
IN3060/4060 – Semantic Technologies – Spring 2021

Lecture 8: Model Semantics & Reasoning

Jieying Chen

5th March 2021

Department of
Informatics

University of
Oslo

Oblig 5

Published today
First delivery due 19th of March
Final delivery 2 weeks after feedback
Extra question for IN4060 students
“Real” semantics of RDF and RDFS
Foundations book: Section 3.2
Still OK to ignore some complications, see oblig text
We provide an excerpt of Sect. 3.2 with unimportant parts removed.
Go to group sessions!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 2 / 46

Today’s Plan

1 Repetition: RDF semantics

2 Literal Semantics

3 Blank Node Semantics

4 Properties of Entailment by Model Semantics

5 Entailment and Derivability

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 3 / 46

Repetition: RDF semantics

Outline

1 Repetition: RDF semantics

2 Literal Semantics

3 Blank Node Semantics

4 Properties of Entailment by Model Semantics

5 Entailment and Derivability

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 4 / 46

Repetition: RDF semantics

Restricting RDF/RDFS

We will simplify things by only looking at certain kinds of RDF graphs.
No triples “about” properties, classes, etc., except RDFS
Assume Resources are divided into four disjoint types:

Properties like foaf:knows, dc:title
Classes like foaf:Person

Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

All triples have one of the forms:
individual property individual .

individual rdf:type class .

class rdfs:subClassOf class .

property rdfs:subPropertyOf property .

property rdfs:domain class .

property rdfs:range class .

Forget blank nodes and literals for a while!
IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 5 / 46

Repetition: RDF semantics

Short Forms

Resources and Triples are no longer all alike
No need to use the same general triple notation
Use alternative notation

Triples Abbreviation
indi prop indi . r(i1, i2)
indi rdf:type class . C (i1)

class rdfs:subClassOf class . C v D

prop rdfs:subPropertyOf prop . r v s

prop rdfs:domain class . dom(r ,C)
prop rdfs:range class . rg(r ,C)

This is called “Description Logic” (DL) Syntax
Used much in particular for OWL

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 6 / 46

Repetition: RDF semantics

Example

Triples:
ws:romeo ws:loves ws:juliet .

ws:juliet rdf:type ws:Lady .

ws:Lady rdfs:subClassOf foaf:Person .

ws:loves rdfs:subPropertyOf foaf:knows .

ws:loves rdfs:domain ws:Lover .

ws:loves rdfs:range ws:Beloved .

DL syntax, without namespaces:
loves(romeo, juliet)
Lady(juliet)

Lady v Person

loves v knows

dom(loves, Lover)
rg(loves,Beloved)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 7 / 46

Repetition: RDF semantics

Interpretations for RDF

To interpret the six kinds of triples, we need to know how to interpret
Individual URIs as real or imagined objects
Class URIs as sets of such objects
Property URIs as relations between these objects

A DL-interpretation I consists of
A set �I , called the domain (sorry!) of I
For each individual URI i , an element iI 2 �I

For each class URI C , a subset CI ✓ �I

For each property URI r , a relation r
I ✓ �I ⇥�I

Given these, it will be possible to say whether a triple holds or not.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 8 / 46

Repetition: RDF semantics

An example “intended” interpretation

�I1 =

⇢
, ,

�

romeo
I1 = juliet

I1 =

Lady
I1 =

⇢ �
Person

I1 = �I1

Lover
I1 = Beloved

I1 =

⇢
,

�

loves
I1 =

⇢⌧
,

�
,

⌧
,

��

knows
I1 = �I1 ⇥�I1

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 9 / 46

Repetition: RDF semantics

An example “non-intended” interpretation

�I2 = N = {1, 2, 3, 4, . . .}
romeo

I2 = 17
juliet

I2 = 32
Lady

I2 = {2n | n 2 N} = {2, 4, 8, 16, 32, . . .}
Person

I2 = {2n | n 2 N} = {2, 4, 6, 8, 10, . . .}
Lover

I2 = Beloved
I2 = N

loves
I2 =<= {hx , yi | x < y}

knows
I2 == {hx , yi | x y}

Just because names (URIs) look familiar, they don’t need to denote what we think!
In fact, there is no way of ensuring they denote only what we think!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 10 / 46

