IN3060/4060 — Semantic Technologies — Spring 2021

Lecture 8: Model Semantics & Reasoning

Jieying Chen

5th March 2021

University of
Oslo

o e Department of
c Informatics

T
Oblig 5

Published today

First delivery due 19th of March

Final delivery 2 weeks after feedback

Extra question for IN4060 students

“Real” semantics of RDF and RDFS

Foundations book: Section 3.2

Still OK to ignore some complications, see oblig text

We provide an excerpt of Sect. 3.2 with unimportant parts removed.

Go to group sessions!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

-
Today's Plan

@ Repetition: RDF semantics

© Literal Semantics

© Blank Node Semantics

@ Properties of Entailment by Model Semantics

© Entailment and Derivability

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Outline

@ Repetition: RDF semantics

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:

e Properties like foaf :knows, dc:title

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:

e Properties like foaf :knows, dc:title
o Classes like foaf :Person

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:

e Properties like foaf :knows, dc:title

o (lasses like foaf :Person

e Built-ins, a fixed set including rdf:type, rdfs:domain, etc.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS

@ Assume Resources are divided into four disjoint types:

Properties like foaf :knows, dc:title

Classes like foaf :Person

Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
e Properties like foaf :knows, dc:title
o C(lasses like foaf :Person
e Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
o Individuals (all the rest, "usual” resources)
@ All triples have one of the forms:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
Properties like foaf :knows, dc:title
Classes like foaf :Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
@ All triples have one of the forms:
individual property individual .

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
Properties like foaf :knows, dc:title
Classes like foaf :Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
@ All triples have one of the forms:
individual property individual .
individual rdf:type class .

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
Properties like foaf :knows, dc:title
Classes like foaf :Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
@ All triples have one of the forms:

individual property individual .

individual rdf:type class .

class rdfs:subClass0f class .

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.

@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
Properties like foaf :knows, dc:title
Classes like foaf :Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
@ All triples have one of the forms:
individual property individual .
individual rdf:type class .

class rdfs:subClass0f class .
property rdfs:subProperty0f property .

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.

@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
Properties like foaf :knows, dc:title
Classes like foaf :Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
@ All triples have one of the forms:
individual property individual .
individual rdf:type class .

class rdfs:subClass0f class .
property rdfs:subProperty0f property .
property rdfs:domain class .

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.

@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
Properties like foaf :knows, dc:title
Classes like foaf :Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
@ All triples have one of the forms:
individual property individual .
individual rdf:type class .

class rdfs:subClass0f class .
property rdfs:subProperty0f property .
property rdfs:domain class .

property rdfs:range class .

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
Properties like foaf :knows, dc:title
Classes like foaf :Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
@ All triples have one of the forms:

individual property individual .

individual rdf:type class .

class rdfs:subClass0f class .
property rdfs:subProperty0f property .
property rdfs:domain class .

property rdfs:range class .

@ Forget blank nodes and literals for a while!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Short Forms

@ Resources and Triples are no longer all alike

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Short Forms

@ Resources and Triples are no longer all alike
@ No need to use the same general triple notation

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Short Forms
@ Resources and Triples are no longer all alike

@ No need to use the same general triple notation
@ Use alternative notation

Triples Abbreviation
indi prop indi . r(in, i2)
indi rdf:type class . C(n)
class rdfs:subClassOf class . cCCD
prop rdfs:subProperty0f prop . || rC s

prop rdfs:domain class . dom(r, C)
prop rdfs:range class . rg(r, C)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Short Forms
@ Resources and Triples are no longer all alike

@ No need to use the same general triple notation
@ Use alternative notation

Triples Abbreviation
indi prop indi . r(in, i2)
indi rdf:type class . C(n)
class rdfs:subClass0f class . ccoD
prop rdfs:subProperty0f prop . || rC s

prop rdfs:domain class . dom(r, C)
prop rdfs:range class . rg(r, C)

@ This is called “Description Logic” (DL) Syntax

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Short Forms
@ Resources and Triples are no longer all alike

@ No need to use the same general triple notation
@ Use alternative notation

Triples Abbreviation
indi prop indi . r(in, i2)
indi rdf:type class . C(n)
class rdfs:subClass0f class . ccoD
prop rdfs:subProperty0f prop . || rC s

prop rdfs:domain class . dom(r, C)
prop rdfs:range class . rg(r, C)

@ This is called “Description Logic” (DL) Syntax
@ Used much in particular for OWL

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Example

@ Triples:

IN3060/4060 :: Spring 2021 Lecture 8

Example

o Triples:

ws:romeo ws:loves ws:juliet
ws:juliet rdf:type ws:Lady .

ws:Lady rdfs:subClass0f foaf:Person .
ws:loves rdfs:subProperty0f foaf:knows
ws:loves rdfs:domain ws:Lover

ws:loves rdfs:range ws:Beloved .

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Example

o Triples:

ws:romeo ws:loves ws:juliet
ws:juliet rdf:type ws:Lady .

ws:Lady rdfs:subClass0f foaf:Person .
ws:loves rdfs:subProperty0f foaf:knows
ws:loves rdfs:domain ws:Lover

ws:loves rdfs:range ws:Beloved .

@ DL syntax, without namespaces:

fW\H\ﬁ"

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Example

o Triples:

ws:romeo ws:loves ws:juliet
ws:juliet rdf:type ws:Lady .

ws:Lady rdfs:subClass0f foaf:Person .
ws:loves rdfs:subProperty0f foaf:knows
ws:loves rdfs:domain ws:Lover

ws:loves rdfs:range ws:Beloved .

@ DL syntax, without namespaces:

loves(romeo, juliet)
Lady (juliet)

f U ?\ H\

Lady T Person
loves C knows
dom(loves, Lover)
rg(loves, Beloved)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret
e Individual URIs as real or imagined objects

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret

e Individual URIs as real or imagined objects
e Class URIs as sets of such objects

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret
e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
e Property URIs as relations between these objects

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret

e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
e Property URIs as relations between these objects

@ A DlL-interpretation I consists of

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret
e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
e Property URIs as relations between these objects
@ A DlL-interpretation I consists of
o A set AT, called the domain (sorry!) of 7

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret
e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
e Property URIs as relations between these objects

@ A DlL-interpretation I consists of

o A set AT, called the domain (sorry!) of 7
e For each individual URI i, an element iZ € AT

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret
e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
e Property URIs as relations between these objects
@ A DlL-interpretation I consists of
o A set AT, called the domain (sorry!) of 7

e For each individual URI i, an element iZ € AT
e For each class URI C, a subset CT C AT

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret
e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
e Property URIs as relations between these objects

@ A DlL-interpretation I consists of

o A set AT, called the domain (sorry!) of 7

e For each individual URI i, an element iZ € AT

e For each class URI C, a subset CT C AT

o For each property URI r, a relation rZ C AT x AT

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret

e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
e Property URIs as relations between these objects

@ A DlL-interpretation I consists of

o A set AT, called the domain (sorry!) of 7

e For each individual URI i, an element iZ € AT

e For each class URI C, a subset CT C AT

o For each property URI r, a relation rZ C AT x AT

@ Given these, it will be possible to say whether a triple holds or not.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

An example “intended” interpretation

— ——_—
I ‘

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

An example “intended” interpretation

) 9
Y julieth — "

o A1 =

e romeolr =

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

An example “intended” interpretation

. AII:{ 2

T _

@ romeo

-

o Ladyhr = {“} Person™ = A1

Lover’r = Beloved®r = {

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

An example “intended” interpretation

°
>
iy
I
i

@ romeo™t =

(]
'\
3
<
b
I
W
&
2
o
3
b
|
>
&

A

knowsTr = ATy x AT

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

An example “non-intended’ interpretation

o A2 =N=1{1,234,.}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

An example “non-intended” interpretation

o A2 =N=1{1,234,.}
e romeo™2 = 17
qu/'etI2 =32

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

An example “non-intended” interpretation

o A2 =N=1{1,234,.}

e romeo’™? =17
juliet™ = 32

o Lady?2 = {2" | nc N} = {2,4,8,16,32,...}
Person™ = {2n| n € N} = {2,4,6,8,10,...}
Lover™> = Beloved” = N

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

An example “non-intended” interpretation

o A2 =N=1{1,2,3,4,...}

e romeo’? = 17
juliet’? = 32

o Lady?> = {2" | ne N} = {2,4,8,16,32,...}
Person™ = {2n| n € N} = {2,4,6,8,10,...}
Lover’? = Beloved® = N

o loves’? =<={(x,y) | x < y}
knows™ =<= {(x,y) | x <y}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

An example “non-intended” interpretation

o A2 =N=1{1,2,3,4,...}

e romeo® =17
juliet™ = 32

o Lady?2 = {2" | nc N} = {2,4,8,16,32,...}
Person™ = {2n| n € N} = {2,4,6,8,10,...}
Lover™> = Beloved” = N

o loves’? =<={(x,y) | x < y}
knows™2 =<= {(x,y) | x < y}

@ Just because names (URIs) look familiar, they don't need to denote what we think!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

An example “non-intended” interpretation

o A2 =N=1{1,2,3,4,...}

e romeo® =17
juliet™ = 32

o Lady?2 = {2" | nc N} = {2,4,8,16,32,...}
Person™ = {2n| n € N} = {2,4,6,8,10,...}
Lover™> = Beloved” = N

o loves’? =<={(x,y) | x < y}
knows™2 =<= {(x,y) | x < y}

@ Just because names (URIs) look familiar, they don't need to denote what we think!

