
IN3060/4060 – Semantic Technologies – Spring 2021
Lecture 6: Introduction to Reasoning with RDF

Jieying Chen

19th February 2021

Department of
Informatics

University of
Oslo

Mandatory exercises

Oblig 4 published after this lecture.

Hand-in by Friday in two weeks (05/03/2021).

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 2 / 64

Today’s Plan

1 Inference rules

2 RDFS Basics

3 Backwards and forwards reasoning

4 RDFS reasoning in Jena

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 3 / 64

Inference rules

Outline

1 Inference rules

2 RDFS Basics

3 Backwards and forwards reasoning

4 RDFS reasoning in Jena

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 4 / 64

Inference rules

Model-theoretic semantics, a quick recap

We introduced interpretations:

Idea: put all letters that are “true” into a set.

Define: An interpretation I is a set of letters.

Letter p is true in interpretation I if p ∈ I.

E.g., in I1 = {p, q}, p is true, but r is false. p rrq

I1 I2

But in I2 = {q, r}, p is false, but r is true.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 5 / 64

Inference rules

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way

when a formula is true in an interpretation: I |= A

when a formula is a tautology (true in all interps.): |= A

and when one formula entails another: A |= B.

Model-theoretic semantics is well-suited for

studying the behaviour of a logic, since

it is specified in terms of familiar mathematical objects, such as

sets of letters

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 6 / 64

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,

But it isn’t easy to read off from it what exactly is to be implemented.

Much less does it provide an algorithmic means for computing it,
that is

for actually doing the reasoning,

In order to directly use the model-theoretic semantics,

in principle all interpretations would have to be considered.
But as there can be infinitely many such interpretations,
and an algorithm should terminate in finite time
this is not good.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 7 / 64

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:

Syntactic methods operate only on the form of a statement, that is

on its concrete grammatical structure,

without recurring to interpretations,

syntactic reasoning is, in other words, computation.

Interpretations still figure as the theoretical backdrop, as one typically

strives to define syntactical methods that are provably equivalent to checking all
interpretations

Syntactic reasoning easier to understand and use than model semantics

we will show that first.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 8 / 64

Inference rules

Inference rules

A calculus is usually formulated in terms of

a set of axioms which are tautologies,

and a set of inference rules for generating new statements.

The general form of an inference rule is:

P1, . . . ,Pn

P

the Pi are premises

and P is the conclusion.

An inference rule may have,

any number of premises (typically one or two),

but only one conclusion.

Where |= is the entailment relation, ` is the inference relation. We write Γ ` P if we can
deduce P from the assumptions Γ.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 9 / 64

Inference rules

Soundness and completeness

Semantics and calculus are typically made to work in pairs:

One proves that,

I. every conclusion P derivable in the calculus from a set of premises Γ, is true in
all interpretations that satisfy Γ. (Γ ` P ⇒ Γ |= P)

II. and conversely that every statement P entailed by Γ-interpretations is derivable in the
calculus when the elements of Γ are used as premises. (Γ |= P ⇒ Γ ` P)

We say that the calculus is

sound wrt the semantics, if (I) holds, and

complete wrt the semantics, if (II) holds.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 10 / 64

Inference rules

Inference rules in propositional logic

(Part of) Natural deduction calclulus for propositional logic:

A (A→ B)
→ E

B

(A ∧ B)
∧ElA

(A ∧ B)
∧ErB

A B ∧I
(A ∧ B)

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 11 / 64

Inference rules

Inference for RDF

In a Semantic Web context, inference always means,

adding triples.

More specifically it means,

adding new triples to an RDF graph,

on the basis of the triples already in it.

From this point of view a rule

P1, . . . ,Pn

P

may be read as an instruction;

“If P1, . . . ,Pn are all in the store, add P to the store.”

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 12 / 64

RDFS Basics

Outline

1 Inference rules

2 RDFS Basics

3 Backwards and forwards reasoning

4 RDFS reasoning in Jena

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 13 / 64

RDFS Basics

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.org/2000/01/rdf-schema#

Originally thought of as a “schema language” like XML Schema.

Actually it isn’t – doesn’t describe “valid” RDF graphs.

Comes with some inference rules

Allows to derive new triples mechanically.

