IN3060/4060 - Semantic Technologies - Spring 2021 Lecture 5: Mathematical Foundations

Jieying Chen

12th February 2021

University of Oslo

Today's Plan

- Repetition: SPARQL
- 2 Basic Set Algebra
- 3 Pairs and Relations
- 4 Propositional Logic

Mandatory exercises

- Remember: Hand-in Oblig 3 by Sunday .
- Oblig 4 published after next lecture.

4060 :: Spring 2021 Lecture 5 :: 12th February

Repetition: SPAF

Outline

- Repetition: SPARQL
- 2 Basic Set Algebra
- 3 Pairs and Relations
- 4 Propositional Logic

IN3060/4060 :: Spring 2021 Lecture 5 :: 12th February 4 / 49

IN3060/4060 :: Spring 2021 Lecture 5 :: 12th February 3 / 49

Repetition: SPARQI

SPARQL

- SPARQL Protocol And RDF Query Language
- Standard language to query graph data represented by RDF
 - SPARQL 1.0: W3C Recommendation 15 January 2008
 - SPARQL 1.1: W3C Recommendation 21 March 2013

IN3060/4060 :: Spring 2021

Lecture 5 :: 12th February

Repetition: SPARQL

Components of an SPARQL query

Prologue: prefix definitions Results form specification: (1) variable list, (2) type of query (SELECT, ASK, CONSTRUCT, DESCRIBE), (3) remove duplicates (DISTINCT, REDUCED) Dataset specification Query pattern: graph pattern to be matched Solution modifiers: ORDER BY, LIMIT, OFFSET

Repetition: SPARQ

SPARQL - Example

- DBpedia information about actors, movies, etc. https://dbpedia.org/
- Web interface for SPARQL writing: http://dbpedia.org/sparql

```
People called "Johnny Depp"

PREFIX foaf: <a href="http://xmlns.com/foaf/0.1/">
SELECT ?jd WHERE {
     ?jd foaf:name "Johnny Depp"@en .
}
```

Answer:

?jd fig://dbpedia.org/resource/Johnny_Depp

IN3060/4060 :: Spring 2021

Lecture 5 :: 12th February

6 / 40

Basic Set A

Outline

- Repetition: SPARQL
- 2 Basic Set Algebra
- 3 Pairs and Relations
- Propositional Logic

IN3060/4060 :: Spring 2021

cture 5 :: 12th February

/ 49

Motivation

- The great thing about Semantic Technologies is...
- ... Semantics!
- "The study of meaning"
- RDF has a precisely defined semantics (=meaning)
- Mathematics is best at precise definitions
- RDF has a mathematically defined semantics

IN3060/4060 :: Spring 2021

Lecture 5 :: 12th February

0 / 40

Basic Set Algebra

Sets

- A set is a mathematical object like a number, a function, etc.
- Knowing a set is
 - knowing what is in it
 - knowing what is not
- Need to know whether elements are equal or not!
- There is no order between elements
- Nothing can be in a set several times
- ullet Two sets A and B are equal if they contain the same elements
 - everything that is in A is also in B
 - everything that is in B is also in A

Basic Set Algebra

Sets: Cantor's Definition

• From the inventor of Set Theory, Georg Cantor (1845–1918):

Unter einer "Menge" verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.

Translated:

A 'set' is any collection M of definite, distinguishable objects m of our intuition or intellect (called the 'elements' of M) to be conceived as a whole.

• There are some problems with this, but it's good enough for us!