@ In fact, there is no way of ensuring they denote only what we think!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Validity in Interpretations

e Given an interpretation Z, define |= as follows:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Validity in Interpretations

e Given an interpretation Z, define |= as follows:
o T=r(in, i) iff (if,if)ert

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Validity in Interpretations

e Given an interpretation Z, define |= as follows:
o T=r(in, i) iff (if,if)ert
o I C(i)iffiTect

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Validity in Interpretations

e Given an interpretation Z, define |= as follows:
o T=r(in, i) iff (if,if)ert
o I C(i)iff it € CT
e IECLCDIiffctcD?

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Validity in Interpretations

e Given an interpretation Z, define |= as follows:
o T=r(in, i) iff (if,if)ert
o I C(i)iff it € CT
e IECLCDIiffctcD?
e IErCsiffrf Cst

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Validity in Interpretations

e Given an interpretation Z, define |= as follows:
T = r(iv, i) iff (if,if) e r*

T C(i)iff it e Ct

Ik CLCDiffctcD?
IkErCsiffrf Cs?

T k= dom(r, C) iff dom r* C CT

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Validity in Interpretations

e Given an interpretation Z, define |= as follows:
T = r(iv, i) iff (if,if) e r*

T C(i)iff it e Ct

Ik CLCDiffctcD?
IkErCsiffrf Cs?

T k= dom(r, C) iff dom r* C CT

T =rg(r,C)iffrgrf C CT

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Validity in Interpretations

e Given an interpretation Z, define |= as follows:
T = r(iv, i) iff (if,if) e r*
TEC(i)iffifec?

Ik CLCDiffctcD?
IkErCsiffrf Cs?

T k= dom(r, C) iff dom r C C*

T =rg(r,C)iffrgrf C CT

@ For a set of triples .A (any of the six kinds)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Validity in Interpretations

e Given an interpretation Z, define |= as follows:
T = r(iv, i) iff (if,if) e r*
TEC(i)iffifec?

Ik CLCDiffctcD?
IkErCsiffrf Cs?

T k= dom(r, C) iff dom r C C*

T =rg(r,C)iffrgrf C CT

@ For a set of triples .A (any of the six kinds)

o Ais valid in Z, written

TEA

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Validity in Interpretations

e Given an interpretation Z, define |= as follows:
T = r(iv, i) iff (if,if) e r*
TEC(i)iffifec?

Ik CLCDiffctcD?
IkErCsiffrf Cs?

T k= dom(r, C) iff dom r C C*

T =rg(r,C)iffrgrf C CT

For a set of triples A (any of the six kinds)
A is valid in Z, written

TEA

iff Z = Aforall Ac A

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Validity Examples

e 77 = loves(juliet, romeo) because

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

Validity Examples

e 77 = loves(juliet, romeo) because

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

Validity Examples

e 77 = loves(juliet, romeo) because

@ 7, [~ Person(romeo) because

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

Validity Examples

e 77 = loves(juliet, romeo) because

@ 7, [~ Person(romeo) because
romeo’? = 17 ¢ Person’? = {2,4,6,8,10, ...}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

Validity Examples

@ 7; = loves(juliet, romeo) because

@ 7, [~ Person(romeo) because
romeo’? = 17 ¢ Person’? = {2,4,6,8,10, ...}

e 7; = Lover C Person because

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

Validity Examples

@ 7; = loves(juliet, romeo) because
oy ,"‘ %y

@ 7, [~ Person(romeo) because
romeo’? = 17 ¢ Person’? = {2,4,6,8,10, ...}

e 7; = Lover C Person because

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

Validity Examples

@ 7; = loves(juliet, romeo) because
ey ,"‘ %y

@ 7, [~ Person(romeo) because
romeo’? = 17 ¢ Person’? = {2,4,6,8,10, ...}

e 7; = Lover C Person because

a} C Person’r =

e I, [~ Lover C Person because

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

Validity Examples

@ 7; = loves(juliet, romeo) because
oy ,"‘ %y

@ 7, [~ Person(romeo) because
romeo’? = 17 ¢ Person’? = {2,4,6,8,10, ...}

e 7; = Lover C Person because

’} C Person™t = { ,

@ 7, |~ Lover C Person because
Lover” = N and Person’ = {2,4,6,8,10,...}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

Finding out stuff about Romeo and Juliet

Statements Interpretations The “Real World"

loves(romeo, juliet) "

Lady (juliet)
Lady C Person
loves T knows

3 C
dom(loves, Lover)
rg(loves, Beloved)
\1_7 32

O,

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

Finding out stuff about Romeo and Juliet

Statements Interpretations

loves(romeo, juliet) "

The “Real World"”

Lady (juliet)
Lady T Person N C
loves T knows {
dom(loves, Lover)

rg(loves, Beloved)

loves(juliet, romeo)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

Finding out stuff about Romeo and Juliet

Statements Interpretations The “Real World"

loves(romeo, juliet) "

Lady (juliet) ’
Lady T Person N C N
loves T knows { 4

dom(loves, Lover)

rg(loves, Beloved)

17 32
loves(juliet, romeo) @
Lover C Person @

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment

@ Given a set of triples A (any of the six kinds)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment
@ Given a set of triples A (any of the six kinds)

@ And a further triple T (also any kind)
e T is entailed by A, written A =T

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)

@ T is entailed by A, written A= T
o iff

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment

Given a set of triples A (any of the six kinds)
And a further triple T (also any kind)
T is entailed by A, written A =T
iff
e For any interpretation Z with Z = A

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)
e T is entailed by A, written A =T
o iff
e For any interpretation Z with Z = A
e ITET.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)
e T is entailed by A, written A =T
o iff
e For any interpretation Z with Z = A
e ITET.

Example:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

Entailment
@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)
e T is entailed by A, written A =T
o iff
e For any interpretation Z with Z = A
e ITET.
@ Example:

o A={...,Lady(juliet), Lady C Person,...} as before

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Repetition: RDF semantics

Entailment
@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)
e T is entailed by A, written A =T
o iff
e For any interpretation Z with Z = A
e ITET.
@ Example:

o A={...,Lady(juliet), Lady C Person,...} as before
o A | Person(juliet) because. ..

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)

e T is entailed by A, written A =T

o iff
e For any interpretation Z with Z = A
e ITET.

Example:

o A={...,Lady(juliet), Lady C Person,...} as before
o A | Person(juliet) because. ..
@ in any interpretation Z. ..

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)
e T is entailed by A, written A =T
o iff
e For any interpretation Z with Z = A
e ITET.
@ Example:
o A={...,Lady(juliet), Lady C Person,...} as before
o A | Person(juliet) because. ..
@ in any interpretation Z. ..
o if juliet’ € Lady® and Lady? C Person” ...

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)
e T is entailed by A, written A =T
o iff
e For any interpretation Z with Z = A
e ITET.
Example:

A ={..., Lady(juliet), Lady T Person,...} as before
A |= Person(juliet) because. . .

in any interpretation Z. ..

if juliet” € Lady® and Lady? C Person® ...

then by set theory juliet” € Person®

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)

e T is entailed by A, written A =T

o iff
e For any interpretation Z with Z = A
e ITET.

Example:

A ={..., Lady(juliet), Lady T Person,...} as before
A |= Person(juliet) because. . .

in any interpretation Z. ..

if juliet” € Lady® and Lady? C Person® ...

then by set theory juliet” € Person®

@ Not about T being (intuitively) true or not

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)

e T is entailed by A, written A =T

o iff
e For any interpretation Z with Z = A
e ITET.