A very simple modeling language

and (for our purposes) a subset of OWL.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 14 / 64

RDFS Basics

RDF Schema concepts

RDFS adds the concept of “classes” which are like types or sets of resources.

The RDFS vocabulary allows statements about classes.

Defined resources:

rdfs:Resource: The class of resources, everything.
rdfs:Class: The class of classes.
rdf:Property: The class of properties (from rdf).

Defined properties:

rdf:type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClassOf: Class inclusion.
rdfs:subPropertyOf: Property inclusion.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 15 / 64

RDFS Basics

Example

rdfs:Class

rdfs:Resource

foaf:Person rdf:Property mac:MacBookPro

:owns
:me :myComp

rdf:type rdf:type rdf:type

rdf
s:s
ub
Cl
as
sO
f

rd
fs
:s
u
b
C
la
ss
O
f rdfs:subClassOf

rdf:type

rdf:type rdf:type

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 16 / 64

RDFS Basics

Intuition: Classes as Sets

We can think of an rdfs:Class as denoting a set of Resources.

Not quite correct, but OK for intuition.

RDFS Set Theory

A rdf:type rdfs:Class A is a set of resources
x rdf:type A x ∈ A

A rdfs:subClassOf B A ⊆ B

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 17 / 64

RDFS Basics

Simple Entailment Rules

Entailment with blank nodes and literals

Without RDFS and RDF axioms
A R B .

se1
A R :x .

A R B .
se2

:x R B .

Where :x is a blank node identifier, that either

has not been used before in the graph, or
has been used, but for the same URI/Literal/Blank node.
:x represents B in se1 and A in se2.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 18 / 64

RDFS Basics

Simple Entailment Example

Let’s create the RDF-graph with the two triples:
1 :me :owns :myComp .
2 :myComp rdf:type mac:MacBookPro .

Using se1 on triple 1, it entails: :me :owns :x

:x is not used previously

Using se2 on triple 2 it entails: :x rdf:type mac:MacBookPro

:x refers to the same URI

Using se2 the inferred triple :me :owns :x

entails :y :owns :x where :y refers to the new URI

:y :x mac:MacBookPro
:owns rdf:type

We can not infer :x :owns :x because :x was used for another URI.
IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 19 / 64

RDFS Basics

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:

I. Type propagation:

“The 2CV is a car, and all cars are motorised vehicles, so. . . ”

II. Property inheritance:

“Steve lectures at Ifi, and anyone who does so is employed by Ifi, so. . . ”

III. Domain and range reasoning:

“Everything someone has written is a document. Alan has written ‘Computing Machinery
and Intelligence’, therefore. . . ”
“All fathers of people are males. James is the father of Karl, therefore. . . ”

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 20 / 64

RDFS Basics

Type propagation with rdfs:subClassOf

The type propagation rules apply

to combinations of rdf:type, rdfs:subClassOf and rdfs:Class,

and trigger recursive inheritance in a class taxonomy.

Type propagation rules:

Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
rdfs9

x rdf:type B .

Reflexivity of sub-class relation

A rdf:type rdfs:Class .
rdfs10

A rdfs:subClassOf A .

Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClassOf C .
rdfs11

A rdfs:subClassOf C .

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 21 / 64

RDFS Basics

Set Theory Analogy

Members of subclasses

A rdfs:subClassOf B . x rdf:type A .

x rdf:type B .

A ⊆ B x ∈ A

x ∈ B

Reflexivity of sub-class relation

A rdf:type rdfs:Class .

A rdfs:subClassOf A .

A is a set
A ⊆ A

Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClassOf C .
A rdfs:subClassOf C .

A ⊆ B B ⊆ C

A ⊆ C

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 22 / 64

RDFS Basics

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class .

ex:Mammal rdf:type rdfs:Class .

ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)

ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

ex:KillerWhale rdfs:subClassOf ex:Vertebrate . (rdfs11)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfs10)
(... and also for the other classes)

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 23 / 64

RDFS Basics

A typical taxonomy

Vertebrate

Reptile

Crocodilia

Amphibian

Salamander

Mammal

Bat Whale

KillerWhale

Figure: A typical taxonomy

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 24 / 64

RDFS Basics

Multiple Inheritance

A set is a subset of many other sets:

{2, 3} ⊆ {1, 2, 3} {2, 3} ⊆ {2, 3, 4} {2, 3} ⊆ N {2, 3} ⊆ P

Similarly, a class is usually a subclass of many other classes.