IN3060/4060 :: Spring 2021

Lecture 5 :: 12th February

Basic Set Alge

Elements, Set Equality

Notation for finite sets:

$$\{a', 1, \triangle\}$$

 $\{\cdots\}$

- Contains 'a', 1, and \triangle , and nothing else.
- There is no order between elements

$$\{1,\triangle\}=\{\triangle,1\}$$

• Nothing can be in a set several times

$$\{1, \triangle, \triangle\} = \{1, \triangle\}$$

• Sets with different elements are different:

$$\{1,2\} \neq \{2,3\}$$

Element of-relation

ullet We use \in to say that something is element of a set:

$$1 \in \{ \texttt{`a'}, 1, \triangle \}$$
 $\texttt{`b'} \not \in \{ \texttt{`a'}, 1, \triangle \}$

$$\in$$

•
$$\{3,7,12\}$$
: a set of numbers

- $3 \in \{3,7,12\}, 0 \notin \{3,7,12\}$
- {'a', 'b', ..., 'z'}: a set of letters
 - 'y' \in {'a', 'b', ..., 'z'}, 'æ' \notin {'a', 'b', ..., 'z'},
- $\bullet \ \mathbb{N} = \{1, 2, 3, \ldots\}$: the set of all natural numbers
 - 3060 $\in \mathbb{N}$, $\pi \notin \mathbb{N}$.
- $\mathbb{P} = \{2, 3, 5, 7, 11, 13, 17, \ldots\}$: the set of all prime numbers
 - $257 \in \mathbb{P}$, $91 \notin \mathbb{P}$.
- The set P_{3060} of people in the zoom meeting right now
 - Jieying $\in P_{3060}$, Georg Cantor $\notin P_{3060}$.

IN3060/4060 :: Spring 2021

Lecture 5 :: 12th February

40 / 40

Basic Set Algeb

The Empty Set

- Sometimes, you need a set that has no elements.
- This is called the *empty set*
- Notation: ∅ or {}
- $x \notin \emptyset$, whatever x is!

Basic Set Algeb

Sets as Properties

- Sets are used a lot in mathematical notation
- Often, just as a short way of writing things
- More specifically, that something has a property
- E.g. "n is a prime number."
- In mathematics: $n \in \mathbb{P}$
- E.g. "Jieying is a human being."
- In mathematics, $o \in H$, where
 - H is the set of all human beings
 - o is Jieying
- One *could* define *Prime(n)*, *Human(m)*, etc. but that is not usual
- Instead of writing "x has property XYZ" or "XYZ(x)",
 - let P be the set of all objects with property XYZ
 - write $x \in P$.

IN3060/4060 :: Spring 2021

ecture 5 :: 12th February

14 / 4

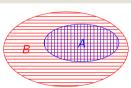
Basic Set Alge

Subsets

- Let A and B be sets
- if every element of A is also in B
- then A is called a subset of B
- This is written

 $A \subseteq B$

- Examples
 - $\{1\} \subseteq \{1, 'a', \triangle\} \text{ vs. } 1 \in \{1, 'a', \triangle\}$
 - $\{1,3\} \not\subseteq \{1,2\}$
 - \bullet $\mathbb{P} \subset \mathbb{N}$
 - $\emptyset \subseteq A$ for any set A
- A = B if and only if $A \subseteq B$ and $B \subseteq A$



 \subset

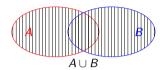
060 :: Spring 2021 | Lecture 5 :: 12th February

Set Union

- The union of A and B contains
 - all elements of A
 - all elements of B
 - also those in both A and B
 - and nothing more.
- It is written

 $A \cup B$

- (A cup which you pour everything into)
- Examples
 - $\{1,2\} \cup \{2,3\} = \{1,2,3\}$
 - $\{1, 3, 5, 7, 9, \ldots\} \cup \{2, 4, 6, 8, 10, \ldots\} = \mathbb{N}$
 - $\emptyset \cup \{1,2\} = \{1,2\}$



U

IN3060/4060 :: Spring 2021

Lecture 5 :: 12th February

47 / 4

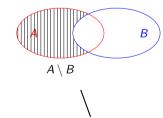
Basic Set Algebr

Set Difference

- The set difference of A and B contains
 - those elements of A
 - that are *not* in B
 - and nothing more.
- It is written

 $A \setminus B$

- Examples
 - $\{1,2\} \setminus \{2,3\} = \{1\}$
 - $\mathbb{N} \setminus \mathbb{P} = \{1, 4, 6, 8, 9, 10, 12, \ldots\}$
 - $\emptyset \setminus \{1, 2\} = \emptyset$
 - $\{1,2\} \setminus \emptyset = \{1,2\}$