Example:

A ={..., Lady(juliet), Lady C Person, ...} as before
A |= Person(juliet) because. . .

in any interpretation Z. ..

if juliet” € Lady® and Lady? C Person® ...

then by set theory juliet” € Person®

@ Not about T being (intuitively) true or not

@ Only about whether T is a consequence of A

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Countermodels

o If AT, ..

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Countermodels

o If AT, ..

@ then there is an Z with

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Countermodels

o If AT, ..
@ then there is an Z with
° I'ZA

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Countermodels

o If AT, ..

@ then there is an Z with
OI':A
OI%T

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Countermodels

o If AT, ..

@ then there is an Z with
OI':A
OI%T

o Vice-versa: if Z|=Aand Z = T, then AT

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Countermodels

o If AT, ..

@ then there is an Z with
OI':A
OI%T

o Vice-versa: if Z|=Aand Z = T, then AT
@ Such an Z is called a counter-model (for the assumption that A entails T)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Countermodels

IfARET,. ..
then there is an Z with
o ITE A
o THET
Vice-versa: if Z|=Aand Z [~ T, then A= T
Such an Z is called a counter-model (for the assumption that A entails T)
To show that A = T does not hold:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Countermodels

o If AT, ..
@ then there is an Z with
e IEA
o THET
o Vice-versa: if Z=Aand Z £~ T, then AT

Such an Z is called a counter-model (for the assumption that A entails T)
To show that A = T does not hold:

o Describe an interpretation Z (using your fantasy)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Countermodels

o If AT, ..
@ then there is an Z with
e IEA
o THET
o Vice-versa: if Z=Aand Z £~ T, then AT

Such an Z is called a counter-model (for the assumption that A entails T)
To show that A = T does not hold:

o Describe an interpretation Z (using your fantasy)
e Prove that Z = A (using the semantics)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Countermodels

o If AT, ..
@ then there is an Z with
e IEA
o THET
o Vice-versa: if Z=Aand Z £~ T, then AT

Such an Z is called a counter-model (for the assumption that A entails T)
To show that A = T does not hold:

o Describe an interpretation Z (using your fantasy)
e Prove that Z = A (using the semantics)
e Prove that Z = T (using the semantics)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Outline

© Literal Semantics

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Motivating example

o Consider again the set of triples A:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Literal Semantics

Motivating example

o Consider again the set of triples A:

loves(romeo, juliet)
Lady (juliet)

Lady T Person
loves T knows
dom(loves, Lover)
rg(loves, Beloved)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Motivating example

o Consider again the set of triples A:
loves(romeo, juliet)
Lady (juliet)
Lady T Person
loves T knows
dom(loves, Lover)
rg(loves, Beloved)

@ We can now say something about if A is valid in an interpretation Z

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Motivating example

o Consider again the set of triples A:
loves(romeo, juliet)
Lady (juliet)

Lady T Person
loves T knows
dom(loves, Lover)
rg(loves, Beloved)

@ We can now say something about if A is valid in an interpretation Z
e Say we add the triple T = age(juliet,"13")

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Motivating example

o Consider again the set of triples A:
loves(romeo, juliet)
Lady (juliet)

Lady T Person
loves T knows
dom(loves, Lover)
rg(loves, Beloved)

@ We can now say something about if A is valid in an interpretation Z
@ Say we add the triple T = age(juliet,"13")

@ Is this new set of triples valid in any of our interpretations Z; or Z,, why?

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simplifying Literals

@ Literals can only occur as objects of triples

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simplifying Literals

@ Literals can only occur as objects of triples
@ Have datatype, can be with or without language tag

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simplifying Literals

@ Literals can only occur as objects of triples

@ Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simplifying Literals

@ Literals can only occur as objects of triples

@ Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simplifying Literals

@ Literals can only occur as objects of triples
@ Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simplifying Literals

@ Literals can only occur as objects of triples
@ Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"

e We simplify things by:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simplifying Literals

@ Literals can only occur as objects of triples
@ Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"

e We simplify things by:
e considering only string literals without language tag, and

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simplifying Literals

@ Literals can only occur as objects of triples

@ Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"
e We simplify things by:
e considering only string literals without language tag, and
e allowing either resource objects or literal objects for any predicate

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simplifying Literals

Literals can only occur as objects of triples

Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"
e We simplify things by:
e considering only string literals without language tag, and
e allowing either resource objects or literal objects for any predicate
Five types of resources:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simplifying Literals

Literals can only occur as objects of triples

Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"
e We simplify things by:
e considering only string literals without language tag, and
e allowing either resource objects or literal objects for any predicate
Five types of resources:
e Object Properties like foaf :knows

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simplifying Literals

Literals can only occur as objects of triples

Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"
e We simplify things by:
e considering only string literals without language tag, and
e allowing either resource objects or literal objects for any predicate
Five types of resources:

e Object Properties like foaf :knows
e Datatype Properties like dc:title, foaf :name

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Literal Semantics

Simplifying Literals

Literals can only occur as objects of triples

Have datatype, can be with or without language tag
The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"
We simplify things by:
e considering only string literals without language tag, and
e allowing either resource objects or literal objects for any predicate
Five types of resources:
e Object Properties like foaf :knows
e Datatype Properties like dc:title, foaf :name
o (lasses like foaf :Person

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simplifying Literals

Literals can only occur as objects of triples

Have datatype, can be with or without language tag
The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .

ex:me ex:likes "some string"

We simplify things by:

e considering only string literals without language tag, and

e allowing either resource objects or literal objects for any predicate
@ Five types of resources:
Object Properties like foaf :knows
Datatype Properties like dc:title, foaf :name
Classes like foaf :Person
Built-ins, a fixed set including rdf : type, rdfs:domain, etc.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simplifying Literals

@ Literals can only occur as objects of triples

@ Have datatype, can be with or without language tag

@ The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"

e We simplify things by:

e considering only string literals without language tag, and

e allowing either resource objects or literal objects for any predicate
@ Five types of resources:
Object Properties like foaf :knows
Datatype Properties like dc:title, foaf :name
Classes like foaf :Person
Built-ins, a fixed set including rdf : type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simplifying Literals

@ Literals can only occur as objects of triples

@ Have datatype, can be with or without language tag

@ The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"

e We simplify things by:

e considering only string literals without language tag, and

e allowing either resource objects or literal objects for any predicate
@ Five types of resources:

e Object Properties like foaf :knows

e Datatype Properties like dc:title, foaf :name

o (lasses like foaf :Person

e Built-ins, a fixed set including rdf :type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

e Why? — simpler, object/datatype split is in OWL

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Literal Semantics

Allowed triples

Allow only triples using object properties and datatype properties as intended

Triples

Abbreviation

indi o-prop indi
indi d-prop "lit"
indi rdf:type class

class rdfs:subClass0f class

o-prop rdfs:subProperty0f o-prop .
d-prop rdfs:subProperty0f d-prop .

o-prop rdfs:domain class
o-prop rdfs:range class

r(il, i2)
a(i, 1)
C(i)

cch
rCs
alCb
dom(r, C)
re(r, C)

IN3060/4060 :: Spring 2021

Lecture 8 :: 5th March

Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations

e A DL-interpretation I consists of

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings

e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of

o A set AT called the domain of T

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of

o A set AT called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of

o A set A7, called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before
e For each datatype property URI a, a relation a© C AT x A

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of

o A set A7, called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before
e For each datatype property URI a, a relation a© C AT x A

@ Semantics:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of
o A set AT called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before
e For each datatype property URI a, a relation a© C AT x A
@ Semantics:
o I |=r(ir, i) iff (if,if) € r’ for object property r

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of
o A set AT called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before
e For each datatype property URI a, a relation a© C AT x A
@ Semantics:
o I |=r(ir, i) iff (if,if) € r’ for object property r
o Z|=a(i,l)iff (if,I) € a* for datatype property a

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of
o A set A7, called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before
e For each datatype property URI a, a relation a© C AT x A
@ Semantics:
o I |=r(ir, i) iff (if,if) € r’ for object property r
o I |=a(i,l)iff (if,I) € a* for datatype property a
o T rCsiff rf Cs? for object properties r, s

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of
o A set AT called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before
e For each datatype property URI a, a relation a© C AT x A
@ Semantics:
T [= r(i, i) iff (i, i) € r* for object property r
T [= a(i, 1) iff (i*,1) € a* for datatype property a
T |=r C s iff rf C s7 for object properties r, s
T = aC biff a C b” for datatype properties a, b

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of
o A set AT called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before
e For each datatype property URI a, a relation a© C AT x A
@ Semantics:
T [= r(i, i) iff (i, i) € r* for object property r
T [= a(i, 1) iff (i*,1) € a* for datatype property a
T |=r C s iff rf C s7 for object properties r, s
T = aC biff a C b” for datatype properties a, b