Animal Large Thing

Mammal Aquatic Animal

Whale

This is usually not called a taxonomy, but it’s no problem for RDFS.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 25 / 64

RDFS Basics

Second: Property transfer with rdfs:subPropertyOf

Reasoning with properties depends on certain combinations of

rdfs:subPropertyOf,

rdf:type, and

rdf:Property

Rules for property reasoning:

Transitivity:

p rdfs:subPropertyOf q . q rdfs:subPropertyOf r .
rdfs5

p rdfs:subPropertyOf r .

Reflexivity:

p rdf:type rdf:Property .
rdfs6

p rdfs:subPropertyOf p .

Property transfer:

p rdfs:subPropertyOf q . u p v .
rdfs7u q v .

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 26 / 64

RDFS Basics

Intuition: Properties as Relations

If an rdfs:Class is like a set of resources. . .

. . . then an rdf:Property is like a relation on resources.

Remember: not quite correct, but OK for intuition.

RDFS Set Theory

r rdf:type rdf:Property r is a relation on resources
x r y 〈x , y〉 ∈ r

r rdfs:subPropertyOf s r ⊆ s

Rules:
p ⊆ q q ⊆ r

p ⊆ r

p a relation

p ⊆ p

p ⊆ q 〈u, v〉 ∈ p

〈u, v〉 ∈ q

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 27 / 64

RDFS Basics

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:

Harmonisation of the data under a common vocabulary.

The aim is to

make similar data answer to the same standardised queries,

thus making queries independent of the terminology of the sources.

For instance:

Suppose that a legacy bibliography system S uses :author, where

another system T uses :writer.

And suppose we wish to integrate S and T under a common scheme,

for instance Dublin Core.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 28 / 64

RDFS Basics

Solution

From Ontology:

:writer rdf:type rdf:Property .

:author rdf:type rdf:Property .

:author rdfs:subPropertyOf dcterms:creator .

:writer rdfs:subPropertyOf dcterms:creator .

And Facts:

ex:knausgård :writer ex:minKamp .

ex:hamsun :author ex:sult .

Infer:

ex:knausgård dcterms:creator ex:minKamp .

ex:hamsun dcterms:creator ex:sult .

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 29 / 64

RDFS Basics

Consequences

Any individual for which :author or :writer is defined,

will have the same value for the dcterms:creator property.

The work of integrating the data is thus done by the reasoning engine,

instead of by a manual editing process.

Legacy applications that use e.g. author can operate unmodified.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 30 / 64

RDFS Basics

Example II: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;

for tenured positions (professors, assisting professors, lecturers),

for research associates (Post Docs),

for PhD students,

for subcontracting.

Employer/employee information can be read off from properties such as:

:profAt (professorship at),

:tenAt (tenure at),

:conTo (contracts to),

:funBy (is funded by) ,

:recSchol (receives scholarship from).

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 31 / 64

RDFS Basics

Organising the properties

:empBy

:permEmp

:tenAt

:profAt

:tempEmp

:fundBy

:recSchol

:conTo

Figure: A hierarchy of employment relations

Note: doesn’t have to be tree-shaped.
IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 32 / 64

RDFS Basics

Querying the inferred model

Formalising the tree:

:profAt rdf:type rdfs:Property .

:tenAt rdf:type rdfs:Property .

:profAt rdfs:subPropertyOf :tenAt

..... and so forth.

Given a data set such as:

:Martin :profAt :UiO .

:Ole :fundBy :UiO .

:Steve :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

:empBy

:permEmp

:tenAt

:profAt

:tempEmp

:fundBy

:recSchol

:conTo

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 33 / 64

RDFS Basics

cont.

We may now query on different levels of abstraction :

Temporary employees

SELECT ?emp WHERE {?emp :tempEmp :x .}

→ Ole, Steve, Trond

Permanent employees

SELECT ?emp WHERE {?emp :permEmp :x .}

→ Martin, Jenny

All employees

SELECT ?emp WHERE {?emp :empBy :x .}

→ Martin, Jenny, Ole, Steve, Trond

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 34 / 64

RDFS Basics

Third pattern: Typing data based on their use

Triggered by combinations of

rdfs:range

rdfs:domain

rdf:type

Rules for domain and range reasoning :

Typing first coordinates:

p rdfs:domain A . x p y .
rdfs2

x rdf:type A .

