

- Remember: Hand-in Oblig 3 by Sunday .
- Oblig 4 published after next lecture.

Outline

(1) Repetition: SPARQL
(2) Basic Set Algebra

3 Pairs and Relations

4 Propositional Logic

\square
Sets: Cantor's Definition

- From the inventor of Set Theory, Georg Cantor (1845-1918):

Unter einer „Menge" verstehen wir jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen.

- Translated:

A 'set' is any collection M of definite, distinguishable objects m of our intuition or intellect (called the 'elements' of M) to be conceived as a whole.

- There are some problems with this, but it's good enough for us!

IN3060/4060 : Spring 2021

Lecture $5: 12$ th Februar

Elements, Set Equality

- Notation for finite sets:
- Contains ' a ', 1 , and \triangle, and nothing else.
- There is no order between elements

$$
\{1, \Delta\}=\{\Delta, 1\}
$$

- Nothing can be in a set several times

$$
\{1, \Delta, \Delta\}=\{1, \Delta\}
$$

- Sets with different elements are different:

$$
\{1,2\} \neq\{2,3\}
$$

Set Comprehensions

- Sometimes enumerating all elements is not good enough
- E.g. there are infinitely many, and ". .." is too vague
- Special notation:

$$
\{x \in A \mid x \text { has some property }\}
$$

- The set of those elements of A which have the property. $\{\ldots$. . . . $\}$
- Examples:

$$
\{\cdots \mid \cdots
$$

- $\{n \in \mathbb{N} \mid n=2 k$ for some $k \in \mathbb{N}\}$: the even numbers
- $\{n \in \mathbb{N} \mid n<5\}=\{1,2,3,4\}$
- $\{x \in A \mid x \notin B\}=A \backslash B$

\square

Relations

- A relation R between two sets A and B is. .
- ... a set of pairs $\langle a, b\rangle \in A \times B$

$$
R \subseteq A \times B
$$

- We often write $a R b$ to say that $\langle a, b\rangle \in R$
- Example:
- Let $L=\left\{{ }^{\prime} a^{\prime},{ }^{\prime} b^{\prime}, \ldots,{ }^{\prime} z^{\prime}\right\}$
- Let \triangleright relate each number between 1 and 26 to the corresponding letter in the alphabet:
- Then $\triangleright \subseteq \mathbb{N} \times L$:

$$
\triangleright=\left\{\left\langle 1,{ }^{\prime} a^{\prime}\right\rangle,\left\langle 2,{ }^{\prime} \mathrm{b}^{\prime}\right\rangle, \ldots,\left\langle 26,{ }^{\prime} z^{\prime}\right\rangle\right\}
$$

- And we can write:
$\left\langle 1,{ }^{\prime} a^{\prime}\right\rangle \in \triangleright$
$\left\langle 2,{ }^{\prime} b^{\prime}\right\rangle \in \triangleright \quad \ldots \quad\left\langle 26,{ }^{\prime} z^{\prime}\right\rangle \in \triangleright$

IN3060/4060 : Spring 2021

Lecture 5 : 12th February

Family Relations

- Consider the set $S=\{$ Homer, Marge, Bart, Lisa, Maggie $\}$.
- Define a relation P on S such that

$$
x P y \text { iff } x \text { is parent of } y
$$

- For instance:

$$
\text { Homer } P \text { Bart } \quad \text { Marge } P \text { Maggie }
$$

- As a set of pairs:

$$
\left.P=\left\{\begin{array}{lll}
\langle\text { Homer, Bart }\rangle, & \langle\text { Homer, Lisa }\rangle, & \langle\text { Homer, Maggie }\rangle, \\
& \langle\text { Marge, Bart }\rangle, & \langle\text { Marge, Lisa }\rangle,
\end{array}\right\rangle \begin{array}{l}
\langle\text { Marge, Maggie }\rangle
\end{array}\right\} \subseteq S^{2}
$$

- For instance:

$$
\langle\text { Homer, Bart }\rangle \in P \quad\langle\text { Marge, Maggie }\rangle \in P
$$

Pairs and Relations

Set operations on relations

- Since relations are just sets of pairs, we can use set operations and relations on them.
- We say that R is a subrelation P if $R \subseteq P$.
- E.g.: if F is the father-of-relation,

$$
F=\{\langle\text { Homer, Bart }\rangle,\langle\text { Homer, Lisa }\rangle,\langle\text { Homer, Maggie }\rangle\}
$$

then $F \subseteq P$.