@ Note: Literals / are in A, don't need to be interpreted.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Literal Semantics

Example: Interpretation with a Datatype Property

L1 4

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Literal Semantics

Example: Interpretation with a Datatype Property

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Literal Semantics

Example: Interpretation with a Datatype Property

- -y

1o) <“ ratnost 14), <" 130}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Outline

© Blank Node Semantics

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Semantics

Motivating example

IN3060/4060 :: Spring 2021 Lecture 8

Blank Node Semantics

Motivating example

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Semantics

Motivating example

"/;\
L"“d 7" !}
4 L4 L J' o
pd ’a> ’ <a,
' |] !
) A)]

° ageI:l = {< f(’\ A "16"> , <“, "almost 14“> , <“, “13"> , }
N i i

=
|

)

>} knowsTr = ATy x A1

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Semantics

Motivating example

- -

e agel = < ("; A "16"> , <i” "almost 14“> , <;‘, “13"> , }
Y i i
b

Let b; and b, be blank nodes

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Semantics

Motivating example

- -

;*“; ' "16"> , <i’7 "a1lmost 14||> , <;‘, II13II> , }
Let b; and b, be blank nodes
A = {age(by1,"16"), loves(by, by), age(bo, "13")}

(]
x
D
S
Il
—N—
P

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Semantics

Motivating example

;*“; ' "16"> , <i’7 "a1lmost 14||> , <;‘, II13II> , }
Let b; and b, be blank nodes

A = {age(by1,"16"), loves(by, by), age(bo, "13")}

Is A valid in Z17 why?

(]
x
D
S
Il
—N—
P

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Nodes

@ Remember: Blank nodes are just like resources. ..

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Nodes

@ Remember: Blank nodes are just like resources. ..
@ ...but without a “global” URI.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Nodes

@ Remember: Blank nodes are just like resources. ..
@ ...but without a “global” URI.

@ Blank node has a local “blank node identifier” instead.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Nodes

@ Remember: Blank nodes are just like resources. ..
@ ...but without a “global” URI.
@ Blank node has a local “blank node identifier” instead.

@ A blank node can be used in several triples. ..

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Nodes

Remember: Blank nodes are just like resources. . .
... but without a “global” URI.

Blank node has a local “blank node identifier” instead.

A blank node can be used in several triples. ..

... but they have to be in the same “file” or “data set”

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Nodes

Remember: Blank nodes are just like resources. . .
... but without a “global” URI.

Blank node has a local “blank node identifier” instead.

A blank node can be used in several triples. ..

... but they have to be in the same “file” or “data set”

Semantics of blank nodes require looking at a set of triples

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Nodes

Remember: Blank nodes are just like resources. . .
... but without a “global” URI.

Blank node has a local “blank node identifier” instead.

A blank node can be used in several triples. ..

... but they have to be in the same “file” or “data set”

Semantics of blank nodes require looking at a set of triples

But we still need to interpret single triples.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Nodes

Remember: Blank nodes are just like resources. . .
... but without a “global” URI.

Blank node has a local “blank node identifier” instead.

A blank node can be used in several triples. ..

... but they have to be in the same “file” or “data set”

Semantics of blank nodes require looking at a set of triples

But we still need to interpret single triples.

Solution: pass in blank node interpretation, deal with sets later!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Valuations

e Given an interpretation Z with domain AZ. ..

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Valuations

e Given an interpretation Z with domain AZ. ..
e A blank node valuation j3. ..

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Valuations

e Given an interpretation Z with domain AZ. ..

e A blank node valuation j3. ..
o ...gives a domain element or literal value 3(b) € AT UA...

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Valuations

e Given an interpretation Z with domain AZ. ..

e A blank node valuation j3. ..
o ...gives a domain element or literal value 3(b) € AT UA...
e ...for every blank node ID b

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Valuations

e Given an interpretation Z with domain AZ. ..

e A blank node valuation j3. ..
o ...gives a domain element or literal value 3(b) € AT UA...
e ...for every blank node ID b

@ Now define L8

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Valuations

e Given an interpretation Z with domain AZ. ..
e A blank node valuation j3. ..
o ...gives a domain element or literal value 3(b) € AT UA...
e ...for every blank node ID b
o Now define -2
o i1 =T for individual URIs i

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..
e A blank node valuation (. ..
o ...gives a domain element or literal value 3(b) € AT UA. ..
e ...for every blank node ID b

o Now define -2

o LA =T for individual URIs i
o T8 = | for literals /

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..
e A blank node valuation (. ..
o ...gives a domain element or literal value 3(b) € AT UA. ..
e ...for every blank node ID b
o Now define -2
o i1 =T for individual URIs i
o 118 = for literals /
o b1# = B(b) for blank node IDs b

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..

e A blank node valuation (. ..
o ...gives a domain element or literal value 3(b) € AT UA. ..
e ...for every blank node ID b
o Now define 28
o 1% =T for individual URIs i
o 118 = [for literals /
o b1# = B(b) for blank node IDs b

@ Interpretation:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..
e A blank node valuation (. ..
.. gives a domain element or literal value 8(b) € AT UA. ..
.. for every blank node ID b
o Now define -2
o i1 =T for individual URIs i
o 118 = for literals /
o b1# = B(b) for blank node IDs b

@ Interpretation:

o 7,8 E r(x,)|fF<Iﬂ Iﬂ>

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..
e A blank node valuation (. ..
.. gives a domain element or literal value 8(b) € AT UA. ..
.. for every blank node ID b
o Now define -2
o i1 =T for individual URIs i
o 118 = for literals /
o b1# = B(b) for blank node IDs b

@ Interpretation:

o 7,8 E r(x,)|fF<Iﬂ Iﬂ>

.. for any Iegal combination of URIs/IiteraIs/bIank nodes x, y

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..
e A blank node valuation (. ..
.. gives a domain element or literal value 8(b) € AT UA. ..
.. for every blank node ID b
o Now define -2
o i1 =T for individual URIs i
o 118 = for literals /
o b1# = B(b) for blank node IDs b

@ Interpretation:
o 7,8 E r(x,)|fF<Iﬂ Iﬂ>
.. for any Iegal combination of URIs/IiteraIs/bIank nodes x, y
e ...and object/datatype property r

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..
e A blank node valuation (. ..
.. gives a domain element or literal value 8(b) € AT UA. ..
.. for every blank node ID b

o Now define 28
o 1% =T for individual URIs i
o 118 = [for literals /
o b1# = B(b) for blank node IDs b
@ Interpretation:
Z,B E r(x,y) iff (x58,yTF) e
.. for any Iegal combination of URIs/IiteraIs/bIank nodes x, y

..and object/datatype property r
T, 8 | C(x) iff x2:8 € CTP

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..
e A blank node valuation (. ..
.. gives a domain element or literal value 8(b) € AT UA. ..
.. for every blank node ID b

e Now define -Z:8
o L8 =T for individual URIs i
o T8 = for literals /
o b1# = B(b) for blank node IDs b

@ Interpretation:
o 7,8 E r(x,)|fF<Iﬂ Iﬂ>
.. for any Iegal combination of URIs/IiteraIs/bIank nodes x, y
e ...and object/datatype property r
o I,B = C(x) iff xtP € CTF
..for any URI/blank node x

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Sets of Triples with Blank Nodes

@ Given a set A of triples with blank nodes. ..