Typing second coordinates:

p rdfs:range B . x p y .
rdfs3

y rdf:type B .

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 35 / 64

RDFS Basics

Domain and range contd.

rdfs:domain and rdfs:range tell us how a property is used.

rdfs:domain types the possible subjects of these triples,

whereas rdfs:range types the possible objects,

When we assert that property p has domain C, we are saying

that whatever resource is linked to anything by p

this resource must be of type C.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 36 / 64

RDFS Basics

Domain and Range of Relations

Given a relation R from A to B (R ⊆ A× B)

The domain of R is the set of all x with x R · · · :

domR = {x ∈ A | xRy for some y ∈ B}

The range of R is the set of all y with · · · R y :

rgR = {y ∈ B | xRy for some x ∈ A}

Example:

R = {〈1,4〉 , 〈1,�〉 , 〈2,♦〉}
domR = {1, 2}
rgR = {4,�,♦}

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 37 / 64

RDFS Basics

Set intuitions for rdfs:domain and rdfs:range

If an rdfs:Class is like a set of resources and an rdf:Property is like a relation on
resources. . .

RDFS Set Theory

r rdfs:domain A dom r ⊆ A
r rdfs:range B rg r ⊆ B

Rules:
dom p ⊆ A 〈x , y〉 ∈ p

x ∈ A

rg p ⊆ B 〈x , y〉 ∈ p

y ∈ B

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 38 / 64

RDFS Basics

Example I: Combining domain, range and subClassOf

Suppose we have a class hierarchy that includes:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

and a property :conductor whose domain and range are:

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

Now, if we assert

:OsloPhilharmonic :conductor :Petrenko .

we may infer;

:OsloPhilharmonic rdf:type :SymphonyOrchestra .

:OsloPhilharmonic rdf:type: Ensemble.

:Petrenko rdf:type :Person .

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 39 / 64

RDFS Basics

Conductors and ensembles

rdfs:Resource

:Person :Ensemble

:conductor :SymphonyOrchestra

rdf
s:s

ubC
las

sOf
rdfs:subClassOf

r
d
f
s
:
s
u
b
C
l
a
s
s
O
f

rdfs:domain

r
d
f
s
:
r
a
n
g
e

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 40 / 64

RDFS Basics

Example II: Filtering information based on use

Consider once more the dataset:

:Martin :profAt :UiO .

:Ole :fundBy :UiO .

:Steve :conTo :OLF .

:Trond :recSchol :BI .

:Jenny :tenAt :SSB .

and suppose we wish to filter out everyone but the freelancers:

State that only freelancers :conTo an organisation,

i.e. introduce a class :Freelancer,

and declare it to be the domain of :conTo:

:Freelancer rdf:type rdfs:Class .

:conTo rdfs:domain :Freelancer .

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 41 / 64

RDFS Basics

Finding the freelancers

The class of freelancers is generated by the rdfs2 rule,

:conTo rdfs:domain :Freelancer . :Steve :conTo :OLF .
rdfs2

:Steve rdf:type :Freelancer

and may be used as a type in SPARQL (reasoner presupposed):

Finding the freelancers

SELECT ?freelancer WHERE {

?freelancer rdf:type :Freelancer .

}

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 42 / 64

RDFS Basics

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.

Only resources have types:
rdf:type rdfs:domain rdfs:Resource .

types are classes:
rdf:type rdfs:range rdfs:Class .

Ranges apply only to properties:
rdfs:range rdfs:domain rdf:Property .

Ranges are classes:
rdfs:range rdfs:range rdfs:Class .

Only properties have subproperties:
rdfs:subPropertyOf rdfs:domain rdf:Property .

Only classes have subclasses:
rdfs:subClassOf rdfs:domain rdfs:Class .