- If M is the mother-of-relation,

$$
M=\{\langle\text { Marge }, \text { Bart }\rangle,\langle\text { Marge, Lisa }\rangle,\langle\text { Marge }, \text { Maggie }\rangle\}
$$

then $F \cup M=P$.

IN3060/4060 : Spring 2021

Question

Let $A=\{1,2\}$, a set of two elements.
How many different relations on A are there?

$$
A \times A=\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 2,1\rangle,\langle 2,2\rangle\}
$$

A relation on A is a subset of $A \times A$. So how many subsets are there?

$$
\}, \quad\{\langle 1,1\rangle\}, \quad\{\langle 1,2\rangle\}, \quad\{\langle 1,1\rangle,\langle 1,2\rangle\}, \ldots
$$

16 relations on A. Generally: $2^{\left(|A|^{2}\right)}$

- Certain properties of relations occur in many applications
- Therefore, they are given names
- $R \subseteq A^{2}$ is reflexive
- $x R x$ for all $x \in A$. \square
E.g. "=", " \leq " and " \geq " in mathematics, "has same color as", etc.
- $R \subseteq A^{2}$ is symmetric
- If $x R y$ then $y R x$.

- E.g. "=" in mathematics, friendship in facebook, connected by rail, etc.
- $R \subseteq A^{2}$ is transitive
- If $x R y$ and $y R z$, then $x R z$

- E.g. "=", " \leq ", " $<$ " in mathematics, "is ancestor of", etc.

IN3060/4060 : Spring 2021
Lecture 5 : 12th February

Outline

© Repetition: SPARQL
(2) Basic Set Algebra
(3) Pairs and Relations
(4) Propositional Logic

Many Kinds of Logic

- In mathematical logic, many kinds of logic are considered
- propositional logic (and, or, not)
- description logic (a mother is a person who is female and has a child)
- modal logic (Alice knows that Bob didn't know yesterday that. . .)
- first-order logic (For all. . . . for some. . .)
- All of them formalizing different aspects of reasoning
- All of them defined mathematically
- Syntax (\approx grammar. What is a formula?)
- Semantics (What is the meaning?)
- proof theory: what is legal reasoning?
- model semantics: declarative using set theory
- For semantic technologies, description logic (DL) is most interesting - talks about sets and relations
- Basic concepts can be explained using predicate logic

Propositional Formulas, Using Sets

- The set of all formulas Φ is the least set such that

1 All letters $p, q, r, \ldots \in \Phi$
2 if $A, B \in \Phi$, then

- $(A \wedge B) \in \Phi$
- $(A \vee B) \in \Phi$
- $(A \rightarrow B) \in \Phi$
- $\rightarrow A \in \Phi$
- Formulas are just a kind of strings until now:
- no meaning
- but every formula can be "parsed" uniquely.

$$
((q \wedge p) \vee(p \wedge q))
$$

Propositional Logic: Formulas

- Formulas are defined "by induction" or "recursively"

1 Any letter p, q, r, \ldots is a formula
2 if A and B are formulas, then

- $(A \wedge B)$ is also a formula (read: " A and B ")
- $(A \vee B)$ is also a formula (read: " A or B ")
- $(A \rightarrow B)$ is also a formula (read " A implies B ")
- $\neg A$ is also a formula (read: "not A ")
- Nothing else is. Only what rules [1] and [2] say is a formula.
- Examples of formulae:

$$
p \quad(p \wedge \neg q) \quad(q \wedge q) \quad(\neg p \rightarrow q) \quad((p \vee \neg q) \wedge(\neg p \rightarrow q))
$$