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Sets of Triples with Blank Nodes

@ Given a set A of triples with blank nodes. ..

e Z.pEAIfZ,f=Aforall Ac A

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Sets of Triples with Blank Nodes

@ Given a set A of triples with blank nodes. ..

e Z.pEAIfZ,f=Aforall Ac A

@ AisvaldinZ

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Sets of Triples with Blank Nodes

@ Given a set A of triples with blank nodes. ..

e Z.pEAIfZ,f=Aforall Ac A

@ AisvaldinZ
IEA

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Sets of Triples with Blank Nodes

@ Given a set A of triples with blank nodes. ..

e Z.pEAIfZ,f=Aforall Ac A

o AisvalidinZ
IEA
if there isa S suchthat Z,8 = A

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

- 000000 QHediedbswesrs 0000000000
Sets of Triples with Blank Nodes

@ Given a set A of triples with blank nodes. ..

o I, AT, B =Aforall Ac A

o AisvalidinZ
IEA
if there isa S suchthat Z,8 = A

@ l.e. if there exists some valuation for the blank nodes that makes all triples true.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Semantics

Example: Blank Node Semantics

% T4
P
¢
Gl N 5
N ‘

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Semantics

Example: Blank Node Semantics

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Semantics

Example: Blank Node Semantics

o ageh = { | 1e><" ‘almost 14><a 1) |

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Semantics

Example: Blank Node Semantics

st~ { () (R e o) ())

Let b1, by, bs be blank nodes

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Semantics

Example: Blank Node Semantics

P T
o
T A
f": 7’>) <aa 7
S 1 ,

4

o). <é‘ ratnost 14) <;‘ 1) |

Let b1, by, bs be blank nodes
A = {age(b1, "16"), knows(bs, by), loves(b, bs), age(bs, "13")}

)

®
o
()
S
Il
—N
P

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Semantics

Example: Blank Node Semantics

P T
o
T A
f": 7’>) <aa 7
S 1 ,

4

o). <é‘ ratnost 14) <;‘ 1) |

Let b1, by, bs be blank nodes
A = {age(b1, "16"), knows(bs, by), loves(b, bs), age(bs, "13")}
Valid in Z77

)

®
o
()
S
Il
—N
P

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Semantics

Example: Blank Node Semantics
AR
Y “a e

4

o). <;‘ ratnost 14) <;‘ 1) |

Let b1, by, bs be blank nodes

)

®
o
()
S
Il
—N
P

°
o A = {age(b1,"16"), knows(b1, b), loves(by, b3), age(bs, "13")}
e Valid in 717

()
Y,
(@]
~
=@
—~
o
[y
N—r
I
=@
~—~
on
N
N
I

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Semantics

Example: Blank Node Semantics

{ ‘v‘;” 7a !}
“‘:"‘:d ,‘> ’ <;” “:‘“‘j’
YN i |

4

o). <;‘ ratnost 14) <;‘ 1) |

Let b1, by, bs be blank nodes

)

®
o
()
S
Il
—N
P

°
o A = {age(b1,"16"), knows(b1, b), loves(by, b3), age(bs, "13")}
e Valid in 717

()
Y,
(@]
~
=@
—~
o
[y
N—r
I
=@
~—~
on
N
N
I

e ThenZ;,0 E A

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Blank Node Semantics

Example: Blank Node Semantics

{ ‘v‘;” 7a !}
“‘:"‘:d ,‘> ’ <;” “:‘“‘j’
YN i |

4

o). <;‘ ratnost 14) <;‘ 1) |

Let b1, by, bs be blank nodes

)

®
o
()
S
Il
—N
P

°
o A = {age(b1,"16"), knows(b1, b), loves(by, b3), age(bs, "13")}
e Valid in 717

()
Y,
(@]
~
=@
—~
o
[y
N—r
I
=@
~—~
on
N
N
I

Then Il, B ': A
e So, yes, 7; = A.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:

e Given sets of triples A and B,
e A entails B, written A = B

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:

e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.

@ This expands to: for any interpretation 7

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
@ This expands to: for any interpretation 7
e such that there exists a 5 with Z, 5 = A

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
@ This expands to: for any interpretation 7

e such that there exists a 5 with Z, 5 = A
e there also exists a 3 such that Z,8 E B

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
@ This expands to: for any interpretation 7

e such that there exists a 51 with Z, 3, = A
o there also exists a /3> such that Z, 5> = B

@ Two different blank node valuations!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:

e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.

@ This expands to: for any interpretation 7

e such that there exists a 51 with Z, 3, = A
e there also exists a 3> such that Z, 5, = B

@ Two different blank node valuations!

@ Can evaluate the same blank node name differently in A and B.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
This expands to: for any interpretation Z

e such that there exists a 51 with Z, 3, = A
e there also exists a 3> such that Z, 5, = B

Two different blank node valuations!

Can evaluate the same blank node name differently in A and B.

Example:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
This expands to: for any interpretation Z

e such that there exists a 51 with Z, 3, = A
e there also exists a 3> such that Z, 5, = B

Two different blank node valuations!

Can evaluate the same blank node name differently in A and B.

Example:
{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
This expands to: for any interpretation Z

e such that there exists a 51 with Z, 3, = A
e there also exists a 3> such that Z, 5, = B

Two different blank node valuations!

Can evaluate the same blank node name differently in A and B.

Example:
{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}
E {loves(by, by), knows(by, romeo)}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
This expands to: for any interpretation Z

e such that there exists a 51 with Z, 3, = A
e there also exists a 3> such that Z, 5, = B

Two different blank node valuations!

Can evaluate the same blank node name differently in A and B.

Example:
{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}
E {loves(by, by), knows(by, romeo)}

@ Simple entailment: entailment with blank nodes, but no RDFS semantics

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simple Entailment: Rules and Example

o))
r(u, by) > r(by, x) >
Where by is a blank node identifier, that either

e has not been used before in the graph, or
o has been used, but for the same URI/Literal/Blank node x resp. u.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simple Entailment: Rules and Example
r(u,x) r(u,x)

7r(u,b1) sel 7r(bl,x) se2

Where b; is a blank node identifier, that either

e has not been used before in the graph, or
o has been used, but for the same URI/Literal/Blank node x resp. u.

{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simple Entailment: Rules and Example
r(u,x) r(u,x)

7r(u,b1) sel 7r(bl,x) se2

Where b; is a blank node identifier, that either

e has not been used before in the graph, or
o has been used, but for the same URI/Literal/Blank node x resp. u.

{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}

= {loves(by, b3), knows(bsz, romeo)} renamed blank nodes in B!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simple Entailment: Rules and Example
r(u,x) r(u,x)

7r(u,b1) sel 7r(bl,x) se2

Where b; is a blank node identifier, that either

e has not been used before in the graph, or
o has been used, but for the same URI/Literal/Blank node x resp. u.

{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}
loves(by, juliet) se2, (by — b1)

= {loves(by, b3), knows(bs, romeo)} renamed blank nodes in B!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simple Entailment: Rules and Example
r(u,x) r(u,x)

7r(u,b1) sel 7r(bl,x) se2

Where b; is a blank node identifier, that either

e has not been used before in the graph, or
o has been used, but for the same URI/Literal/Blank node x resp. u.

{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}
loves(by, juliet) se2, (by — b1)
loves(by, b3) sel, (b3 — juliet)

= {loves(by, b3), knows(bs, romeo)} renamed blank nodes in B!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simple Entailment: Rules and Example
r(u,x) r(u,x)

7r(u,b1) sel 7r(bl,x) se2

Where b; is a blank node identifier, that either

e has not been used before in the graph, or
o has been used, but for the same URI/Literal/Blank node x resp. u.

{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}
loves(by, juliet) se2, (by — b1)

loves(by, b3) sel, (b3 — juliet)

knows(bs, romeo) se2, (reusing bz — juliet)

= {loves(by, b3), knows(bs, romeo)} renamed blank nodes in B!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Properties of Entailment by Model Semantics
Outline

@ Properties of Entailment by Model Semantics

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Properties of Entailment by Model Semantics
Monotonicity

@ Assume A= B

IN3060/4060 :: Spring 2021 Lecture 8

Properties of Entailment by Model Semantics
Monotonicity

@ Assume A= B
@ Now add information to A, i.e. A’ D A

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Properties of Entailment by Model Semantics
Monotonicity

@ Assume A= B
@ Now add information to A, i.e. A’ D A
@ Then B is still entailed: A" =B

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Properties of Entailment by Model Semantics
Monotonicity

@ Assume A= B
@ Now add information to A, i.e. A’ D A
@ Then B is still entailed: A" =B

@ We say that RDF/RDFS entailment is monotonic

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Properties of Entailment by Model Semantics
Monotonicity

Assume A = B
Now add information to A, i.e. A’ D A
@ Then B is still entailed: A" =B

We say that RDF/RDFS entailment is monotonic

@ What would non-monotonic reasoning be like?

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Properties of Entailment by Model Semantics
Monotonicity

Assume A = B
Now add information to A, i.e. A’ D A
@ Then B is still entailed: A" =B

We say that RDF/RDFS entailment is monotonic

@ What would non-monotonic reasoning be like?
e {Bird C CanFly, Bird(tweety)} = CanFly(tweety)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Properties of Entailment by Model Semantics
Monotonicity

Assume A = B
Now add information to A, i.e. A’ D A
@ Then B is still entailed: A" =B

We say that RDF/RDFS entailment is monotonic

@ What would non-monotonic reasoning be like?

e {Bird C CanFly, Bird(tweety)} = CanFly(tweety)
o {..., Penguin C Bird, Penguin(tweety), Penguin C = CanFly} = CanFly(tweety)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Properties of Entailment by Model Semantics
Monotonicity

Assume A = B
Now add information to A, i.e. A’ D A
@ Then B is still entailed: A" =B

We say that RDF/RDFS entailment is monotonic

@ What would non-monotonic reasoning be like?
e {Bird C CanFly, Bird(tweety)} = CanFly(tweety)
o {..., Penguin C Bird, Penguin(tweety), Penguin C = CanFly} = CanFly(tweety)
e Interesting for human-style reasoning

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Properties of Entailment by Model Semantics
Monotonicity

Assume A = B
Now add information to A, i.e. A’ D A
@ Then B is still entailed: A" =B

We say that RDF/RDFS entailment is monotonic

@ What would non-monotonic reasoning be like?