. . . (another 30 or so)

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 43 / 64

RDFS Basics

Using the Axiomatic Triples

From the statement
:conductor rdfs:range :Person

We can derive:

:conductor rdf:type rdf:Property

:Person rdf:type rdfs:Class

:conductor rdf:type rdfs:Resource

rdf:Property rdf:type rdfs:Class

:Person rdfs:type rdfs:Resource

rdfs:Class rdfs:type rdfs:Class

. . .

In OWL, there are some simplification which make this superfluous.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 44 / 64

RDFS Basics

Writing proofs

When writing proofs, we:

write one triple per line,
enumerate the lines,
write the rule name along with the line numbers corresponding to the assumptions,
introduce triples from the knowledge base with the rule name P.
E.g. given the knowledge base:

:SymphonyOrchestra rdfs:subClassOf :Ensemble .

:conductor rdfs:domain :SymphonyOrchestra .

:conductor rdfs:range :Person .

:OsloPhilharmonic :conductor :Petrenko .

We write:
1 :OsloPhilharmonic :conductor :Petrenko . – P
2 :conductor rdfs:domain :SymphonyOrchestra . – P
3 :OsloPhilharmonic rdf:type :SymphonyOrchestra . – rdfs3, 1, 2
4 :SymphonyOrchestra rdfs:subClassOf :Ensemble . – P
5 :OsloPhilharmonic rdf:type :Ensemble . – rdfs9, 3, 4

OleIN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 45 / 64

Backwards and forwards reasoning

Outline

1 Inference rules

2 RDFS Basics

3 Backwards and forwards reasoning

4 RDFS reasoning in Jena

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 46 / 64

Backwards and forwards reasoning

Forward chaining vs. backward chaining

Forward chaining:

reasoning from premises to conclusions of rules

adds facts corresponding to the conclusions of rules

entailed facts are stored and reused

reasoning is up front

Backward chaining:

reasoning from conclusions to premises

‘. . . what needs to be true for this conclusion to hold?’

reasoning is on-demand

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 47 / 64

Backwards and forwards reasoning

Forward chaining inference

Explicit facts

Entailed facts

Fact 1 Fact 2

Fact 3

Fact 4

Fact 5

Explicit facts

Entailed facts

Fact 1 Fact 2 Fact 6

Fact 3

Fact 4

Fact 5

Fact 7Fact 8

Fact 9

Fact 10

Figure: When a fact is added, all entailments are computed and stored.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 48 / 64

Backwards and forwards reasoning

Benefits of forward chaining

Precomputing and storing answers is suitable for data which is:

frequently accessed,

expensive to compute,

relatively static,

and small enough to store efficiently.

Benefits:

forward chaining optimizes retrieval

no additional inference is necessary at query time

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 49 / 64

Backwards and forwards reasoning

Forward chaining and truth-maintenance

Explicit facts

Entailed facts

Fact 1 Fact 2

Fact 3

Fact 4

Fact 5

Explicit facts

Entailed facts

Fact 1 Fact 2 Fact 6

Fact 3

Fact 4

Fact 5

Fact 7Fact 8

Fact 9

Fact 10

Figure: When a fact is added, all entailments are computed and stored.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 50 / 64

Backwards and forwards reasoning

Forward chaining and truth-maintenance

Explicit facts

Entailed facts

Fact 1 Fact 2

Fact 3

Fact 4

Fact 5

Explicit facts

Entailed facts

Fact 1 Fact 2 Fact 6

Fact 3

Fact 4

Fact 5

Fact 7Fact 8

Fact 9

Fact 10

Figure: When a fact is removed, everything that comes with it must go too.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 51 / 64

Backwards and forwards reasoning

Drawbacks of forward chaining

Drawbacks:

increases storage size

increases the overhead of insertion

removal is highly problematic

truth maintenance usually not implemented in RDF stores

problematic for distributed and/or dynamic systems

rules could apply to premisses on different disks, etc.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 52 / 64

Backwards and forwards reasoning

Backward chaining inference

Explicit facts

Entailed facts

Fact 2 Fact 3Fact 1

Fact 4

Fact 5

Fact 6Fact 7

Figure: Backward chaining uses rules to expand queries.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 53 / 64

Backwards and forwards reasoning

Backward chaining: Example

RDFS/RDF knowledge base:

ex:Mammal rdfs:subClassOf ex:Vertebrate .

ex:KillerWhale rdfs:subClassOf ex:Mammal .

ex:Lion rdfs:subClassOf ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

ex:Simba rdf:type ex:Lion .