- Examples of non-formulas:

$$
p q r \quad p \neg q \wedge(p
$$

IN3060/4060 : Spring 2021
Lecture 5 : 12th February

Terminology

- $\neg, \wedge, \vee, \rightarrow$ are called connectives.
- A formula $(A \wedge B)$ is called a conjunction.
- A formula $(A \vee B)$ is called a disjunction.
- A formula $(A \rightarrow B)$ is calles an implication.
- A formula $\neg A$ is called a negation.

Validity of Compound Formulas, cont.

- That was easy, p and q are only letters..
- ... so, is $((q \wedge r) \wedge(p \wedge q))$ true in \mathcal{I} ?
- Idea: apply our rule recursively
- For any formulas A and B, \ldots
- ... and any interpretation \mathcal{I}, \ldots.
- $\ldots \mathcal{I} \models A \wedge B$ if and only if $\mathcal{I} \models A$ and $\mathcal{I} \models B$
- For instance, if $\mathcal{I}_{1}=\{p, q\}$:

IN3060/4060 : Spring 2021

Lecture 5:: 12th February

Some Formulas Are Truer Than Others

- Is $(p \vee \neg p)$ true?
- Only two interesting interpretations:

$$
\mathcal{I}_{1}=\emptyset \quad \mathcal{I}_{2}=\{p\}
$$

- Recursive Evaluation:

$$
\begin{array}{cc}
\mathcal{I}_{1} \models(p \vee \neg p) & \mathcal{I}_{2} \models(p \vee \neg p) \\
\mathcal{I}_{1} \neq p & \mathcal{I}_{1} \neq \neg p \\
\mathcal{I}_{2} \models p & \mathcal{I}_{2} \not \models \neg p \\
\mathcal{I}_{1} \not \models p & \\
& \\
\mathcal{I}_{2} \neq p
\end{array}
$$

- $(p \vee \neg p)$ is true in all interpretations!

Semantics for \neg, \rightarrow and \vee

- The complete definition of \models is as follows:
- For any interpretation \mathcal{I}, letter p, formulas A, B :
- $\mathcal{I} \models p$ iff $p \in \mathcal{I}$
- $\mathcal{I} \models \neg A$ iff $\mathcal{I} \not \vDash A$
- $\mathcal{I} \models(A \wedge B)$ iff $\mathcal{I}=A$ and $\mathcal{I}=B$
- $\mathcal{I} \models(A \vee B)$ iff $\mathcal{I} \models A$ or $\mathcal{I} \models B$ (or both)
- $\mathcal{I} \models(A \rightarrow B)$ iff $\mathcal{I} \models A$ implies $\mathcal{I} \models B$
- Semantics of $\neg, \wedge, \vee, \rightarrow$ often given as truth table:

A	B	$\neg A$	$A \wedge B$	$A \vee B$	$A \rightarrow B$
f	f	t	f	f	t
f	t	t	f	t	t
t	f	f	f	t	f
t	t	f	t	t	t

IN3060/4060: Spring 2021
Lecture $5: 12$ th February

Tautologies

- A formula A that is true in all interpretations is called a tautology
- also logically valid
- also a theorem (of propositional logic)
- written:

$$
\models A
$$

- $(p \vee \neg p)$ is a tautology
- True whatever p means:
- The sky is blue or the sky is not blue.
- Lucas B. will win the race or Lucas B. will not win the race
- The slithy toves gyre or the slithy toves do not gyre
- Possible to derive true statements mechanically...
- ... without understanding their meaning!