Repetition: RDF semantics

Validity in Interpretations

Given an interpretation I, define |= as follows:
I |= r(i1, i2) iff

⌦
i
I
1 , i

I
2
↵
2 r

I

I |= C (i) iff i
I 2 C

I

I |= C v D iff C
I ✓ D

I

I |= r v s iff r
I ✓ s

I

I |= dom(r ,C) iff dom r
I ✓ C

I

I |= rg(r ,C) iff rg rI ✓ C
I

For a set of triples A (any of the six kinds)
A is valid in I, written

I |= A

iff I |= A for all A 2 A.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 11 / 46

Repetition: RDF semantics

Validity Examples

I1 |= loves(juliet, romeo) because
⌧

,

�
2 loves

I1 =

⇢⌧
,

�
,

⌧
,

��

I2 6|= Person(romeo) because
romeo

I2 = 17 62 Person
I2 = {2, 4, 6, 8, 10, . . .}

I1 |= Lover v Person because

Lover
I1 =

⇢
,

�
✓ Person

I1 =

⇢
, ,

�

I2 6|= Lover v Person because
Lover

I2 = N and Person
I2 = {2, 4, 6, 8, 10, . . .}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 12 / 46

Repetition: RDF semantics

Finding out stuff about Romeo and Juliet

The “Real World”Interpretations

I1

I2

17 32

I3

I4

Statements

loves(romeo, juliet)
Lady(juliet)

Lady v Person
loves v knows

dom(loves, Lover)
rg(loves, Beloved)

loves(juliet, romeo)

Lover v Person

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 13 / 46

Repetition: RDF semantics

Entailment

Given a set of triples A (any of the six kinds)
And a further triple T (also any kind)
T is entailed by A, written A |= T

iff
For any interpretation I with I |= A
I |= T .

Example:
A = {. . . , Lady(juliet), Lady v Person, . . .} as before
A |= Person(juliet) because. . .
in any interpretation I. . .
if julietI 2 Lady

I and Lady
I ✓ Person

I . . .
then by set theory juliet

I 2 Person
I

Not about T being (intuitively) true or not
Only about whether T is a consequence of A

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 14 / 46

Repetition: RDF semantics

Countermodels

If A 6|= T ,. . .
then there is an I with

I |= A
I 6|= T

Vice-versa: if I |= A and I 6|= T , then A 6|= T

Such an I is called a counter-model (for the assumption that A entails T)
To show that A |= T does not hold:

Describe an interpretation I (using your fantasy)
Prove that I |= A (using the semantics)
Prove that I 6|= T (using the semantics)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 15 / 46

Literal Semantics

Outline

1 Repetition: RDF semantics

2 Literal Semantics

3 Blank Node Semantics

4 Properties of Entailment by Model Semantics

5 Entailment and Derivability

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 16 / 46

Literal Semantics

Motivating example

Consider again the set of triples A:
loves(romeo, juliet)
Lady(juliet)

Lady v Person

loves v knows

dom(loves, Lover)
rg(loves,Beloved)

We can now say something about if A is valid in an interpretation I
Say we add the triple T = age(juliet, "13")
Is this new set of triples valid in any of our interpretations I1 or I2, why?

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 17 / 46

Literal Semantics

Simplifying Literals

Literals can only occur as objects of triples
Have datatype, can be with or without language tag
The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

ex:me ex:likes "some string" .

We simplify things by:
considering only string literals without language tag, and
allowing either resource objects or literal objects for any predicate

Five types of resources:
Object Properties like foaf:knows

Datatype Properties like dc:title, foaf:name
Classes like foaf:Person

Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

Why? – simpler, object/datatype split is in OWL
IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 18 / 46

Literal Semantics

Allowed triples

Allow only triples using object properties and datatype properties as intended

Triples Abbreviation
indi o-prop indi . r(i1, i2)
indi d-prop "lit" . a(i , l)
indi rdf:type class . C (i1)

class rdfs:subClassOf class . C v D

o-prop rdfs:subPropertyOf o-prop . r v s

d-prop rdfs:subPropertyOf d-prop . a v b

o-prop rdfs:domain class . dom(r ,C)
o-prop rdfs:range class . rg(r ,C)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 19 / 46

Literal Semantics

Interpretation with Literals

Let ⇤ be the set of all literal values, i.e. all strings
Chosen once and for all, same for all interpretations

A DL-interpretation I consists of
A set �I , called the domain of I
Interpretations i