{Bird C CanFly, Bird(tweety)} |= CanFly(tweety)

{..., Penguin C Bird, Penguin(tweety), Penguin C = CanFly} = CanFly(tweety)
Interesting for human-style reasoning

Hard to combine with semantic web technologies

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Expressive limitations of RDFS

Note that,

@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Expressive limitations of RDFS

Note that,

@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.
@ RDFS has no notion of negation at all

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Expressive limitations of RDFS

Note that,

@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.

@ RDFS has no notion of negation at all
e For instance, the two triples

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Expressive limitations of RDFS

Note that,

@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.
@ RDFS has no notion of negation at all
e For instance, the two triples

ex:Joe rdf:type ex:Smoker .

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Properties of Entailment by Model Semantics

Expressive limitations of RDFS

Note that,
@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.

@ RDFS has no notion of negation at all
e For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

Lecture 8 :: 5th March

IN3060/4060 :: Spring 2021

Properties of Entailment by Model Semantics

Expressive limitations of RDFS

Note that,
@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.
@ RDFS has no notion of negation at all
e For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

Lecture 8 :: 5th March

IN3060/4060 :: Spring 2021

Properties of Entailment by Model Semantics

Expressive limitations of RDFS

Note that,
@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.
@ RDFS has no notion of negation at all
e For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .
are not inconsistent.
o (It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

Therefore,

Lecture 8 :: 5th March

IN3060/4060 :: Spring 2021

Properties of Entailment by Model Semantics

Expressive limitations of RDFS

Note that,
@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.

@ RDFS has no notion of negation at all
e For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.
o (It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

Therefore,
@ RDFS supports no reasoning services that require consistency-checking.

Lecture 8 :: 5th March

IN3060/4060 :: Spring 2021

Properties of Entailment by Model Semantics

Expressive limitations of RDFS

Note that,
@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.
@ RDFS has no notion of negation at all
e For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.
o (It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

Therefore,
@ RDFS supports no reasoning services that require consistency-checking.

@ If negation or consistency-checks are needed, one must turn to OWL.

Lecture 8 :: 5th March

IN3060/4060 :: Spring 2021

Properties of Entailment by Model Semantics

Expressive limitations of RDFS

Note that,
@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.

@ RDFS has no notion of negation at all
e For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.
o (It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

Therefore,
@ RDFS supports no reasoning services that require consistency-checking.

@ If negation or consistency-checks are needed, one must turn to OWL.

@ More about that next week.

Lecture 8 :: 5th March

IN3060/4060 :: Spring 2021

Entailment and SPARQL

@ Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. 7?7y :q 7z.}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and SPARQL

@ Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. 7?7y :q 7z.}
@ The query means: find x, y, z with p(x,y) and ¢g(y, z)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and SPARQL

@ Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. 7?7y :q 7z.}
@ The query means: find x, y, z with p(x,y) and ¢g(y, z)

@ Semantics: find x, y, z with
KB = {p(x,y), qly,z)}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and SPARQL

Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. 7y :q 7z.}

The query means: find x, y, z with p(x,y) and ¢(y, z)

Semantics: find x, y, z with
KB = {p(x,y), a(y,2)}

o E.g. an answer
X ¢ ex:a y <« ifi:in3060 =z <« "a"

means
KB = {p(a, in3060), g(in3060, "a")}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and SPARQL

Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. 7y :q 7z.}
The query means: find x, y, z with p(x,y) and ¢(y, z)

Semantics: find x, y, z with
KB = {p(x,y), a(y,2)}

o E.g. an answer
X ¢ ex:a y <« ifi:in3060 =z <« "a"

means
KB = {p(a, in3060), g(in3060, "a")}

@ Monotonicity:
KBU {---} |= {p(a, in3060), q(in3060, "a")}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and SPARQL

Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. 7y :q 7z.}
The query means: find x, y, z with p(x,y) and ¢(y, z)

Semantics: find x, y, z with
KB = {p(x,y), a(y,2)}

o E.g. an answer
X ¢ ex:a y <« ifi:in3060 =z <« "a"

means
KB = {p(a, in3060), g(in3060, "a")}

@ Monotonicity:
KBU {---} |= {p(a, in3060), q(in3060, "a")}

@ Answers remain valid with new information!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Database Lookup versus Entailment

@ Knowledge base KB:

Person(harald) Person(haakon) isFatherOf (harald, haakon)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Database Lookup versus Entailment

@ Knowledge base KB:
Person(harald) Person(haakon) isFatherOf (harald, haakon)

@ Question: is there a person without a father?

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Database Lookup versus Entailment

@ Knowledge base KB:
Person(harald) Person(haakon) isFatherOf (harald, haakon)

@ Question: is there a person without a father?
@ Ask a database:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Database Lookup versus Entailment

@ Knowledge base KB:
Person(harald) Person(haakon) isFatherOf (harald, haakon)

@ Question: is there a person without a father?
@ Ask a database:
e Yes: harald

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Database Lookup versus Entailment

@ Knowledge base KB:
Person(harald) Person(haakon) isFatherOf (harald, haakon)

@ Question: is there a person without a father?
@ Ask a database:

e Yes: harald
@ ask a semantics based system

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Database Lookup versus Entailment

@ Knowledge base KB:
Person(harald) Person(haakon) isFatherOf (harald, haakon)

@ Question: is there a person without a father?
@ Ask a database:

e Yes: harald
@ ask a semantics based system

e find x with KB |= ‘x has no father

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Database Lookup versus Entailment

@ Knowledge base KB:
Person(harald) Person(haakon) isFatherOf (harald, haakon)

@ Question: is there a person without a father?
@ Ask a database:

e Yes: harald
@ ask a semantics based system

e find x with KB |= ‘x has no father
e No answer: don't know

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Database Lookup versus Entailment

@ Knowledge base KB:
Person(harald) Person(haakon) isFatherOf (harald, haakon)

@ Question: is there a person without a father?
@ Ask a database:

e Yes: harald
@ ask a semantics based system

e find x with KB |= ‘x has no father
e No answer: don't know

o Why?

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Database Lookup versus Entailment

@ Knowledge base KB:
Person(harald) Person(haakon) isFatherOf (harald, haakon)

@ Question: is there a person without a father?
@ Ask a database:

e Yes: harald
@ ask a semantics based system

e find x with KB |= ‘x has no father
e No answer: don't know

o Why?

e Monotonicity!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Database Lookup versus Entailment

Knowledge base KB:

Person(harald) Person(haakon) isFatherOf (harald, haakon)

Question: is there a person without a father?
@ Ask a database:
e Yes: harald
@ ask a semantics based system
e find x with KB |= ‘x has no father
e No answer: don't know
Why?
e Monotonicity!
o KB U {isFatherOf(olav, harald)} |= harald does have a father

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Database Lookup versus Entailment

Knowledge base KB:

Person(harald) Person(haakon) isFatherOf (harald, haakon)

Question: is there a person without a father?
@ Ask a database:
e Yes: harald

@ ask a semantics based system

e find x with KB |= ‘x has no father

e No answer: don't know
Why?

e Monotonicity!

e KB U {isFatherOf (olav, harald)} |= harald does have a father
e In some models of KB, harald has a father, in others not.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Open World versus Closed World

@ Closed World Assumption (CWA)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Open World versus Closed World

@ Closed World Assumption (CWA)

e If a thing is not listed in the knowledge base, it doesn’t exist

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Open World versus Closed World

@ Closed World Assumption (CWA)

e If a thing is not listed in the knowledge base, it doesn’t exist
o If a fact isn't stated (or derivable) it's false

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Open World versus Closed World

@ Closed World Assumption (CWA)
e If a thing is not listed in the knowledge base, it doesn’t exist
o If a fact isn't stated (or derivable) it's false
e Typical semantics for database systems

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Open World versus Closed World

@ Closed World Assumption (CWA)
e If a thing is not listed in the knowledge base, it doesn’t exist
o If a fact isn't stated (or derivable) it's false
e Typical semantics for database systems

