
IN3060/4060 – Semantic Technologies – Spring 2021

Lecture 4: The SPARQL Query Language

Jieying Chen

5th February 2021

Department of

Informatics

University of

Oslo

Mandatory exercises

Remember: Hand-in Oblig 2 by today.

Oblig 3, SPARQL, is published after this lecture.

Hand-in by Friday next week.

Use Mr. Oblig to test your solutions.

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 2 / 57

Today’s Plan

1 Introduction

2 Recap: RDF

3 SPARQL by Example

4 SPARQL Systematically

5 Executing SPARQL Queries in Jena

6 Wrap-up

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 3 / 57

Introduction

Outline

1 Introduction

2 Recap: RDF

3 SPARQL by Example

4 SPARQL Systematically

5 Executing SPARQL Queries in Jena

6 Wrap-up

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 4 / 57

Introduction

SPARQL

SPARQL Protocol And RDF Query Language

Standard language to query graph data represented as RDF triples

W3C Recommendations
SPARQL 1.0: W3C Recommendation 15 January 2008
SPARQL 1.1: W3C Recommendation 21 March 2013

This lecture is about SPARQL 1.0.

Documentation:
Syntax and semantics of the SPARQL query language for RDF.
http://www.w3.org/TR/rdf-sparql-query/

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 5 / 57

Recap: RDF

Outline

1 Introduction

2 Recap: RDF

3 SPARQL by Example

4 SPARQL Systematically

5 Executing SPARQL Queries in Jena

6 Wrap-up

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 6 / 57

Recap: RDF

Recap: RDF triples

The W3C representation of knowledge in the Semantic Web is RDF
(Resource Description Framework)

RDF talks about resources identified by URIs.

In RDF, all knowledge is represented by triples (aka statements or
facts)

A triple consists of subject, predicate, and object

The subject maybe a resource or a blank node

The predicate must be a resource

The object can be a resource, a blank node, or a literal

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 7 / 57

Recap: RDF

Recap: RDF Literals

Can only appear as object in the object in the triple.

Literals can be
Plain, without language tag:
geo:berlin geo:name "Berlin" .

Plain, with language tag:
geo:germany geo:name "Deutschland"@de .
geo:germany geo:name "Germany"@en .

Typed, with a URI indicating the type:
geo:berlin geo:population "3431700"^^xsd:integer .

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 8 / 57

Recap: RDF

Recap: RDF Blank Nodes

Blank nodes are like resources without a URI

There is a city in Germany called Berlin

_:x a geo:City .

_:x geo:containedIn geo:germany .

_:x geo:name "Berlin" .

geo:germany geo:City

Berlin

geo:containedIn a

geo:name

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 9 / 57

Recap: RDF

Recap: Jena

Jena is a Semantic Web programming framework for Java.

Open source.

API to extract data from and write to RDF graphs.

Includes an engine to query RDF graphs through SPARQL.

Interfaces for main RDF elements Resource, Property, Literal,
Statement, Model

The RDF graphs are represented as an abstract Model.

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 10 / 57

Recap: RDF

Recap: Jena

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 11 / 57

Recap: RDF

Recap: Vocabularies

Best Practices: Reuse vocabularies to ease interoperability.
People are more familiar with them
Can be queried more easily
The semantics must be clear, shouldn’t twist the meaning too much.

Good starting point:
Linked Open Vocabularies: http://lov.okfn.org/
Schema.org: https://schema.org

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 12 / 57

Recap: RDF

Recap: RDF and RDFS Vocabularies

Prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>

Prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>

They need to be declared like all others.

Examples:

geo:berlin rdf:type geo:City .

geo:containedIn a rdf:Property .

geo:berlin rdfs:label geo:City .

Note that the keyword “a” is an alternative for rdf:type.

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 13 / 57

Recap: RDF

Recap: Friend Of A Friend

People, personal information, friends, see
http://www.foaf-project.org/

Prefix foaf:<http://xmlns.com/foaf/0.1/>

Important elements:

Person a person, alive, dead, real, imaginary
name name of a person (also firstName, familyName)
mbox mailbox URL of a person
knows a person knows another

Examples:

<https://w3id.org/scholarlydata/person/ernesto-jimenez-ruiz>
a foaf:Person ;
foaf:name "Ernesto Jiménez-Ruiz" ;
foaf:mbox <mailto:ernestoj@ifi.uio.no> ;
foaf:knows <http://heim.ifi.uio.no/martingi/foaf#me> .