Checking Tautologies

- Checking whether $\models A$ is the task of SAT-solving
- (co-)NP-complete in general (i.e. in practice exponential time)
- Small instances can be checked with a truth table:

$$
\vDash(\neg p \vee(\neg q \vee(p \wedge q))) \quad ?
$$

p	q	$\neg p$	$\neg q$	$(p \wedge q)$	$(\neg q \vee(p \wedge q))$	$(\neg p \vee(\neg q \vee(p \wedge q)))$
f	f	t	t	f	t	t
f	t	t	f	f	f	t
t	f	f	t	f	t	t
t	t	f	f	t	t	t

- Therefore: $(\neg p \vee(\neg q \vee(p \wedge q)))$ is a tautology!

IN3060/4060 : Spring 2021

Lecture 5 :: 12th February

Checking Entailment

- SAT solvers can be used to check entailment:

$$
A \models B \quad \text { if and only if } \quad \models(A \rightarrow B)
$$

- We can check simple cases with a truth table:

$$
(p \wedge \neg q) \models \neg(\neg p \vee q) \quad ?
$$

p	q	$\neg p$	$\neg q$	$(p \wedge \neg q)$	$(\neg p \vee q)$	$\neg(\neg p \vee q)$
f	f	t	t	f	t	f
f	t	t	f	f	t	f
t	f	f	t	t	f	t
t	t	f	f	f	t	f

- So $(p \wedge \neg q) \models \neg(\neg p \vee q)$
- And $\neg(\neg p \vee q) \vDash(p \wedge \neg q)$

Entailment

- Tautologies are true in all interpretations
- Some Formulas are true only under certain assumptions
- A entails B, written $A \models B$ if

$$
\mathcal{I} \models B
$$

for all interpretations \mathcal{I} with $\mathcal{I} \models A$

- Also: " B is a logical consequence of A "
- Whenever A holds, also B holds
- For instance:

$$
p \wedge q \mid=p
$$

- Independent of meaning of p and q :
- If it rains and the sky is blue, then it rains

If L.B. wins the race and the world ends, then L.B. wins the race

- If 'tis brillig and the slythy toves do gyre, then 'tis brillig

IN3060/4060 : Spring 2021

Equivalent formulas and redundant connectives

- In other words, $(p \wedge \neg q)$ and $\neg(\neg p \vee q)$ always have the same truth value, no matter the interpretation.
- We say that A and B are equivalent if A and B always have the same truth value
- For this we often introduce another connective, \leftrightarrow
- $\mathcal{I} \mid=(A \leftrightarrow B)$ iff $\mathcal{I} \models A$ if and only if $\mathcal{I} \models B$.

To express that two formulas A, B are equivalent, we can write $\models(A \leftrightarrow B)$

- We actually only need a subset of the connectives:
- E.g.:
- $=((A \vee B) \leftrightarrow \neg(\neg A \wedge \neg B))$.
- $\models((A \rightarrow B) \leftrightarrow(\neg A \vee B))$.
- $\models((A \leftrightarrow B) \leftrightarrow((A \rightarrow B) \wedge(B \rightarrow A)))$
- So we actually only need \neg and \wedge to express any formula!
- Any formula is equivalent to a formula containing only the connectives \neg and \wedge.

Recap

- Sets
- are collections of objects without order or multiplicity
- often used to gather objects which have some property
- can be combined using \cap, \cup, \backslash
- Relations
- are sets of pairs (subset of cross product $A \times B$)
- $x R y$ is the same as $\langle x, y\rangle \in R$
- can use set operations on relations, e.g. $F \subseteq P$.
- Predicate Logic
- has formulas built from letters, $\wedge, \vee, \rightarrow, \neg($ syntax $)$
- which can be evaluated in an interpretation (semantics)
- interpretations are sets of letters
- recursive definition for semantics of $\wedge, \vee, \rightarrow$, \neg
- $\models A$ if $\mathcal{I} \models A$ for all \mathcal{I} (tautology)
- $A \models B$ if $\mathcal{I} \models B$ for all \mathcal{I} with $\mathcal{I} \models A$ (entailment)
- truth tables can be used for checking validity and etailment

