• StudentI1 = {1}

• CourseI1 = {3}

• enrolledInI1 = {〈1, 3〉}

This interpretation satisfies the axiom I1 � Student v ∃enrolledIn.Course.
Now, let the set of triples A1 to be only:

• Student(1)

This triple is valid in the interpretation, but since there is no triple in A1 with
information about enrolledIn it does not satisfy the SHACL-constraint.

2.2 Exercises

Give an interpretation I2 and a set of triples A2 such that:

1. I1 2 Student v ∃enrolledIn.Course

2. I1 � A2

3. A2 satisifies the SHACL constraint.

Solution

There are infinitely many possible solutions, one possibility is to let the
interpretation I2 be:

• ∆I2 = {1, 2, 3}

• 1I2 = 1, 2I2 = 2, 3I2 = 3

2



• StudentI2 = {1, 2}

• CourseI2 = {3}

• enrolledInI2 = {〈1, 3〉}

This interpretation satisfies the axiom I2 2 Student v ∃enrolledIn.Course
because not all students in the interpretations are enrolled in a course (2 is
not). More formally, StudentI2 is not a subset of {a | there is a b where
〈a, b〉 ∈ enrolledInI2 and b ∈ CourseI2}. Now, let the set of triples A2 to
be:

• Student(1)

• enrolledIn(1, 3)

A2 is entailed by I2, and since all students in the triples are enrolled in
a course, it satisfies the SHACL constraint.

3 SHACL constraints for the Simpsons family

Write the SHACL constaints in a turtle file. You can check the simpsons.ttl-
file from oblig1 against these constraints using, for instance Shacl play-
ground.

3.1 Exercises: Family shape

1. Create a shape FamilyShape that ensures that all instances of fam:Family
have at least 2 members and the members are of type foaf:Person.

2. Run the test and check that the data does not violate the restriction.

3. Add a new instance to the family that is not of type foaf:Person and
check that you get a violation (remove it afterwords)

Solution

:FamilyShape a sh:NodeShape ;
sh:targetClass fam:Family ;
sh:property [

sh:path fam:hasFamilyMember ;
sh:minCount 2;
sh:class foaf:Person

] .

3

https://shacl.org/playground/
https://shacl.org/playground/


3.2 Exercises: name

1. Create a shape, PersonShape that ensures that all foaf:Persons have
exactly one foaf:name and that it is of type xsd:string.

2. Run the test. What do you find?

3. Add the missing names:

• Mona Simpson

• Herbert Powell (Herb)

• Abraham Simpson (Abraham)

• Patricia Maleficent (Patty)

• Selma Bouvier (Selma)

4. What do you find now?

5. Remove the blank-nodes with missing names from the graph and check
that there are no violations.

Solution

:PersonShape a sh:NodeShape ;
sh:targetClass foaf:Person ;
sh:property [

sh:path foaf:name ;
sh:minCount 1;
sh:maxCount 1;
sh:dataType xsd:string

] .

3.3 Exercises: age

1. Extend the shape, PersonShape with add a property that checks that
all foaf:Persons have exactly one foaf:age that is of type xsd:int
and is a value between 0 and 120.

2. Run the test. What do you find?

3. Add missing age-values:

• Abraham Simpson: 83

• Mona Simpson: 66

• Herb: 39

• Patty: 41

4



• Selma: 41

4. Test again an check that the violations are gone.

Solution

:PersonShape a sh:NodeShape ;
sh:targetClass foaf:Person ;
sh:property [

sh:path foaf:name ;
sh:minCount 1;
sh:maxCount 1;
sh:dataType xsd:string

] ;
sh:property [

sh:path foaf:age ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:dataType xsd:int ;
sh:minInclusive 0 ;
sh:maxInclusive 120

] .

3.4 Exercises: different father and mother

In SHACL, create a property constraint, DifferentFatherAndMother check-
ing that a person cannot have the same person as mother and father. Ex-
tend the :PersonShape with DifferentFatherAndMother and check if the
simpsons-file violates this restriction.

Solution

:DifferentFatherAndMother sh:path fam:hasFather ;
sh:disjoint fam:hasMother .

:PersonShape a sh:NodeShape ;
sh:targetClass foaf:Person ;
sh:property [

sh:path foaf:name ;
sh:minCount 1;
sh:maxCount 1;
sh:dataType xsd:string

] ;

5



sh:property [
sh:path foaf:age ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:dataType xsd:int ;
sh:minInclusive 0 ;
sh:maxInclusive 120

] ;
sh:property :DifferentFatherAndMother.

It does not violate the restriction.

6


	From the lecture
	Exercises: OWL and constraints
	Exercise
	Exercises

	SHACL constraints for the Simpsons family
	Exercises: Family shape
	Exercises: name
	Exercises: age
	Exercises: different father and mother