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 14 / 57

Recap: RDF

Recap: Dublin Core

Metadata for documents, see http://dublincore.org/.

Prefix dc:<http://purl.org/dc/terms/>

Important elements:

creator a document’s main author
created the creation date

title title of document
description a natural language description

Examples:

<https://w3id.org/scholarlydata/.../iswc2016/paper/research/research-146>
dc:creator

<https://w3id.org/scholarlydata/person/ernesto-jimenez-ruiz>;
dc:created "2016-10-20" ;
dc:description "ISWC research paper number 146"@en ;

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 15 / 57

SPARQL by Example

Outline

1 Introduction

2 Recap: RDF

3 SPARQL by Example

4 SPARQL Systematically

5 Executing SPARQL Queries in Jena

6 Wrap-up

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 16 / 57

SPARQL by Example

SPARQL by Example

SPARQL Protocol And RDF Query Language

Try it out:
https://www.w3.org/wiki/SparqlEndpoints

DBpedia http://dbpedia.org/sparql
Wikidata https://query.wikidata.org/

Musicbrainz http://dbtune.org/musicbrainz/snorql/
EBI https://www.ebi.ac.uk/rdf/

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 17 / 57

SPARQL by Example

Simple Examples

DBpedia information about actors, movies, etc.
https://dbpedia.org/

Web interface for SPARQL writing: http://dbpedia.org/sparql

People called “Johnny Depp”

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?jd WHERE {

?jd foaf:name "Johnny Depp"@en .

}

Answer:
?jd

<http://dbpedia.org/resource/Johnny Depp>

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 18 / 57

SPARQL by Example

Simple Examples (cont.)

Films starring people called “Johnny Depp”

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dbo: <http://dbpedia.org/ontology/>
SELECT ?m WHERE {

?jd foaf:name "Johnny Depp"@en .
?m dbo:starring ?jd .

}

Answer:
?m

<http://dbpedia.org/resource/Dead Man>
<http://dbpedia.org/resource/Edward Scissorhands>

<http://dbpedia.org/resource/Arizona Dream>
. . .

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 19 / 57

SPARQL by Example

Simple Examples (cont.)

Titles of films by people called “Johnny Depp”

SELECT ?title WHERE {

?jd foaf:name "Johnny Depp"@en .

?m dbo:starring ?jd .

?m rdfs:label ?title .

}

Answer:

?title

"Truposz"@pl
"Dead Man"@en

"El sue~no de Arizona"@es
"Arizona Dream"@en

. . .

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 20 / 57

SPARQL by Example

Simple Examples (cont.)

Names of people who co-starred with “Johnny Depp”

SELECT DISTINCT ?collab WHERE {

?jd foaf:name "Johnny Depp"@en .

?m dbo:starring ?jd .

?m dbo:starring ?other .

?other foaf:name ?collab .

}

Answer:

?collab

"Al Pacino"@en
"Antonio Banderas"@en

"Johnny Depp"@en
"Marlon Brando"@en

. . .

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 21 / 57

SPARQL by Example

Graph Patterns

The previous SPARQL query as a graph:

?jd "Johnny Depp"@en

?m

?other ?collab

foaf:name

foaf:name

dbo
:st

arr
ing

dbo:starring

Pattern matching: assign values to variables to make this a sub-graph of
the RDF graph!

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 22 / 57

SPARQL by Example

Graph with blank nodes

Variables not SELECTed can equivalently be blank:

"Johnny Depp"@en

?collab

foaf:name

foaf:name

dbo:
star

ring

dbo:starring

Pattern matching: assign values to variables and blank nodes to make
this a sub-graph of the RDF graph!

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 23 / 57

SPARQL by Example

SPARQL Query with blank nodes

Names of people who co-starred with “Johnny Depp”

SELECT DISTINCT ?collab WHERE {

_:jd foaf:name "Johnny Depp"@en .