Basic Set Algel

Set Intersection

- The intersection of A and B contains
 - those elements of A
 - that are also in B
 - and nothing more.
- It is written

- Examples
 - $\{1,2\} \cap \{2,3\} = \{2\}$
 - $\mathbb{P} \cap \{2,4,6,8,10,\ldots\} = \{2\}$
 - $\emptyset \cap \{1,2\} = \emptyset$

IN3060/4060 :: Spring 2021

_ecture 5 :: 12th Februa

10 / 40

Basic Set Alge

Set Comprehensions

- Sometimes enumerating all elements is not good enough
- \bullet E.g. there are infinitely many, and "..." is too vague
- Special notation:

$$\{x \in A \mid x \text{ has some property}\}$$

• The set of those elements of A which have the property.

- Examples:
 - $\{n \in \mathbb{N} \mid n = 2k \text{ for some } k \in \mathbb{N}\}$: the even numbers
 - $\{n \in \mathbb{N} \mid n < 5\} = \{1, 2, 3, 4\}$
 - $\{x \in A \mid x \notin B\} = A \setminus B$

Question

The *symmetric difference* $A \triangle B$ of two sets contains

- All elements that are in A or B...
- ...but not in both.

Can you write $A \triangle B$ using \cap , \cup , \setminus ?

$$A \triangle B = (A \cup B) \setminus (A \cap B)$$

Or:

$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$

IN3060/4060 :: Spring 2021

Lecture 5 :: 12th February

21 / 40

Pairs and Relations

Motivation

- RDF is all about
 - Resources (objects)
 - Their properties (rdf:type)
 - Their relations amongst each other
- Sets are good to group objects with some properties!
- How do we talk about relations between objects?

Pairs and Relation

Outline

- Repetition: SPARQL
- 2 Basic Set Algebra
- Pairs and Relations
- 4 Propositional Logic

IN3060/4060 :: Spring 2021

Lecture 5 :: 12th February

00 / 40

Pairs

- A pair is an *ordered* collection of two objects
- Written

 $\langle x, y \rangle$

 $\langle \cdots \rangle$

• Equal if components are equal:

 $\langle a, b \rangle = \langle x, y \rangle$ if and only if a = x and b = y

Order matters:

 $\langle 1, \text{`a'} \rangle \neq \langle \text{`a'}, 1 \rangle$

• An object can be twice in a pair:

 $\langle 1, 1 \rangle$

• $\langle x, y \rangle$ is a pair, no matter if x = y or not.

Pairs and Relations

The Cross Product

- Let A and B be sets.
- Construct the set of all pairs $\langle a, b \rangle$ with $a \in A$ and $b \in B$.
- This is called the *cross product* of A and B, written

$$A \times B$$

X

- Example:
 - $A = \{1, 2, 3\}, B = \{\text{`a', 'b'}\}.$ • $A \times B = \{ \langle 1, \text{`a'} \rangle, \langle 2, \text{`a'} \rangle, \langle 3, \text{`a'} \rangle, \langle 1, \text{`b'} \rangle, \langle 2, \text{`b'} \rangle, \langle 3, \text{`b'} \rangle \}$
- Why bother?
- Instead of " $\langle a, b \rangle$ is a pair of a natural number and a person in this zoom meeting"...
- ... $\langle a, b \rangle \in \mathbb{N} \times P_{3060}$
- But most of all, there are subsets of cross products. . .