I 2 �I , CI ✓ �I , and r
I ✓ �I ⇥�I as before

For each datatype property URI a, a relation a
I ✓ �I ⇥ ⇤

Semantics:
I |= r(i1, i2) iff

⌦
i
I
1 , i

I
2
↵
2 r

I for object property r

I |= a(i , l) iff
⌦
i
I , l

↵
2 a

I for datatype property a

I |= r v s iff r
I ✓ s

I for object properties r , s
I |= a v b iff a

I ✓ b
I for datatype properties a, b

Note: Literals l are in ⇤, don’t need to be interpreted.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 20 / 46

Literal Semantics

Example: Interpretation with a Datatype Property

�I1 =

⇢
, ,

�

loves
I1 =

⇢⌧
,

�
,

⌧
,

��

knows
I1 = �I1 ⇥�I1

age
I1 =

⇢⌧
, "16"

�
,

⌧
, "almost 14"

�
,

⌧
, "13"

��

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 21 / 46

Blank Node Semantics

Outline

1 Repetition: RDF semantics

2 Literal Semantics

3 Blank Node Semantics

4 Properties of Entailment by Model Semantics

5 Entailment and Derivability

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 22 / 46

Blank Node Semantics

Motivating example

�I1 =

⇢
, ,

�

loves
I1 =

⇢⌧
,

�
,

⌧
,

��
knows

I1 = �I1 ⇥�I1

age
I1 =

⇢⌧
, "16"

�
,

⌧
, "almost 14"

�
,

⌧
, "13"

�
,

�

Let b1 and b2 be blank nodes
A = {age(b1, "16"), loves(b1, b2), age(b2, "13")}
Is A valid in I1? why?

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 23 / 46

Blank Node Semantics

Blank Nodes

Remember: Blank nodes are just like resources. . .
. . . but without a “global” URI.
Blank node has a local “blank node identifier” instead.

A blank node can be used in several triples. . .
. . . but they have to be in the same “file” or “data set”
Semantics of blank nodes require looking at a set of triples

But we still need to interpret single triples.
Solution: pass in blank node interpretation, deal with sets later!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 24 / 46

Blank Node Semantics

Blank Node Valuations

Given an interpretation I with domain �I . . .
A blank node valuation �. . .
. . . gives a domain element or literal value �(b) 2 �I [⇤. . .
. . . for every blank node ID b

Now define ·I,�
i
I,� = i

I for individual URIs i

l
I,� = l for literals l

b
I,� = �(b) for blank node IDs b

Interpretation:
I,� |= r(x , y) iff

⌦
x
I,� , yI,�↵ 2 r

I . . .
. . . for any legal combination of URIs/literals/blank nodes x , y
. . . and object/datatype property r

I,� |= C (x) iff x
I,� 2 C

I,�

. . . for any URI/blank node x

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 25 / 46

Blank Node Semantics

Sets of Triples with Blank Nodes

Given a set A of triples with blank nodes. . .
I,� |= A iff I,� |= A for all A 2 A

A is valid in I
I |= A

if there is a � such that I,� |= A

I.e. if there exists some valuation for the blank nodes that makes all triples true.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 26 / 46

Blank Node Semantics

Example: Blank Node Semantics

�I1 =

⇢
, ,

�

loves
I1 =

⇢⌧
,

�
,

⌧
,

��
knows

I1 = �I1 ⇥�I1

age
I1 =

⇢⌧
, "16"

�
,

⌧
, "almost 14"

�
,

⌧
, "13"

�
,

�

Let b1, b2, b3 be blank nodes
A = {age(b1, "16"), knows(b1, b2), loves(b2, b3), age(b3, "13")}
Valid in I1?

Pick �(b1) = �(b2) = , �(b3) = .

Then I1,� |= A
So, yes, I1 |= A.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 27 / 46

Blank Node Semantics

Entailment with Blank Nodes

Entailment is defined just like without blank nodes:
Given sets of triples A and B,
A entails B, written A |= B
iff for any interpretation I with I |= A, also I |= B.

This expands to: for any interpretation I
such that there exists a �1 with I,�1 |= A
there also exists a �2 such that I,�2 |= B

Two different blank node valuations!
Can evaluate the same blank node name differently in A and B.
Example:

{loves(b1, juliet), knows(juliet, romeo), age(juliet, "13")}
|= {loves(b2, b1), knows(b1, romeo)}

Simple entailment: entailment with blank nodes, but no RDFS semantics

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 28 / 46

Blank Node Semantics

Simple Entailment: Rules and Example

r(u, x)
se1

r(u, b1)

r(u, x)
se2

r(b1, x)

Where b1 is a blank node identifier, that either
has not been used before in the graph, or
has been used, but for the same URI/Literal/Blank node x resp. u.