_:m dbo:starring _:jd .

_:m dbo:starring _:other .

_:other foaf:name ?collab .

}

The same with blank node syntax

SELECT DISTINCT ?collab WHERE {

[dbo:starring [foaf:name "Johnny Depp"@en] ,

[foaf:name ?collab]

]

}

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 24 / 57

SPARQL Systematically

Outline

1 Introduction

2 Recap: RDF

3 SPARQL by Example

4 SPARQL Systematically

5 Executing SPARQL Queries in Jena

6 Wrap-up

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 25 / 57

SPARQL Systematically

Components of an SPARQL query

Prologue: prefix definitions Results form specification: (1) variable list, (2)
type of query (SELECT, ASK, CONSTRUCT, DESCRIBE), (3) remove
duplicates (DISTINCT, REDUCED) Dataset specification Query pattern:
graph pattern to be matched Solution modifiers: ORDER BY, LIMIT,
OFFSET

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT DISTINCT ?collab

FROM <http://dbpedia dataset>

WHERE {

?jd foaf:name "Johnny Depp"@en .

?pub dbo:starring ?jd .

?pub dbo:starring ?other .

?other foaf:name ?collab .

FILTER (STR(?collab)!="Johnny Depp"@en)

}

ORDER BY ?collabIN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 26 / 57

SPARQL Systematically

Types of Queries

SELECT Compute table of bindings for variables
SELECT ?a ?b WHERE {

[dbo:starring ?a ;
dbo:starring ?b]

}

CONSTRUCT Use bindings to construct a new RDF graph
CONSTRUCT {

?a foaf:knows ?b .
} WHERE {

[dbo:starring ?a ;
dbo:starring ?b]

}

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 27 / 57

SPARQL Systematically

Types of Queries (cont.)

ASK Answer (yes/no) whether there is � 1 match
ASK WHERE {

?jd foaf:name "Johnny Depp"@en .
}

DESCRIBE Returns and RDF graph with data about matching resources
DESCRIBE ?jd WHERE {

?jd foaf:name "Johnny Depp"@en .
}

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 28 / 57

SPARQL Systematically

Solution Sequences and Modifiers

Permitted to SELECT queries only

SELECT treats solutions as a sequence (solution sequence)

Query patterns generate an unordered collection of solutions

Sequence modifiers can modify the solution sequence (not the
solution itself):

Order
Projection
Distinct
Reduced
O↵set
Limit

Applied in this order.

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 29 / 57

SPARQL Systematically

ORDER BY

Used to sort the solution sequence in a given way:

SELECT ... WHERE ... ORDER BY ...

ASC for ascending order (default) and DESC for descending order

E.g.
SELECT ?city ?pop WHERE {

?city geo:containedIn ?country ;
geo:population ?pop .

} ORDER BY ?country ?city DESC(?pop)

Standard defines sorting conventions for literals, URIs, etc.

Not all “sorting” variables are required to appear in the solution

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 30 / 57

SPARQL Systematically

Projection, DISTINCT, REDUCED

Projection means that only some variables are part of the solution
Done with SELECT ?x ?y WHERE {?x ?y ?z...}

DISTINCT eliminates (all) duplicate solutions:
Done with SELECT DISTINCT ?x ?y WHERE {?x ?y ?z...}
A solution is a duplicate if it assigns the same RDF terms to all
selected variables as another solution.

REDUCED allows to remove some or all duplicate solutions
Done with SELECT REDUCED ?x ?y WHERE {?x ?y ?z...}
Motivation: Can be expensive to find and remove all duplicates
Leaves amount of removal to implementation (e.g. consecutive
occurrences)
Rarely used. . .

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 31 / 57

SPARQL Systematically

OFFSET and LIMIT

LIMIT: limits the number of results

OFFSET: position/index of the first returned result

Useful for paging through a large set of solutions

...but not useful for implementing paging in applications.

Can compute solutions number 51 to 60

Done with
SELECT ... WHERE {...} ORDER BY ...

LIMIT 10 OFFSET 50

LIMIT and OFFSET can be used separately

OFFSET not meaningful without ORDER BY.