N3060/4060 :: Spring 2021

Lecture 5 :: 12th February

25 / 4

Pairs and Relation

More Relations

• A relation R on some set A is a relation between A and A:

$$R \subseteq A \times A = A^2$$

- Example: <
 - Consider the < order on natural numbers:

$$\bullet$$
 < \subset \mathbb{N} × \mathbb{N} :

$$< \ = \ \left\{ \begin{array}{cc} \langle 1,2 \rangle \,, & \langle 1,3 \rangle \,, & \langle 1,4 \rangle \,, & \dots \\ \langle 2,3 \rangle \,, & \langle 2,4 \rangle \,, & \dots \\ \langle 3,4 \rangle \,, & \dots \end{array} \right.$$

• < = $\{\langle x, y \rangle \in \mathbb{N}^2 \mid x \text{ is less than } y\}$

3060/4060 :: Spring 2021 | Lecture 5 :: 12th February

Pairs and Relation

Relations

- A relation R between two sets A and B is...
- ... a set of pairs $\langle a, b \rangle \in A \times B$

$$R \subseteq A \times B$$

- We often write aRb to say that $\langle a, b \rangle \in R$
- Example:
 - Let $L = \{ \text{`a'}, \text{`b'}, \dots, \text{`z'} \}$
 - Let \triangleright relate each number between 1 and 26 to the corresponding letter in the alphabet:

$$1 \triangleright \text{`a'}$$
 $2 \triangleright \text{`b'}$... $26 \triangleright \text{`z'}$

• Then $\triangleright \subseteq \mathbb{N} \times L$:

$$\triangleright = \left\{ \left\langle 1, \text{`a'} \right\rangle, \left\langle 2, \text{`b'} \right\rangle, \ldots, \left\langle 26, \text{`z'} \right\rangle \right\}$$

• And we can write:

$$\langle 1, `a' \rangle \in \triangleright$$
 $\langle 2, `b' \rangle \in \triangleright$... $\langle 26, `z' \rangle \in \triangleright$

IN3060/4060 :: Spring 2021

Lecture 5 :: 12th Februar

06 / 40

Pairs and Relat

Family Relations

- Consider the set $S = \{\text{Homer}, \text{Marge}, \text{Bart}, \text{Lisa}, \text{Maggie}\}.$
- Define a relation P on S such that

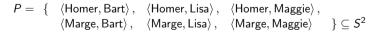
$$x P y$$
 iff x is parent of y

• For instance:

Homer P Bart Marge P Maggie

As a set of pairs:

.



For instance:

$$\langle \mathsf{Homer}, \mathsf{Bart} \rangle \in P \qquad \langle \mathsf{Marge}, \mathsf{Maggie} \rangle \in P$$

Pairs and Relations

Set operations on relations

- Since relations are just sets of pairs, we can use set operations and relations on them.
- We say that R is a subrelation P if $R \subseteq P$.
- E.g.: if F is the father-of-relation,

$$\textit{F} = \left\{ \left\langle \mathsf{Homer}, \mathsf{Bart} \right\rangle, \left\langle \mathsf{Homer}, \mathsf{Lisa} \right\rangle, \left\langle \mathsf{Homer}, \mathsf{Maggie} \right\rangle \right\}$$

then $F \subseteq P$.

• If *M* is the mother-of-relation,

$$M = \{ \langle \mathsf{Marge}, \mathsf{Bart} \rangle, \langle \mathsf{Marge}, \mathsf{Lisa} \rangle, \langle \mathsf{Marge}, \mathsf{Maggie} \rangle \}$$

then $F \cup M = P$.

N3060/4060 :: Spring 2021

ecture 5 :: 12th February.

20 /

Pairs and Relation

Question

Let $A = \{1, 2\}$, a set of two elements. How many different relations on A are there?

$$A \times A = \{\langle 1, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 1 \rangle, \langle 2, 2 \rangle\}$$

A relation on A is a subset of $A \times A$. So how many subsets are there?

$$\{\}, \{\langle 1, 1 \rangle\}, \{\langle 1, 2 \rangle\}, \{\langle 1, 1 \rangle, \langle 1, 2 \rangle\}, \dots$$

16 relations on A. Generally: $2^{(|A|^2)}$

2. / 10

Pairs and Relation

Special Kinds of Relations

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^2$ is reflexive
 - x R x for all $x \in A$.