@ Open World Assumption (OWA)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Open World versus Closed World

@ Closed World Assumption (CWA)
e If a thing is not listed in the knowledge base, it doesn’t exist
o If a fact isn't stated (or derivable) it's false
e Typical semantics for database systems

@ Open World Assumption (OWA)

e There might be things not mentioned in the knowledge base

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Open World versus Closed World

@ Closed World Assumption (CWA)
e If a thing is not listed in the knowledge base, it doesn’t exist
o If a fact isn't stated (or derivable) it's false
e Typical semantics for database systems

@ Open World Assumption (OWA)

e There might be things not mentioned in the knowledge base
e There might be facts that are true, although they are not stated

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Open World versus Closed World

@ Closed World Assumption (CWA)

e If a thing is not listed in the knowledge base, it doesn’t exist
o If a fact isn't stated (or derivable) it's false
e Typical semantics for database systems

@ Open World Assumption (OWA)
e There might be things not mentioned in the knowledge base

e There might be facts that are true, although they are not stated
e Typical semantics for logic-based systems

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Open World versus Closed World

@ Closed World Assumption (CWA)
e If a thing is not listed in the knowledge base, it doesn’t exist
o If a fact isn't stated (or derivable) it's false
e Typical semantics for database systems
@ Open World Assumption (OWA)
e There might be things not mentioned in the knowledge base
e There might be facts that are true, although they are not stated
e Typical semantics for logic-based systems

@ What is best for the Semantic Web?

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Open World versus Closed World

@ Closed World Assumption (CWA)
e If a thing is not listed in the knowledge base, it doesn’t exist
o If a fact isn't stated (or derivable) it's false
e Typical semantics for database systems
@ Open World Assumption (OWA)
e There might be things not mentioned in the knowledge base
e There might be facts that are true, although they are not stated
e Typical semantics for logic-based systems
@ What is best for the Semantic Web?
e Will never know all information sources

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Open World versus Closed World

@ Closed World Assumption (CWA)
e If a thing is not listed in the knowledge base, it doesn’t exist
o If a fact isn't stated (or derivable) it's false
e Typical semantics for database systems
@ Open World Assumption (OWA)
e There might be things not mentioned in the knowledge base
e There might be facts that are true, although they are not stated
e Typical semantics for logic-based systems
@ What is best for the Semantic Web?

e Will never know all information sources
e Can “discover” new information by following links

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Open World versus Closed World

@ Closed World Assumption (CWA)

e If a thing is not listed in the knowledge base, it doesn’t exist
o If a fact isn't stated (or derivable) it's false
e Typical semantics for database systems

@ Open World Assumption (OWA)
e There might be things not mentioned in the knowledge base
e There might be facts that are true, although they are not stated
e Typical semantics for logic-based systems

@ What is best for the Semantic Web?
e Will never know all information sources
e Can “discover” new information by following links
e New information can be produced at any time

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Properties of Entailment by Model Semantics

Open World versus Closed World

@ Closed World Assumption (CWA)

e If a thing is not listed in the knowledge base, it doesn’t exist
o If a fact isn't stated (or derivable) it's false
e Typical semantics for database systems

@ Open World Assumption (OWA)

e There might be things not mentioned in the knowledge base
e There might be facts that are true, although they are not stated
e Typical semantics for logic-based systems

@ What is best for the Semantic Web?

Will never know all information sources

Can “discover” new information by following links
New information can be produced at any time
Therefore: Open World Assumption

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Consequences of the Open World Assumption

@ Robust under missing information

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Consequences of the Open World Assumption

@ Robust under missing information
@ Any answer given by

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Consequences of the Open World Assumption

@ Robust under missing information
@ Any answer given by

e Entailment
KB = Person(juliet)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Consequences of the Open World Assumption

@ Robust under missing information
@ Any answer given by

e Entailment
KB = Person(juliet)

e SPARQL query answering (entailment in disguise)

KB = {p(a, in3060), q(in3060,"a")}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Consequences of the Open World Assumption

@ Robust under missing information
@ Any answer given by

e Entailment
KB [= Person(juliet)

e SPARQL query answering (entailment in disguise)

KB = {p(a, in3060), q(in3060,"“a")}

remains valid when new information is added to KB

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Properties of Entailment by Model Semantics

Consequences of the Open World Assumption

@ Robust under missing information
@ Any answer given by

e Entailment
KB [= Person(juliet)

e SPARQL query answering (entailment in disguise)

KB = {p(a, in3060), q(in3060,"“a")}

remains valid when new information is added to KB
@ Some things make no sense with this semantics

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Consequences of the Open World Assumption

@ Robust under missing information
@ Any answer given by
e Entailment
KB [= Person(juliet)

e SPARQL query answering (entailment in disguise)

KB = {p(a, in3060), q(in3060,"“a")}

remains valid when new information is added to KB

@ Some things make no sense with this semantics
e Queries with negation (“not”)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Consequences of the Open World Assumption

@ Robust under missing information
@ Any answer given by
e Entailment
KB [= Person(juliet)

e SPARQL query answering (entailment in disguise)

KB = {p(a, in3060), q(in3060,"“a")}

remains valid when new information is added to KB
@ Some things make no sense with this semantics
e Queries with negation (“not”)
@ might be satisfied later on

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Consequences of the Open World Assumption

@ Robust under missing information
@ Any answer given by
e Entailment
KB [= Person(juliet)

e SPARQL query answering (entailment in disguise)

KB = {p(a, in3060), q(in3060,"“a")}

remains valid when new information is added to KB
@ Some things make no sense with this semantics
e Queries with negation (“not”)
@ might be satisfied later on
e Queries with aggregation (counting, adding,...)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Consequences of the Open World Assumption

@ Robust under missing information
@ Any answer given by
e Entailment
KB [= Person(juliet)

e SPARQL query answering (entailment in disguise)

KB = {p(a, in3060), g(in3060,"a")}

remains valid when new information is added to KB
@ Some things make no sense with this semantics
e Queries with negation (“not”)
@ might be satisfied later on
e Queries with aggregation (counting, adding,...)
@ can change when more information comes

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability
Outline

© Entailment and Derivability

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Two Kinds of Consequence?

@ We now have two ways of describing logical consequence. . .

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Two Kinds of Consequence?

@ We now have two ways of describing logical consequence. . .
1. Using RDFS rules:

:Lady rdfs:subClass0f :Person . :juliet a :Lady .
:juliet a :Person .

rdfs9

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Two Kinds of Consequence?

@ We now have two ways of describing logical consequence. . .
1. Using RDFS rules:
:Lady rdfs:subClass0Of :Person . :juliet a :Lady .

:juliet a :Person . rdfs9

Lady T Person Lady (juliet)
Person(juliet)

rdfs9

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Two Kinds of Consequence?

@ We now have two ways of describing logical consequence. . .
1. Using RDFS rules:
:Lady rdfs:subClass0Of :Person . :juliet a :Lady .

:juliet a :Person . rdfs9

Lady T Person Lady (juliet)
Person(juliet)

rdfs9

2. Using the model semantics

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Two Kinds of Consequence?

@ We now have two ways of describing logical consequence. . .
1. Using RDFS rules:
:Lady rdfs:subClass0Of :Person . :juliet a :Lady .

:juliet a :Person . rdfs9

Lady T Person Lady (juliet)
Person(juliet)

rdfs9

2. Using the model semantics
o If T |= Lady C Person and Z |= Lady/(juliet). ..

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Two Kinds of Consequence?

@ We now have two ways of describing logical consequence. . .
1. Using RDFS rules:
:Lady rdfs:subClass0Of :Person . :juliet a :Lady .

:juliet a :Person . rdfs9

Lady T Person Lady (juliet)
Person(juliet)

rdfs9

2. Using the model semantics

o If T |= Lady C Person and Z |= Lady/(juliet). ..
o ...then Lady? C Person” and juliet” € Lady”...

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Two Kinds of Consequence?

@ We now have two ways of describing logical consequence. . .
1. Using RDFS rules:
:Lady rdfs:subClass0Of :Person . :juliet a :Lady .

:juliet a :Person . rdfs9

Lady T Person Lady (juliet)
Person(juliet)

rdfs9

2. Using the model semantics

o If T |= Lady C Person and Z |= Lady/(juliet). ..

o ...then Lady? C Person” and juliet” € Lady”...

e ...so by set theory, juliet’ € Person”...

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Two Kinds of Consequence?

@ We now have two ways of describing logical consequence. . .
1. Using RDFS rules:
:Lady rdfs:subClass0Of :Person . :juliet a :Lady .