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 32 / 57

SPARQL Systematically

Query patterns

Di↵erent types of graph patterns for the query pattern (WHERE
clause):

Basic Graph Patterns (BGP)
Group Graph Patterns
Filters or Constraints (FILTER)
Optional Graph Patterns (OPTIONAL)
Union Graph Patterns (UNION, Matching Alternatives)
Graph Graph Patterns (RDF Datasets)

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 33 / 57

SPARQL Systematically

Basic Graph Patterns (BGP)

A Basic Graph Pattern is a set of triple patterns.

e.g.
?jd foaf:name "Johnny Depp"@en .

_:m dbo:starring ?jd .

_:m dbo:starring ?other .

Scope of blank node labels is the BGP

Basically: A match is a function that maps
every variable and every blank node in the pattern
to a resource, a blank node, or a literal in the RDF graph (an “RDF
term”)

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 34 / 57

SPARQL Systematically

Group Graph Patterns

Group several patterns with { and }.

A group containing one basic graph pattern:
{

_:m dbo:starring ?jd .

_:m dbo:starring ?other .

}

Two groups with one basic graph pattern each:
{

{ _:m1 dbo:starring ?jd . }

{ _:m2 dbo:starring ?other . }

}

Note: Same name for two di↵erent blank nodes not allowed!

The scope of a FILTER constraint is the group where the filter
appears.

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 35 / 57

SPARQL Systematically

Filters

Groups may include constraints or filters

Reduces matches of surrounding group where filter applies

E.g.
{

?x a dbo:Place ;
dbpprop:population ?pop .

FILTER (?pop > 1000000)
}

E.g.
{

?x a dbo:Document ;
dbpprop:abstract ?abs .

FILTER (lang(?abs) = "no")
}

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 36 / 57

SPARQL Systematically

Filters: Functions and Operators

Usual binary operators: ||, &&, =, !=, <, >, <=, >=, +, -, *, /.

Usual unary operators: !, +, -.

Unary tests: bound(?var), isURI(?var), isBlank(?var),
isLiteral(?var).

Accessors: str(?var), lang(?var), datatype(?var)

regex is used to match a variable with a regular expression. Always
use with str(?var). E.g.: regex(str(?name), "Oslo").

Read the spec for details!

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 37 / 57

SPARQL Systematically

Optional Patterns

Allows a match to leave some variables unbound (e.g. no data was
available)
A partial function from variables to RDF terms
Groups may include optional parts
E.g.
{

?x a dbo:Document ;

dbp:date ?date .

OPTIONAL {

?x dbp:abstract ?abs .

FILTER (lang(?abs) = "no")

}

}

?x and ?date bound in every match, ?abs bound if there is a
Norwegian abstract
Groups can contain several optional parts, evaluated separately

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 38 / 57

SPARQL Systematically

Optional Patterns: Negation as Failure

Testing if a graph pattern is not expressed. . .

. . . by specifying an OPTIONAL graph pattern that introduces a
variable,

and testing if the variable is not bound.

E.g.
{

?x foaf:givenName ?name .

OPTIONAL {

?x dc:date ?date .

FILTER (!bound(?date))

}

}

Called Negation as Failure in logic programming

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 39 / 57

SPARQL Systematically

Matching Alternatives (UNION)

A UNION pattern matches if any of some alternatives matches

E.g.
{

{ ?book dbo:starring ?author ;

dc:created ?date . }

UNION

{ ?book foaf:maker ?author . }

UNION

{ ?author foaf:made ?book . }

}

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 40 / 57

SPARQL Systematically

Graph Graph Patterns (RDF datasets)

SPARQL queries are executed against an RDF dataset

An RDF dataset comprises
One default graph (unnamed) graph.
Zero or more named graphs identified by an URI

FROM and FROM NAMED keywords allows to select an RDF dataset
by reference

The default graph will consist of the RDF merge of the graphs
referred to in the FROM clauses,
FROM NAMED clauses will define the di↵erent named graphs.
Note that, if there is no FROM clause, but there are FROM NAMED
clauses, the default graph will be empty.

Keyword GRAPH makes the named graphs the active graph for
pattern matching

A specific (named) graph can be used as active graph if its IRI is
provided.