- $R \subseteq A^2$ is symmetric
 - If x R y then y R x.
 - E.g. "=" in mathematics, friendship in facebook, connected by rail, etc.
- $R \subseteq A^2$ is transitive
 - If x R y and y R z, then x R z
 - \bullet E.g. "=", " \le ", "<" in mathematics, "is ancestor of", etc.

IN3060/4060 :: Spring 2021

ecture 5 :: 12th Februa

30 / 4

Propositional L

Outline

- Repetition: SPARQL
- 2 Basic Set Algebra
- 3 Pairs and Relations
- Propositional Logic

IN3060/4060 :: Spring 2021 Lecture 5 :: 12th February 32 / 49

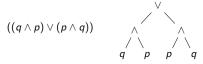
Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
 - propositional logic (and, or, not)
 - description logic (a mother is a person who is female and has a child)
 - modal logic (Alice knows that Bob didn't know yesterday that...)
 - first-order logic (For all..., for some...)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
 - Syntax (\approx grammar. What is a formula?)
 - Semantics (What is the meaning?)
 - proof theory: what is legal reasoning?
 - model semantics: declarative using set theory.
- For semantic technologies, description logic (DL) is most interesting
 - talks about sets and relations
- Basic concepts can be explained using predicate logic

Propositional Formulas, Using Sets

- \bullet The set of all formulas Φ is the least set such that
- 1 All letters $p, q, r, \ldots \in \Phi$
- 2 if $A, B \in \Phi$, then
 - $(A \wedge B) \in \Phi$
 - $(A \lor B) \in \Phi$
 - $(A \rightarrow B) \in \Phi$
 - ¬A ∈ Φ
- Formulas are just a kind of strings until now:
 - no meaning
 - but every formula can be "parsed" uniquely.

$$((q \wedge p) \vee (p \wedge q))$$



Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively":
- 1 Any letter p, q, r, \dots is a formula
- 2 if A and B are formulas. then
 - $(A \land B)$ is also a formula (read: "A and B")

 $\wedge \vee \rightarrow \neg$

- $(A \lor B)$ is also a formula (read: "A or B")
- $(A \rightarrow B)$ is also a formula (read "A implies B")
- $\neg A$ is also a formula (read: "not A")
- Nothing else is. Only what rules [1] and [2] say is a formula.
- Examples of formulae:

$$p \quad (p \land \neg q) \quad (q \land q) \quad (\neg p \rightarrow q) \quad ((p \lor \neg q) \land (\neg p \rightarrow q))$$

• Examples of non-formulas:

$$pqr p \neg q \land (p$$

Terminology

- $\bullet \neg, \land, \lor, \rightarrow$ are called *connectives*.
- A formula $(A \wedge B)$ is called a *conjunction*.
- A formula $(A \lor B)$ is called a *disjunction*.
- A formula $(A \rightarrow B)$ is calles an *implication*.
- A formula $\neg A$ is called a *negation*.

Propositional Logic

Truth

- Logic is about things being true or false, right?
- Is $(p \land q)$ true?
- That depends on whether *p* and *q* are true!
- If p is true, and q is true, then $(p \land q)$ is true
- Otherwise, $(p \land q)$ is false.
- So truth of a formula depends on the truth of the letters
- We also say the "interpretation" of the letters
- In other words, in general, truth depends on the context
- Let's formalize this context, a.k.a. interpretation, a.k.a. model

IN3060/4060 :: Spring 2021

Lecture 5 .. 12th February

-- / --

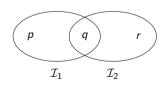
Propositional Log

Semantic Validity ⊨

ullet To say that p is true in \mathcal{I} , write

$$\mathcal{I} \models p$$

For instance



$$\mathcal{I}_1 \models p$$
 $\mathcal{I}_2 \not\models p$

• In other words, for all letters *p*:

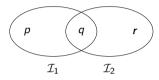
$$\mathcal{I} \models p$$
 if and only if $p \in \mathcal{I}$

IN3060/4060 :: Spring 2021 | Lecture 5 :: 12th February 39 / 49

Propositional Log

Interpretations

- Idea: put all letters that are "true" into a set!
- \bullet Define: An interpretation ${\mathcal I}$ is a set of letters.
- Letter p is true in interpretation \mathcal{I} if $p \in \mathcal{I}$.
- E.g., in $\mathcal{I}_1 = \{p, q\}$, p is true, but r is false.
- But in $\mathcal{I}_2 = \{q, r\}$, p is false, but r is true.