{loves(b1, juliet), knows(juliet, romeo), age(juliet, "13")}

loves(b2, juliet) se2, (b2 ! b1)

loves(b2, b3) se1, (b3 ! juliet)

knows(b3, romeo) se2, (reusing b3 ! juliet)

|= {loves(b2, b3), knows(b3, romeo)} renamed blank nodes in B!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 29 / 46

Properties of Entailment by Model Semantics

Outline

1 Repetition: RDF semantics

2 Literal Semantics

3 Blank Node Semantics

4 Properties of Entailment by Model Semantics

5 Entailment and Derivability

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 30 / 46

Properties of Entailment by Model Semantics

Monotonicity

Assume A |= B
Now add information to A, i.e. A0 ◆ A
Then B is still entailed: A0 |= B

We say that RDF/RDFS entailment is monotonic

What would non-monotonic reasoning be like?
{Bird v CanFly ,Bird(tweety)} |= CanFly(tweety)
{. . . ,Penguin v Bird ,Penguin(tweety),Penguin v ¬CanFly} 6|= CanFly(tweety)
Interesting for human-style reasoning
Hard to combine with semantic web technologies

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 31 / 46

Properties of Entailment by Model Semantics

Expressive limitations of RDFS

Note that,
RDFS cannot express inconsistencies, so any RDFS graph is consistent.
RDFS has no notion of negation at all

For instance, the two triples
ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.
(It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

Therefore,
RDFS supports no reasoning services that require consistency-checking.
If negation or consistency-checks are needed, one must turn to OWL.
More about that next week.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 32 / 46

Properties of Entailment by Model Semantics

Entailment and SPARQL

Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. ?y :q ?z.}
The query means: find x , y , z with p(x , y) and q(y , z)

Semantics: find x , y , z with
KB |= {p(x , y), q(y , z)}

E.g. an answer
x ex:a y ifi:in3060 z "a"

means
KB |= {p(a, in3060), q(in3060, "a")}

Monotonicity:
KB [{· · · } |= {p(a, in3060), q(in3060, "a")}

Answers remain valid with new information!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 33 / 46

Properties of Entailment by Model Semantics

Database Lookup versus Entailment

Knowledge base KB :

Person(harald) Person(haakon) isFatherOf (harald , haakon)

Question: is there a person without a father?
Ask a database:

Yes: harald

ask a semantics based system
find x with KB |= ‘x has no father’
No answer: don’t know

Why?
Monotonicity!
KB [{isFatherOf (olav , harald)} |= harald does have a father

In some models of KB , harald has a father, in others not.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 34 / 46

Properties of Entailment by Model Semantics

Open World versus Closed World

Closed World Assumption (CWA)
If a thing is not listed in the knowledge base, it doesn’t exist
If a fact isn’t stated (or derivable) it’s false
Typical semantics for database systems

Open World Assumption (OWA)
There might be things not mentioned in the knowledge base
There might be facts that are true, although they are not stated
Typical semantics for logic-based systems

What is best for the Semantic Web?
Will never know all information sources
Can “discover” new information by following links
New information can be produced at any time
Therefore: Open World Assumption

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 35 / 46

Properties of Entailment by Model Semantics

Consequences of the Open World Assumption

Robust under missing information
Any answer given by

Entailment
KB |= Person(juliet)

SPARQL query answering (entailment in disguise)

KB |= {p(a, in3060), q(in3060, “a”)}

remains valid when new information is added to KB

Some things make no sense with this semantics
Queries with negation (“not”)

might be satisfied later on
Queries with aggregation (counting, adding,. . .)

can change when more information comes

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 36 / 46

Entailment and Derivability

Outline

1 Repetition: RDF semantics

2 Literal Semantics

3 Blank Node Semantics

4 Properties of Entailment by Model Semantics

5 Entailment and Derivability

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 37 / 46

Entailment and Derivability

Two Kinds of Consequence?

We now have two ways of describing logical consequence. . .
1. Using RDFS rules:

:Lady rdfs:subClassOf :Person . :juliet a :Lady .

rdfs9
:juliet a :Person .