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 41 / 57

SPARQL Systematically

Default graph example

Add three RDF datasets to default graph

SELECT ?kname ?fname

FROM <http://data.lenka.no/dumps/fylke-geonames.ttl>

FROM <http://data.lenka.no/dumps/kommune-navn.ttl>

FROM <http:// .../dumps/kommunesentre-geonames.ttl>

WHERE {

?fylke a gd:Fylke ;

gn:officialName ?fname ;

gn:childrenFeatures ?kommune .

?kommune a gd:Kommune ;

gn:officialName ?kname ;

FILTER (langMatches(lang(?fname), ’no’))

FILTER (langMatches(lang(?kname), ’no’))

}

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 42 / 57

SPARQL Systematically

Named graph example 1

Occurrences of Bob in di↵erent datasets

SELECT ?iri graph ?bobNick

FROM NAMED <http://example.org/foaf/aliceFoaf>

FROM NAMED <http://example.org/foaf/bobFoaf>

WHERE {

{

GRAPH ?iri graph {

?x foaf:mbox <mailto:bob@work.example> .

?x foaf:nick ?bobNick .

}

}

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 43 / 57

SPARQL Systematically

Named graph example 2

Take coordinates from one source only
SELECT *
FROM <http://data.lenka.no/dumps/kommune-navn.ttl>
FROM <http://data.lenka.no/dumps/kommunesentre-geonames.ttl>
FROM NAMED <http://data.lenka.no/dumps/kommunesentre-geonames.ttl>
FROM NAMED <http://sws.geonames.org/6453350/about.rdf>
WHERE {

?feature gn:officialName "Lillehammer"@no .
OPTIONAL {
GRAPH <http://data.lenka.no/dumps/kommunesentre-geonames.ttl> {

?feature pos:lat ?lat ;
pos:long ?long ;

}
}

}

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 44 / 57

Executing SPARQL Queries in Jena

Outline

1 Introduction

2 Recap: RDF

3 SPARQL by Example

4 SPARQL Systematically

5 Executing SPARQL Queries in Jena

6 Wrap-up

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 45 / 57

Executing SPARQL Queries in Jena

SPARQL in Jena

SPARQL functionality bundled with Jena has separate Javadocs:

http://jena.apache.org/documentation/javadoc/arq/

Main classes in package org.apache.jena.query
Query a SPARQL query
QueryFactory for creating queries in various ways
QueryExecution for the execution state of a query
QueryExecutionFactory for creating query executions (to get
QueryExecution instances)
DatasetFactory for creating dataset instances
For SELECT queries:

QuerySolution, a single solution to the query.
ResultSet, all the QuerySolutions (an iterator)
ResultSetFormatter, turn a ResultSet into various forms: text, RDF
graph (Model, in Jena terminology) or plain XML

CONSTRUCT and DESCRIBE return Models, ASK a Java boolean.

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 46 / 57

Executing SPARQL Queries in Jena

Constructing a Query and a QueryExecution

Query objects are usually constructed by parsing:
String qStr =

"PREFIX foaf: <" + foafNS + ">"

+ "SELECT ?a ?b WHERE {"

+ " ?a foaf:knows ?b ."

+ "} ORDER BY ?a ?b";

Query q = QueryFactory.create(qStr);

A Query can be used several times, on multiple models

For each execution, a new QueryExecution is needed

To produce a QueryExecution for a given Query and Model:
QueryExecution qe =

QueryExecutionFactory.create(q, model);

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 47 / 57

Executing SPARQL Queries in Jena

Executing a Query

QueryExecution contains methods to execute di↵erent kinds of
queries (SELECT, CONSTRUCT, etc.)

E.g. for a SELECT query:
ResultSet res = qe.execSelect();

E.g. for a CONSTRUCT query:
Model construct model = qe.execConstruct();

ResultSet is a sub-interface of Iterator<QuerySolution>

QuerySolution has methods to get list of variables, value of single
variables, etc.

Important to call close() on query executions when no longer
needed.