IN3060/4060 :: Spring 2021

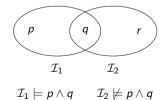
cture 5 :: 12th February

29 / 40

Propositional L

Validity of Compound Formulas

- So, is $(p \land q)$ true?
- ullet That depends on whether p and q are true!
- And that depends on the interpretation.
- All right then, given some \mathcal{I} , is $(p \land q)$ true?
- Yes, if $\mathcal{I} \models p$ and $\mathcal{I} \models q$
- No, otherwise
- For instance



40 / 49

Validity of Compound Formulas, cont.

- \bullet That was easy, p and q are only letters. . .
- ... so, is $((a \wedge r) \wedge (p \wedge a))$ true in \mathcal{I} ?
- Idea: apply our rule recursively
- For any formulas A and B....
- \bullet ...and any interpretation \mathcal{I} ,...
- ... $\mathcal{I} \models A \land B$ if and only if $\mathcal{I} \models A$ and $\mathcal{I} \models B$
- For instance, if $\mathcal{I}_1 = \{p, q\}$:

$$\mathcal{I}_1
ot \bowtie ((q \land r) \land (p \land q))$$
 $\mathcal{I}_1
ot \bowtie (q \land r)$
 $\mathcal{I}_1 \models (p \land q)$
 $\mathcal{I}_1 \models q$
 $\mathcal{I}_1 \not\models r$
 $\mathcal{I}_1 \models p$
 $\mathcal{I}_1 \models q$

Some Formulas Are Truer Than Others

- Is $(p \lor \neg p)$ true?
- Only two interesting interpretations:

$$\mathcal{I}_1 = \emptyset \qquad \qquad \mathcal{I}_2 = \{p\}$$

$$\mathcal{T}_2 = \{p\}$$

Recursive Evaluation:

• $(p \lor \neg p)$ is true in *all* interpretations!

Semantics for \neg , \rightarrow and \lor

- The complete definition of \models is as follows:
- For any interpretation \mathcal{I} , letter p, formulas A, B:
 - $\mathcal{I} \models p$ iff $p \in \mathcal{I}$
 - $\mathcal{I} \models \neg A \text{ iff } \mathcal{I} \not\models A$
 - $\mathcal{I} \models (A \land B)$ iff $\mathcal{I} \models A$ and $\mathcal{I} \models B$
 - $\mathcal{I} \models (A \lor B)$ iff $\mathcal{I} \models A$ or $\mathcal{I} \models B$ (or both)
 - $\mathcal{I} \models (A \rightarrow B)$ iff $\mathcal{I} \models A$ implies $\mathcal{I} \models B$
- Semantics of \neg , \land , \lor , \rightarrow often given as *truth table*:

Α	В	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$
f	f	t	f	f	t
f	t	t	f	t	t
t	f	f	f	t	f
t	t	f	t	t	t

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a theorem (of propositional logic)
- written:

 $\models A$

- $(p \lor \neg p)$ is a tautology
- True whatever p means:
 - The sky is blue or the sky is not blue.
 - Lucas B. will win the race or Lucas B. will not win the race.
 - The slithy toves gyre or the slithy toves do not gyre.
- Possible to derive true statements mechanically...
- ... without understanding their meaning!

Propositional Logic

Checking Tautologies

- Checking whether $\models A$ is the task of SAT-solving
- (co-)NP-complete in general (i.e. in practice exponential time)
- Small instances can be checked with a truth table:

$$\models (\neg p \lor (\neg q \lor (p \land q)))$$
?

