Mandatory exercises

IN3060/4060 — Semantic Technologies — Spring 2021

Lecture 6: Introduction to Reasoning with RDF

Jieving Ch @ Oblig 4 published after this lecture.
ieyin en
yine e Hand-in by Friday in two weeks (05/03/2021).

19th February 2021

d hd DEPARTMENT OF UNIVERSITY OF
c INFORMATICS OsLO
IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February
1 .
Today's Plan Outline

@ Inference rules © Inference rules

© RDFS Basics
© Backwards and forwards reasoning

@ RDFS reasoning in Jena

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

Inference rules

Model-theoretic semantics, a quick recap

We introduced interpretations:

Idea: put all letters that are “true” into a set.
@ Define: An interpretation 7 is a set of letters.
@ Letter p is true in interpretation Z if p € Z.
e Eg.,inZ; ={p,q}, pis true, but r is false.
@ Butin Zp = {q,r}, p is false, but r is true.
I I

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

Inference rules

Model-theoretic semantics, a quick recap, contd.

We specified in a mathematically precise way
@ when a formula is true in an interpretation: Z = A
@ when a formula is a tautology (true in all interps.): = A
@ and when one formula entails another: A |= B.
Model-theoretic semantics is well-suited for
@ studying the behaviour of a logic, since

@ it is specified in terms of familiar mathematical objects, such as
o sets of letters

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

Inference rules

Implementational disadvantages of model semantics

Model-theoretic semantics yields an unambigous notion of entailment,
@ But it isn't easy to read off from it what exactly is to be implemented.
@ Much less does it provide an algorithmic means for computing it,
that is
o for actually doing the reasoning,
@ In order to directly use the model-theoretic semantics,

e in principle all interpretations would have to be considered.
o But as there can be infinitely many such interpretations,

e and an algorithm should terminate in finite time

e this is not good.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

Inference rules

Syntactic reasoning

We therefore need means to decide entailment syntactically:
e Syntactic methods operate only on the form of a statement, that is
@ on its concrete grammatical structure,
@ without recurring to interpretations,
@ syntactic reasoning is, in other words, computation.
Interpretations still figure as the theoretical backdrop, as one typically

@ strives to define syntactical methods that are provably equivalent to checking all
interpretations

Syntactic reasoning easier to understand and use than model semantics

@ we will show that first.

IN3060/4060 :: Spring 2021

Lecture 6 :: 10th February

Inference rules

Inference rules

A calculus is usually formulated in terms of

@ a set of axioms which are tautologies,

@ and a set of inference rules for generating new statements.
The general form of an inference rule is:

@ the P; are premises
@ and P is the conclusion.
An inference rule may have,
@ any number of premises (typically one or two),
@ but only one conclusion.
Where [= is the entailment relation, | is the inference relation. We write I' - P if we can

deduce P from the assumptions .

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

Inference rules

Soundness and completeness

Semantics and calculus are typically made to work in pairs:
@ One proves that,

I. every conclusion P derivable in the calculus from a set of premises I, is true in
all interpretations that satisfy . (T'+ P =T = P)

Il. and conversely that every statement P entailed by -interpretations is derivable in the
calculus when the elements of I are used as premises. (I'=P =T I P)

We say that the calculus is
@ sound wrt the semantics, if (1) holds, and

@ complete wrt the semantics, if (II) holds.

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

Inference rules

Inference rules in propositional logic

(Part of) Natural deduction calclulus for propositional logic:

A (A= B)
5 — E
(AAB) (AAB) A B

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

Inference rules

Inference for RDF

In a Semantic Web context, inference always means,
@ adding triples.

More specifically it means,
@ adding new triples to an RDF graph,
@ on the basis of the triples already in it.

From this point of view a rule

may be read as an instruction;

@ “If Py,..., Py are all in the store, add P to the store.”

IN3060/4060 :: Spring 2021

Lecture 6 :: 10th February

Outline

© RDFS Basics

RDF Schema

RDF Schema is a vocabulary defined by W3C.

Namespace:
rdfs: http://www.w3.o0rg/2000/01/rdf-schemat

Originally thought of as a “schema language” like XML Schema.

Actually it isn't — doesn't describe ‘“valid” RDF graphs.
Comes with some inference rules
e Allows to derive new triples mechanically.

@ A very simple modeling language

and (for our purposes) a subset of OWL.

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

RDF Schema concepts

@ RDFS adds the concept of “classes” which are like types or sets of resources.