Query:

SELECT ?x WHERE { ?x rdf:type ex:Vertebrate . }

Inferred triples:

A rdfs:subClassOf B . x rdf:type A .

x rdf:type B .

?x rdf:type ex:Vertabrate .

?x rdf:type ex:Mammal . (rdfs9)

?x rdf:type ex:KillerWhale . (rdfs9) ⇒ ?x = ex:Keiko

?x rdf:type ex:Lion . (rdfs9) ⇒ ?x = ex:Simba

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 54 / 64

Backwards and forwards reasoning

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:

there is little need for reuse of computed answers

answers can be efficiently computed at runtime

answers come from multiple dynamic sources

Benefits:

only the relevant inferences are drawn

truth maintenance is automatic

no persistent storage space needed

Drawbacks:

trades insertion overhead for access overhead

without caching, answers must be recomputed every time

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 55 / 64

RDFS reasoning in Jena

Outline

1 Inference rules

2 RDFS Basics

3 Backwards and forwards reasoning

4 RDFS reasoning in Jena

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 56 / 64

RDFS reasoning in Jena

Quick facts

In Jena there is

a zillion ways to configure and plug-in a reasoner

some seem rather haphazard

Imposing order at the cost of precision we may say that. . .
reasoners fall into one of two categories

built-in- and
external reasoners

. . . and are combined with two kinds of model
models of type InfModel, and
models of type OntModel

Different reasoners implement different logics, e.g
Transitive reasoning,
RDFS,
OWL

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 57 / 64

RDFS reasoning in Jena

The road most often travelled. . .

Convenience methods are used to construct standard reasoners or inference models

Get standard reasoners from ReasonerRegistry:
Reasoner reasoner = ReasonerRegistry.getRDFSReasoner();

Get inference models with standard reasoners from ModelFactory:
InfModel inf = ModelFactory.createRDFSModel(rawModel);

What’s the point of the long winded way?

Can ask for non-builtin provers, e.g. Pellet
Can configure reasoners

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 58 / 64

RDFS reasoning in Jena

Example I: Using a convenience method

A simple RDFS model

Model sche = FileManager.get().loadModel(aURI);

Model dat = FileManager.get().loadModel(bURI);

InfModel inferredModel = ModelFactory.createRDFSModel(sche, dat);

method createRDFSModel() returns an InfModel

An InfModel has a basic inference API, such as;

getDeductionsModel() which returns the inferred triples,
getRawModel() which returns the base triples,
getReasoner() which returns the RDFS reasoner,
getDerivation(stmt) which returns a trace of the derivation

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 59 / 64

RDFS reasoning in Jena

Example II: Using static methods in the registry

using ModelFactory.createInfModel

Model sche = FileManager.get().loadModel(aURI);

Model dat = FileManager.get().loadModel(bURI);

Reasoner reas = ReasonerRegistry.getOWLReasoner();

InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

Virtues of this approach:

we retain a reference to the reasoner,

that can be used to configure it

e.g. to do backwards or forwards chaining
. . . mind you, not all reasoners can do both

similar for built-in and external reasoners alike

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 60 / 64

RDFS reasoning in Jena

Conclusion

We have seen that by modelling knowledge using the URIs in the RDF and RDFS
vocabularies (e.g. rdf:type, rdfs:subClassOf, rdfs:range), the computer can derive
new triples, that follows from our original triples.

The rules were very simple (e.g. if x rdf:type A and A rdfs:subClassOf B then x

rdf:type B).

However, note that even the most complex mathematical proofs can be broken down into
equally simple steps.

It is when we have large knowledge bases and we can apply thousands or millions of
derivations that the reasoning becomes really interesting.

Example of large ontology, BabelNet: http://www.babelnet.org/

OWL will also allow us to express more complex statements and use more complex types
of reasoning.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 61 / 64

http://www.babelnet.org/

RDFS reasoning in Jena

That’s it for today!

Remember the oblig!

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February 62 / 64

	Inference rules
	RDFS Basics
	Backwards and forwards reasoning
	RDFS reasoning in Jena