р	q	$\neg p$	$\neg q$	$(p \land q)$	$(\neg q \lor (p \land q))$	$(\neg p \lor (\neg q \lor (p \land q)))$
f	f	t	t	f	t	t
f	t	t	f	f	f	t
t	f	f	t	f	t	t
t	t	f	f	t	t	t

• Therefore: $(\neg p \lor (\neg q \lor (p \land q)))$ is a tautology!

IN3060/4060 :: Spring 202:

cture 5 :: 12th February

45 / 41

Propositional Logi

Checking Entailment

• SAT solvers can be used to check entailment:

$$A \models B$$
 if and only if $\models (A \rightarrow B)$

• We can check simple cases with a truth table:

$$(p \land \neg q) \models \neg (\neg p \lor q)$$
 ?

р	q	$\neg p$	$\neg q$	$(p \wedge \neg q)$	$(\neg p \lor q)$	$\neg(\neg p \lor q)$
f	f	t	t	f	t	f
f	t	t	f	f	t	f
t	f	f	t	t	f	t
t	t	f	f	f	t	f

- So $(p \land \neg q) \models \neg(\neg p \lor q)$
- And $\neg(\neg p \lor q) \models (p \land \neg q)$

N3060/4060 :: Spring 202

Lecture 5 :: 12th February

47 / 4

Propositional Log

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

$$\mathcal{I} \models \mathit{B}$$

for all interpretations \mathcal{I} with $\mathcal{I} \models A$

- Also: "B is a logical consequence of A"
- Whenever A holds, also B holds
- For instance:

$$p \land q \models p$$

- Independent of meaning of p and q:
 - If it rains and the sky is blue, then it rains
 - If L.B. wins the race and the world ends, then L.B. wins the race
 - If 'tis brillig and the slythy toves do gyre, then 'tis brillig

13060/4060 :: Spring 2021

Lecture 5 :: 12th February

16 / 10

Propositional L

Equivalent formulas and redundant connectives

- In other words, $(p \land \neg q)$ and $\neg(\neg p \lor q)$ always have the same truth value, no matter the interpretation.
- ullet We say that A and B are equivalent if A and B always have the same truth value.
- \bullet For this we often introduce another connective, \leftrightarrow .
- $\mathcal{I} \models (A \leftrightarrow B)$ iff $\mathcal{I} \models A$ if and only if $\mathcal{I} \models B$.
- To express that two formulas A, B are equivalent, we can write $\models (A \leftrightarrow B)$.
- We actually only need a subset of the connectives:
- E.g.:
 - $\models ((A \lor B) \leftrightarrow \neg(\neg A \land \neg B)).$
 - $\bullet \models ((A \rightarrow B) \leftrightarrow (\neg A \lor B)).$
 - $\bullet \models ((A \leftrightarrow B) \leftrightarrow ((A \to B) \land (B \to A))).$
- So we actually only need \neg and \land to express any formula!
- Any formula is equivalent to a formula containing only the connectives \neg and \land .

IN3060/4060 :: Spring 2021

ecture 5 :: 12th Februar

48 / 49

Recap

- Sets
 - are collections of objects without order or multiplicity
 - often used to gather objects which have some property
 - can be combined using \cap, \cup, \setminus
- Relations
 - are sets of pairs (subset of cross product $A \times B$)
 - x R y is the same as $\langle x, y \rangle \in R$
 - can use set operations on relations, e.g. $F \subseteq P$.
- Predicate Logic
 - has formulas built from letters, \land , \lor , \rightarrow , \neg (syntax)
 - which can be evaluated in an interpretation (semantics)
 - interpretations are sets of letters
 - ullet recursive definition for semantics of \wedge , \vee , \rightarrow , \neg
 - $\models A \text{ if } \mathcal{I} \models A \text{ for all } \mathcal{I} \text{ (tautology)}$
 - $A \models B$ if $\mathcal{I} \models B$ for all \mathcal{I} with $\mathcal{I} \models A$ (entailment)
 - truth tables can be used for checking validity and etailment.

IN3060/4060 :: Spring 2021 Lecture 5 :: 12th February