@ The RDFS vocabulary allows statements about classes.
@ Defined resources:

o rdfs:Resource: The class of resources, everything.

e rdfs:Class: The class of classes.

e rdf:Property: The class of properties (from rdf).
@ Defined properties:
rdf :type: relate resources to classes they are members of.
rdfs:domain: The domain of a relation.
rdfs:range: The range of a relation.
rdfs:subClass0f: Class inclusion.
rdfs:subProperty0f: Property inclusion.

Example

rdfs:Class —

rdf:type

Resource

rdf:type rdf:type
/‘df

5.
s,
Or

mac :Mac@

rdfs:subClassOf

rdf:type rdf:type rdf:type

G;Comp

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

Intuition: Classes as Sets

@ We can think of an rdfs:Class as denoting a set of Resources.

e Not quite correct, but OK for intuition.

RDFS Set Theory
A rdf:type rdfs:Class A is a set of resources
x rdf:type A xeA
A rdfs:subClass0f B ACB

Simple Entailment Rules

@ Entailment with blank nodes and literals

@ Without RDFS and RDF axioms
ARB. ARB
°
AR,:X.S(E1 _:xRB
@ Where _:x is a blank node identifier, that either

e has not been used before in the graph, or
e has been used, but for the same URI/Literal/Blank node.
e _:x represents B in sel and A in se2.

se2

Lecture 6 :: 19th February

Lecture 6 :: 19th February

IN3060/4060 :: Spring 2021

IN3060/4060 :: Spring 2021

Simple Entailment Example

@ Let's create the RDF-graph with the two triples:
© :me :owns :myComp .
© :myComp rdf:type mac:MacBookPro .

Using sel on triple 1, it entails: :me :owns _:x

_:x is not used previously

Using se2 on triple 2 it entails: _:x rdf:type mac:MacBookPro
_:x refers to the same URI

Using se2 the inferred triple :me :owns _:x

entails _:y :owns _:x where _:y refers to the new URI

:owns rdf :type
@ mac :MacBookPro

We can not infer _:x :owns _:x because _:x was used for another URI.

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

RDFS reasoning

RDFS supports three principal kinds of reasoning pattern:
|. Type propagation:
e “The 2CV is a car, and all cars are motorised vehicles, so..."
Il. Property inheritance:
e “Steve lectures at Ifi, and anyone who does so is employed by Ifi, so..."
I1l. Domain and range reasoning:
e “Everything someone has written is a document. Alan has written ‘Computing Machinery
and Intelligence’, therefore..."”
o “All fathers of people are males. James is the father of Karl, therefore...”

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

Type propagation with rdfs:subClass0f

The type propagation rules apply
@ to combinations of rdf:type, rdfs:subClass0f and rdfs:Class,
@ and trigger recursive inheritance in a class taxonomy.

Type propagation rules:

@ Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
x rdf:type B . rdfs9

@ Reflexivity of sub-class relation

A rdf:type rdfs:Class .

A rdfs:subClass0f A . rdfs10
@ Transitivity of sub-class relation

A rdfs:subClass0f B . B rdfs:subClass0f C .
rdfs1l

A rdfs:subClass0f C .

IN3060/4060 :: Spring 2021

Set Theory Analogy

@ Members of subclasses

A rdfs:subClassOf B . x rdf:type A .
x rdf:type B .

ACB x €A
xeB
@ Reflexivity of sub-class relation

A rdf:type rdfs:Class . Ais a set
A rdfs:subClassOf A . ACA
@ Transitivity of sub-class relation

A rdfs:subClassOf B . B rdfs:subClass0f C .
A rdfs:subClass0f C .

ACB BCC
ACC

Lecture 6 :: 19th February

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

Example

RDFS/RDF knowledge base:

ex:Vertebrate rdf:type rdfs:Class .
ex:Mammal rdf:type rdfs:Class .
ex:KillerWhale rdf:type rdfs:Class .

ex:Mammal rdfs:subClass0f ex:Vertebrate .
ex:KillerWhale rdfs:subClass0f ex:Mammal .

ex:Keiko rdf:type ex:KillerWhale .