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 48 / 57

Executing SPARQL Queries in Jena

Example: SPARQL in Jena

String qStr = "SELECT ?a ?b ...";
Query q = QueryFactory.create(qStr);

QueryExecution qe =
QueryExecutionFactory.create(q, model);

try {
ResultSet res = qe.execSelect();
while(res.hasNext()) {

QuerySolution soln = res.next();
RDFNode a = soln.get("?a");
RDFNode b = soln.get("?b");
System.out.println(""+a+" knows "+b);

}
} finally {

qe.close();
}

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 49 / 57

Executing SPARQL Queries in Jena

Querying a Model, Dataset or Endpoint

Querying a model:
Model model = ModelFactory.createDefaultModel();
model.read("http://heim.ifi.uio.no/martingi/foaf");

QueryExecutionFactory.create(q, model);

Querying a Dataset:
String dftGraphURI =

"http://heim.ifi.uio.no/martingi/foaf" ;
List namedGraphURIs = new ArrayList() ;

namedGraphURIs.add("http://richard.cyganiak.de/foaf.rdf");
namedGraphURIs.add("http://danbri.org/foaf.rdf");
Dataset dataset = DatasetFactory.create(dftGraphURI,

namedGraphURIs);

QueryExecutionFactory.create(q, dataset);

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 50 / 57

Executing SPARQL Queries in Jena

Querying a Model, Dataset or Endpoint (cont.)

Jena can also send SPARQL queries to a remote endpoint!
Use sparqlService in QueryExecutionFactory
E.g.
String endpoint = "http://dblp.l3s.de/d2r/sparql";
String qStr = "SELECT ?a ?b ...";
Query q = QueryFactory.create(qStr);

QueryExecution qe =
QueryExecutionFactory.sparqlService(endpoint,q);

try {
ResultSet res = qe.execSelect();
...

} finally {
qe.close();

}

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 51 / 57

Executing SPARQL Queries in Jena

SPARQL Injection

Antipattern:
String sStr = "SELECT..." + name + "...";

where name comes from user input

Tricky content of name can be a security issue!

Have to be careful to escape content of name properly

Best to use “parameterised SPARQL strings”
https:
//jena.apache.org/documentation/query/parameterized-sparql-strings.html

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 52 / 57

Executing SPARQL Queries in Jena

SPARQL on the ’Net

Many sites (Wikidata, dbpedia, dbtunes,. . .) publish SPARQL
endpoints

I.e. SPARQL queries can be submitted to a database server that
sends back the results

Uses HTTP to submit URL-encoded queries to server
GET /sparql/?query=... HTTP/1.1

Actually defined via W3C Web Services, see

http://www.w3.org/TR/rdf-sparql-protocol/

Try it out:
https://www.w3.org/wiki/SparqlEndpoints

DBpedia http://dbpedia.org/sparql
Wikidata https://query.wikidata.org/

Musicbrainz http://dbtune.org/musicbrainz/snorql/
EBI https://www.ebi.ac.uk/rdf/

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 53 / 57

Wrap-up

Outline

1 Introduction

2 Recap: RDF

3 SPARQL by Example

4 SPARQL Systematically

5 Executing SPARQL Queries in Jena

6 Wrap-up

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 54 / 57

Wrap-up

Wrap-up

SPARQL is a W3C-standardised query language for RDF graphs

It is built around “graph patterns”

Comes with a protocol to communicate with “endpoints”

Can be conveniently used with Jena and tens of other systems.

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 55 / 57

Wrap-up

More to come: SPARQL 1.1

SPARQL 1.1 became W3C Recommendations 21 March 2013.

Updates (add/delete triples)

Service Descriptions

Basic Federated query

Subqueries.

Property paths (to shorten common queries)

Aggregate functions (count, sum, average,. . .)

Negation, set di↵erence, i.e. something is not in a graph

Entailment regimes

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 56 / 57

Wrap-up

Additional material

An Introduction to SPARQL by Olaf Hartig: http:
//www.slideshare.net/olafhartig/an-introduction-to-sparql

SPARQL Query Language for RDF (SPARQL 1.0 W3C
Recommendation): https://www.w3.org/TR/rdf-sparql-query/

IN3060/4060 :: Spring 2021 Lecture 4 :: 5th February 57 / 57