Lady v Person Lady(juliet)
rdfs9

Person(juliet)

2. Using the model semantics
If I |= Lady v Person and I |= Lady(juliet). . .
. . . then Lady

I ✓ Person
I and juliet

I 2 Lady
I . . .

. . . so by set theory, julietI 2 Person
I . . .

. . . and therefore I |= Person(juliet).

Together: {Lady v Person, Lady(juliet)} |= Person(juliet)

What is the connection between these two?
IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 38 / 46

Entailment and Derivability

Entailment and Derivability

Actually, two different notions!
Entailment is defined using the model semantics.
The rules say what can be derived

derivability
provability

Entailment
is closely related to the meaning of things
higher confidence in model semantics than in a bunch of rules
The semantics given by the standard, rules are just “informative”
can’t be directly checked mechanically (1 many interpretations)

Derivability
can be checked mechanically
forward or backward chaining

Want these notions to correspond:
A |= B iff B can be derived from A

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 39 / 46

Entailment and Derivability

Soundness

Two directions:
1 If A |= B then B can be derived from A
2 If B can be derived from A then A |= B

Nr. 2 usually considered more important:
If the calculus says that something is entailed then it is really entailed.
The calculus gives no “wrong” answers.
This is known as soundness
The calculus is said to be sound (w.r.t. the model semantics)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 40 / 46

Entailment and Derivability

Showing Soundness

Soundness of every rule has to be (manually) checked!
E.g. rdfs11,

A v B B v C
rdfs11

A v C

Soundness means that
For any choice of three classes A, B , C
{A v B ,B v C} |= A v C

Proof:
Let I be an arbitrary interpretation with I |= {A v B ,B v C}
Then by model semantics, AI ✓ B

I and B
I ✓ C

I

By set theory, AI ✓ C
I

By model semantics, I |= A v C

Q.E.D.
This can be done similarly for all of the rules.

All given SE/RDF/RDFS rules are sound w.r.t. the model semantics!
IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 41 / 46

Entailment and Derivability

Completeness

Two directions:
1 If A |= B then B can be derived from A
2 If B can be derived from A then A |= B

Nr. 1 says that any entailment can be found using the rules.
I.e. we have “enough” rules.
Can’t be checked separately for each rule, only for whole rule set
Proofs are more complicated than soundness

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 42 / 46

Entailment and Derivability

Simple Entailment: Completeness

Simple entailment is entailment
With blank nodes and literals
but without RDFS
and without RDF axioms like rdf:type rdf:Property .

se1 and se2 are complete for simple entailment, i.e.
if A simply entails B

then A can be extended with se1 and se2 to A0 with B ✓ A0.

(requires blank node IDs in A and B to be disjoint)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 43 / 46

Entailment and Derivability

Rules for (simplified) RDF/RDFS

See Foundations book, Sect. 3.3
Many rules and axioms not needed for our “simplified” RDF/RDFS

rdfs:range rdfs:domain rdfs:Class ...

Important rules for us:

dom(r ,A) r(x , y)
rdfs2

A(x)

rg(r ,B) r(x , y)
rdfs3

B(y)

r v s s v t

rdfs5
r v t

rdfs6
r v r

r v s r(x , y)
rdfs7

s(x , y)

A v B A(x)
rdfs9

B(x) rdfs10
A v A

A v B B v C

rdfs11
A v C

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 44 / 46

Entailment and Derivability

Complete?

These rules are not complete for our RDF/RDFS semantics
For instance

{rg(loves,Beloved),Beloved v Person} |= rg(loves,Person)

Because for every interpretation I,
if I |= {rg(loves,Beloved),Beloved v Person}
then by semantics, for all hx , yi 2 loves

I , y 2 Beloved
I ; and Beloved

I ✓ Person
I .

Therefore, by set theory, for all hx , yi 2 loves
I , y 2 Person

I .
By semantics, I |= rg(loves,Person)

But there is no way to derive this using the given rules
There is no rule which allows to derive a range statement.

We could now add rules to make the system complete
Won’t bother to do that now. Will get completeness for OWL.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 45 / 46

Entailment and Derivability

Outlook

RDFS allows some simple modelling: “all ladies are persons”
The following lectures will be about OWL
Will allow to say things like

Every car has a motor
Every car has at least three parts of type wheel
A mother is a person who is female and has at least one child
The friends of my friends are also my friends
A metropolis is a town with at least a million inhabitants
. . . and many more

Modeling will not be done by writing triples manually:
Will use ontology editor Protégé.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March 46 / 46