Inferred triples:

ex:Keiko rdf:type ex:Mammal . (rdfs9)
ex:Keiko rdf:type ex:Vertebrate . (rdfs9)

ex:KillerWhale rdfs:subClassOf ex:Vertebrate . (rdfsll)

ex:Mammal rdfs:subClassOf ex:Mammal . (rdfsl0)
(... and also for the other classes)
IN3060/4060 :: Spring 2021

RDFS Basics

A typical taxonomy

Vertebrate

Reptile Amphibian

Mammal

| Salamander | | Bat | | Whale |

KillerWhale

Figure: A typical taxonomy

Lecture 6 :: 19th February

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

RDFS Basics

Multiple Inheritance

@ A set is a subset of many other sets:
(2,3} C{1,2,3} {23} C {234} {23}CN {23} CP

@ Similarly, a class is usually a subclass of many other classes.

Animal

Large Thing

Aquatic Animal

Mammal

@ This is usually not called a taxonomy, but it's no problem for RDFS.

Second: Property transfer with rdfs:subPropertyOf

Reasoning with properties depends on certain combinations of
@ rdfs:subProperty0f,
@ rdf:type, and
@ rdf:Property
Rules for property reasoning:
@ Transitivity:

p rdfs:subProperty0f q .
p rdfs:subProperty0f r .

q rdfs:subProperty0f r .

rdfs5

@ Reflexivity:
p rdf:type rdf:Property .

p rdfs:subProperty0f p . rdfs6

@ Property transfer:

p rdfs:subProperty0f q . upv

Tq v . rdfs7

Lecture 6 :: 19th February

Lecture 6 :: 19th February

IN3060/4060 :: Spring 2021

IN3060/4060 :: Spring 2021

Intuition: Properties as Relations

If an rdfs:Class is like a set of resources. . .

...then an rdf :Property is like a relation on resources.

@ Remember: not quite correct, but OK for intuition.

RDFS Set Theory
r rdf:type rdf:Property r is a relation on resources
xXry (x,y)er
r rdfs:subProperty0f s rcCs
@ Rules:
pCgq qgCr p a relation pCgq (u,v) €ep
pcr pCp (u,v) €q

Lecture 6 :: 19th February

IN3060/4060 :: Spring 2021

RDFS Basics

Example I: Harmonizing terminology

Integrating data from multiple sources in general requires:
@ Harmonisation of the data under a common vocabulary.
The aim is to
@ make similar data answer to the same standardised queries,
o thus making queries independent of the terminology of the sources.
For instance:
@ Suppose that a legacy bibliography system S uses :author, where
@ another system T uses :writer.
And suppose we wish to integrate S and T under a common scheme,

@ for instance Dublin Core.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

Solution

From Ontology:
:writer rdf:type rdf:Property .
rauthor rdf:type rdf:Property .
rauthor rdfs:subProperty0f dcterms:creator .
:writer rdfs:subProperty0f dcterms:creator .
And Facts:
ex:knausgard :writer ex:minKamp .
ex:hamsun :author ex:sult
Infer:
ex:knausgard dcterms:creator ex:minKamp .

ex:hamsun dcterms:creator ex:sult

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

Consequences

Any individual for which :author or :writer is defined,
will have the same value for the dcterms:creator property.
The work of integrating the data is thus done by the reasoning engine,

instead of by a manual editing process.

Legacy applications that use e.g. author can operate unmodified.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

Example Il: Keeping track of employees

Large organizations (e.g. universities) offer different kinds of contracts;
o for tenured positions (professors, assisting professors, lecturers),
o for research associates (Post Docs),
o for PhD students,
o for subcontracting.
Employer/employee information can be read off from properties such as:
:profAt (professorship at),
:tenAt (tenure at),
:conTo (contracts to),
:funBy (is funded by) ,
:recSchol (receives scholarship from).

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

RDFS Basics

Organising the properties

:empBy

:permEmp ‘tempEmp

Figure: A hierarchy of employment relations

@ Note: doesn't have to be tree-shaped.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

RDFS Basics

Querying the inferred model

Formalising the tree:
:profAt rdf:type rdfs:Property .
:tenAt rdf:type rdfs:Property .
:profAt rdfs:subProperty0f :tenAt
..... and so forth.

Given a data set such as:

| |
:Martin :profAt :UiO .

:0le :fundBy :Ui0 .

| :permEmp | | :tempEmp |

:Steve :conTo :0LF .

[ctenat] [fundBy]| [iconTo]

:Trond :recSchol :BI .
:Jenny :tenAt :SSB .

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

RDFS Basics

cont.

We may now query on different levels of abstraction :

Temporary employees

SELECT ?7emp WHERE {?7emp :tempEmp _:x .}
— Ole, Steve, Trond

Permanent employees

SELECT 7emp WHERE {7emp :permEmp _:x .}
— Martin, Jenny

All employees

SELECT ?7emp WHERE {?7emp :empBy _:x .}
— Martin, Jenny, Ole, Steve, Trond

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

RDFS Basics

Third pattern: Typing data based on their use

Triggered by combinations of
@ rdfs:range
@ rdfs:domain
@ rdf:type
Rules for domain and range reasoning :

@ Typing first coordinates:

p rdfs:domain A . Xpy .
- rdfs2
x rdf:type A .
@ Typing second coordinates:
p rdfs:range B . Xpy .
y rdf:type B . rdfs3

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

RDFS Basics

Domain and range contd.

o rdfs:domain and rdfs:range tell us how a property is used.
o rdfs:domain types the possible subjects of these triples,
@ whereas rdfs:range types the possible objects,

@ When we assert that property p has domain C, we are saying

e that whatever resource is linked to anything by p
e this resource must be of type C.

IN3060/4060 :: Spring 2021

Lecture 6 :: 10th February

RDFS Basics

Domain and Range of Relations

@ Given a relation R from Ato B (R C Ax B)

@ The domain of R is the set of all x with xR ---:
domR = {x € A| xRy for some y € B}
@ The range of R is the set of all y with --- R y:
rg R = {y € B | xRy for some x € A}
@ Example:
e R={(1,4),(1,00),(2,0)}

e domR = {1, 2}
e rgR={A,0,0}

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

RDFS Basics

Set intuitions for rdfs:domain and rdfs:range

o If an rdfs:Class is like a set of resources and an rdf :Property is like a relation on

resources. . .
RDFS Set Theory
r rdfs:domain A domr CA
r rdfs:range B rgr CB
@ Rules:
domp C A (x,y)ep
x €A
rgpC B (xy)€p
yeB

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

RDFS Basics

Example |: Combining domain, range and subClassOf

Suppose we have a class hierarchy that includes:
:SymphonyOrchestra rdfs:subClass0f :Ensemble .

and a property :conductor whose domain and range are:
:conductor rdfs:domain :SymphonyOrchestra .
:conductor rdfs:range :Person .

Now, if we assert
:0sloPhilharmonic :conductor :Petrenko .

we may infer;
:0sloPhilharmonic rdf:type :SymphonyOrchestra .
:0sloPhilharmonic rdf:type: Ensemble.
:Petrenko rdf:type :Person .

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

RDFS Basics

Conductors and ensembles

:Ensemble

:Person

rdfs:range
rdfs:subClass0f

rdfs:domain
{ :SymphonyOrchestra

:conductor

IN3060/4060 :: Spring 2021

Lecture 6 :: 10th February

RDFS Basics

Example II: Filtering information based on use

Consider once more the dataset:
:Martin :profAt :UiO .
:0le :fundBy :UiO .
:Steve :conTo :0LF .
:Trond :recSchol :BI .
:Jenny :tenAt :SSB .
and suppose we wish to filter out everyone but the freelancers:
@ State that only freelancers :conTo an organisation,

@ i.e. introduce a class :Freelancer,
@ and declare it to be the domain of :conTo:

:Freelancer rdf:type rdfs:Class .
:conTo rdfs:domain :Freelancer .

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

RDFS Basics

Finding the freelancers

The class of freelancers is generated by the rdfs2 rule,

:conTo rdfs:domain :Freelancer . :Steve :conTo :OLF .
:Steve rdf:type :Freelancer

rdfs2

and may be used as a type in SPARQL (reasoner presupposed):

Finding the freelancers

SELECT ?7freelancer WHERE {
?freelancer rdf:type :Freelancer

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

RDFS axiomatic triples (excerpt)

Some triples are axioms: they can always be added to the knowledge base.
@ Only resources have types:
rdf:type rdfs:domain rdfs:Resource .
@ types are classes:
rdf:type rdfs:range rdfs:Class .
@ Ranges apply only to properties:
rdfs:range rdfs:domain rdf:Property .
@ Ranges are classes:
rdfs:range rdfs:range rdfs:Class .
Only properties have subproperties:
rdfs:subProperty0f rdfs:domain rdf:Property .
Only classes have subclasses:
rdfs:subClass0f rdfs:domain rdfs:Class .

@ ... (another 30 or so)

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

Using the Axiomatic Triples

@ From the statement
:conductor rdfs:range :Person

@ We can derive:
e :conductor rdf:type rdf:Property
o :Person rdf:type rdfs:Class
e :conductor rdf:type rdfs:Resource
o rdf:Property rdf:type rdfs:Class
e :Person rdfs:type rdfs:Resource
e rdfs:Class rdfs:type rdfs:Class

@ In OWL, there are some simplification which make this superfluous.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

Writing proofs

When writing proofs, we:
@ write one triple per line,
@ enumerate the lines,
@ write the rule name along with the line numbers corresponding to the assumptions,
@ introduce triples from the knowledge base with the rule name P.
o E.g. given the knowledge base:
:SymphonyOrchestra rdfs:subClass0f :Ensemble .
:conductor rdfs:domain :SymphonyOrchestra .
:conductor rdfs:range :Person .
:0sloPhilharmonic :conductor :Petrenko .

o We write:
:0sloPhilharmonic :conductor :Petrenko . —P
:conductor rdfs:domain :SymphonyOrchestra . —P

:0sloPhilharmonic rdf:type :SymphonyOrchestra . —rdfs3, 1,2
:SymphonyOrchestra rdfs:subClass0f :Ensemble . — P
:0sloPhilharmonic rdf:type :Ensemble . — rdfs9, 3, 4

Lecture 6 :: 19th February

IN3060,/4060 :: Spring 2021

Backwards and forwards reasoning
Outline

© Backwards and forwards reasoning

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

Forward chaining vs. backward chaining

Forward chaining:
@ reasoning from premises to conclusions of rules
@ adds facts corresponding to the conclusions of rules
@ entailed facts are stored and reused

@ reasoning is up front

Backward chaining:
@ reasoning from conclusions to premises
@ '...what needs to be true for this conclusion to hold?’

@ reasoning is on-demand

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

Backwards and forwards reasoning

Forward chaining inference

Entailed facts Entailed facts
= = RN
\ \ 7z ~
. AN
/7\ /7\ // \\
/ / [Fact 8] [Fact 7]
/l /l TN T
RN l
1 1 1 —
I I I N
(1) [Fmz] [s
Explicit facts Explicit facts

Figure: When a fact is added, all entailments are computed and stored.

IN3060/4060 :: Spring 2021

Lecture 6 :: 10th February

Backwards and forwards reasoning

Benefits of forward chaining

Precomputing and storing answers is suitable for data which is:
o frequently accessed,
@ expensive to compute,
o relatively static,
@ and small enough to store efficiently.

Benefits:
@ forward chaining optimizes retrieval

@ no additional inference is necessary at query time

Backwards and forwards reasoning

Forward chaining and truth-maintenance

Entailed facts Entailed facts
- ~ PN
\ \ 7 ~
\\ ‘\ 7 __FactQ
’ A F
\ [’ \
* 7 ’ N
1 / /
/ ! [Fact 8] [Fact 7]
/) /) TN T
N
NG l
1 1 1 —
I I I N
(Factr] [CFact2] (CFacto
Explicit facts Explicit facts

Figure: When a fact is added, all entailments are computed and stored.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

Lecture 6 :: 19th February

IN3060/4060 :: Spring 2021

Backwards and forwards reasoning

Forward chaining and truth-maintenance

Entailed facts Entailed facts

10

= =

\ \

\ \ G |

\ \ 1_ Facto_

\ \

B B

/ L T 2 R B}
/ / ! Fact8 | _Fact7
1 T T AT
/ /

Fact 1 Fact 2 | Facte !
[Fact6 !

Explicit facts

Explicit facts

Figure: When a fact is removed, everything that comes with it must go too.

Backwards and forwards reasoning

Drawbacks of forward chaining

Drawbacks:
@ increases storage size
@ increases the overhead of insertion
o removal is highly problematic
@ truth maintenance usually not implemented in RDF stores
o

problematic for distributed and/or dynamic systems
e rules could apply to premisses on different disks, etc.

IN3060/4060 :: Spring 2021 Lecture 6 :: 10th February

IN3060/4060 :: Spring 2021 Lecture 19th February

Backwards and forwards reasoning

Backward chaining inference

Entailed facts
I
I
|
// \\
. N
. N
. N
. N
' N
> I
. S \:/
[Fact1] [Fact2] [Fact3]
Explicit facts

Figure: Backward chaining uses rules to expand queries.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

Backward chaining: Example

RDFS/RDF knowledge base:
ex:Mammal rdfs:subClassOf ex:Vertebrate .
ex:KillerWhale rdfs:subClassOf ex:Mammal .
ex:Lion rdfs:subClassOf ex:Mammal . A rdfs:subClassOf B . x rdf:type A .
x rdf:type B .

ex:Keiko rdf:type ex:KillerWhale .

ex:Simba rdf:type ex:Lion .
Query:

SELECT ?x WHERE { ?x rdf:type ex:Vertebrate . }
Inferred triples:

?x rdf:type ex:Vertabrate .

?x rdf:type ex:Mammal . (rdfs9)
?x rdf:type ex:KillerWhale . (rdfs9) = ?x = ex:Keiko
?x rdf:type ex:Lion . (rdfs9) = ?x = ex:Simba

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

Backwards and forwards reasoning

Drawbacks and benefits of backward chaining

Computing answers on demand is suitable where:
@ there is little need for reuse of computed answers
@ answers can be efficiently computed at runtime

@ answers come from multiple dynamic sources

Benefits:
@ only the relevant inferences are drawn
@ truth maintenance is automatic

@ no persistent storage space needed

Drawbacks:
@ trades insertion overhead for access overhead
@ without caching, answers must be recomputed every time

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

QOutline

@ RDFS reasoning in Jena

IN3060/4060 :: Spring 2021

Lecture 6 :: 10th February

Quick facts

In Jena there is
@ a zillion ways to configure and plug-in a reasoner
@ some seem rather haphazard

Imposing order at the cost of precision we may say that. ..
@ reasoners fall into one of two categories
o built-in- and
o external reasoners
@ ...and are combined with two kinds of model
o models of type InfModel, and
e models of type OntModel
o Different reasoners implement different logics, e.g
o Transitive reasoning,
o RDFS,
o OWL

IN3060/4060 :: Spring 2021

Lecture 6 :: 19th February

RDFS reasoning in Jena

The road most often travelled. . .

Convenience methods are used to construct standard reasoners or inference models

@ Get standard reasoners from ReasonerRegistry:
Reasoner reasoner = ReasonerRegistry.getRDFSReasoner();

Get inference models with standard reasoners from ModelFactory:
InfModel inf = ModelFactory.createRDFSModel (rawModel) ;
What's the point of the long winded way?

e Can ask for non-builtin provers, e.g. Pellet
e Can configure reasoners

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

RDFS reasoning in Jena

Example I: Using a convenience method

A simple RDFS model

Model sche = FileManager.get () .loadModel (aURI) ;
Model dat = FileManager.get () .loadModel (bURI) ;

InfModel inferredModel = ModelFactory.createRDFSModel (sche, dat);

method createRDFSModel () returns an InfModel

@ An InfModel has a basic inference API, such as;
getDeductionsModel () which returns the inferred triples,
getRawModel () which returns the base triples,
getReasoner () which returns the RDFS reasoner,

o
L
o
o getDerivation(stmt) which returns a trace of the derivation

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

Example II: Using static methods in the registry

using ModelFactory.createInfModel

Model sche = FileManager.get () .loadModel (aURI) ;
Model dat = FileManager.get().loadModel (bURI) ;

Reasoner reas = ReasonerRegistry.getOWLReasoner() ;
InfModel inf = ModelFactory.createInfModel(reas, sche, dat);

Virtues of this approach:

@ we retain a reference to the reasoner,
@ that can be used to configure it

e e.g. to do backwards or forwards chaining
e ... mind you, not all reasoners can do both

@ similar for built-in and external reasoners alike

IN3060/4060 :: Spring 2021

Lecture 6 :: 10th February

RDFS reasoning in Jena

Conclusion

@ We have seen that by modelling knowledge using the URIs in the RDF and RDFS
vocabularies (e.g. rdf :type, rdfs:subClass0f, rdfs:range), the computer can derive
new triples, that follows from our original triples.

@ The rules were very simple (e.g. if x rdf:type A and A rdfs:subClassOf B then x
rdf:type B).

@ However, note that even the most complex mathematical proofs can be broken down into
equally simple steps.

@ It is when we have large knowledge bases and we can apply thousands or millions of
derivations that the reasoning becomes really interesting.

o Example of large ontology, BabelNet: http://www.babelnet.org/

o OWL will also allow us to express more complex statements and use more complex types
of reasoning.

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

RDFS reasoning in Jena

That's it for today!

Remember the oblig!

IN3060/4060 :: Spring 2021 Lecture 6 :: 19th February