:juliet a :Person . rdfs9

Lady T Person Lady (juliet)
Person(juliet)

rdfs9

2. Using the model semantics

o If T |= Lady C Person and Z |= Lady/(juliet). ..

o ...then Lady? C Person” and juliet” € Lady”...

e ...so by set theory, juliet’ € Person”...

o ...and therefore Z |= Person(juliet).

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Two Kinds of Consequence?

@ We now have two ways of describing logical consequence. . .
1. Using RDFS rules:
:Lady rdfs:subClass0Of :Person . :juliet a :Lady .

:juliet a :Person . rdfs9

Lady T Person Lady (juliet)
Person(juliet)

rdfs9

2. Using the model semantics

o If T |= Lady C Person and Z |= Lady/(juliet). ..
o ...then Lady? C Person” and juliet” € Lady”...
e ...so by set theory, juliet’ € Person”...

]

...and therefore Z |= Person(juliet).
o Together: {Lady C Person, Lady(juliet)} = Person(juliet)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Two Kinds of Consequence?

@ We now have two ways of describing logical consequence. . .
1. Using RDFS rules:
:Lady rdfs:subClass0Of :Person . :juliet a :Lady .

:juliet a :Person . rdfs9

Lady T Person Lady (juliet)
Person(juliet)

rdfs9

2. Using the model semantics

o If T |= Lady C Person and Z |= Lady/(juliet). ..
...then Lady® C Person® and juliet’ € Lady™...

"]
e ...so by set theory, juliet’ € Person”...
]

...and therefore Z |= Person(juliet).

o Together: {Lady C Person, Lady(juliet)} = Person(juliet)
@ What is the connection between these two?

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

@ Actually, two different notions!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

@ Actually, two different notions!
@ Entailment is defined using the model semantics.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

@ Actually, two different notions!

@ Entailment is defined using the model semantics.
@ The rules say what can be derived

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

@ Actually, two different notions!

@ Entailment is defined using the model semantics.
@ The rules say what can be derived
e derivability

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

@ Actually, two different notions!
@ Entailment is defined using the model semantics.
@ The rules say what can be derived

e derivability
e provability

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

Actually, two different notions!
@ Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
Entailment

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
e Entailment
e is closely related to the meaning of things

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
e Entailment
e is closely related to the meaning of things
@ higher confidence in model semantics than in a bunch of rules

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
e Entailment
e is closely related to the meaning of things
@ higher confidence in model semantics than in a bunch of rules
e The semantics given by the standard, rules are just “informative”

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
e Entailment
is closely related to the meaning of things
higher confidence in model semantics than in a bunch of rules
The semantics given by the standard, rules are just “informative”
can't be directly checked mechanically (co many interpretations)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
e Entailment
e is closely related to the meaning of things
@ higher confidence in model semantics than in a bunch of rules
e The semantics given by the standard, rules are just “informative”
e can't be directly checked mechanically (co many interpretations)
Derivability

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
e Entailment
e is closely related to the meaning of things
@ higher confidence in model semantics than in a bunch of rules
e The semantics given by the standard, rules are just “informative”
e can't be directly checked mechanically (co many interpretations)

Derivability
e can be checked mechanically

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
e Entailment
e is closely related to the meaning of things
@ higher confidence in model semantics than in a bunch of rules
e The semantics given by the standard, rules are just “informative”
e can't be directly checked mechanically (co many interpretations)
Derivability
e can be checked mechanically
e forward or backward chaining

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
e Entailment
e is closely related to the meaning of things
@ higher confidence in model semantics than in a bunch of rules
e The semantics given by the standard, rules are just “informative”
e can't be directly checked mechanically (co many interpretations)
Derivability
e can be checked mechanically
e forward or backward chaining
@ Want these notions to correspond:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
e Entailment
e is closely related to the meaning of things
@ higher confidence in model semantics than in a bunch of rules
e The semantics given by the standard, rules are just “informative”
e can't be directly checked mechanically (co many interpretations)
Derivability
e can be checked mechanically
e forward or backward chaining
@ Want these notions to correspond:
e AEB iff B can be derived from A

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Soundness

@ Two directions:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Soundness

e Two directions:
© If A= B then B can be derived from A

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Soundness

e Two directions:
© If A= B then B can be derived from A
@ If B can be derived from A then A = B

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Soundness

@ Two directions:
© If A= B then B can be derived from A
@ If B can be derived from A then A = B

@ Nr. 2 usually considered more important:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Soundness

@ Two directions:
© If A= B then B can be derived from A
@ If B can be derived from A then A = B

@ Nr. 2 usually considered more important:

@ If the calculus says that something is entailed then it is really entailed.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Soundness

@ Two directions:
© If A= B then B can be derived from A
@ If B can be derived from A then A = B

@ Nr. 2 usually considered more important:
@ If the calculus says that something is entailed then it is really entailed.

@ The calculus gives no “wrong” answers.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Soundness

Two directions:
© If A= B then B can be derived from A
@ If B can be derived from A then A = B

Nr. 2 usually considered more important:

If the calculus says that something is entailed then it is really entailed.

The calculus gives no “wrong” answers.

This is known as soundness

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Soundness

Two directions:
© If A= B then B can be derived from A
@ If B can be derived from A then A = B

Nr. 2 usually considered more important:

If the calculus says that something is entailed then it is really entailed.
The calculus gives no “wrong” answers.

This is known as soundness

The calculus is said to be sound (w.r.t. the model semantics)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Showing Soundness

@ Soundness of every rule has to be (manually) checked!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

C
= BLC rdfs11

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

C
= BLC rdfs11

@ Soundness means that

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

C
= BLC rdfs11

@ Soundness means that
e For any choice of three classes A, B, C

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

C
= BLC rdfs11

@ Soundness means that

e For any choice of three classes A, B, C
e {ALB,BCLC}EALCC

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

C
= BLC rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ALB,BCLC}EALCC

@ Proof:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

ACB B
ACC

L C rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ALB,BCLC}EALCC
@ Proof:
o Let Z be an arbitrary interpretation with Z = {AC B,BLC C}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

ACB B
ACC

L C rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ACBBCC}EALCC
@ Proof:
o Let Z be an arbitrary interpretation with Z = {AC B,BLC C}
e Then by model semantics, AZ C BZ and BT C C*

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

ACB B
ACC

L C rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ACBBCC}EALCC
@ Proof:
o Let Z be an arbitrary interpretation with Z = {AC B,BLC C}
e Then by model semantics, AZ C BZ and BT C C*
o By set theory, AT C CT

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

ACB B
ACC

L C rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ALB,BCLC}EALCC
@ Proof:
o Let Z be an arbitrary interpretation with Z = {AC B,BLC C}
e Then by model semantics, AZ C BZ and BT C C*
o By set theory, AT C CT
e By model semantics, ZE=ALC C

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

ACB B
ACC

L C rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ACBBCC}EALCC
@ Proof:
o Let Z be an arbitrary interpretation with Z = {AC B,BLC C}
Then by model semantics, AZ C B% and BZ C C*
By set theory, AT C C*
By model semantics, Z}=AC C
Q.E.D.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

ACB B
ACC

L C rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ACBBCC}EALCC
@ Proof:
o Let Z be an arbitrary interpretation with Z = {AC B,BLC C}
e Then by model semantics, AZ C BZ and BT C C*
o By set theory, AT C CT
e By model semantics, ZE=ALC C
e Q.E.D.
@ This can be done similarly for all of the rules.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

ACB B
ACC

L C rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ACBBCC}EALCC
@ Proof:
o Let Z be an arbitrary interpretation with Z = {AC B,BLC C}
e Then by model semantics, AZ C BZ and BT C C*
o By set theory, AT C CT
e By model semantics, ZE=ALC C
e Q.E.D.
@ This can be done similarly for all of the rules.
e All given SE/RDF/RDFS rules are sound w.r.t. the model semantics!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Completeness

@ Two directions:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Completeness

e Two directions:
@ If A= B then B can be derived from A

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Completeness

e Two directions:
@ If A= B then B can be derived from A
@ If B can be derived from A then A = B

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Completeness

e Two directions:
@ If A= B then B can be derived from A
@ If B can be derived from A then A = B

@ Nr. 1 says that any entailment can be found using the rules.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Completeness

e Two directions:
@ If A= B then B can be derived from A
@ If B can be derived from A then A = B

@ Nr. 1 says that any entailment can be found using the rules.

@ l.e. we have “enough” rules.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Completeness

e Two directions:
Q If A= B then B can be derived from A
@ If B can be derived from A then A = B

@ Nr. 1 says that any entailment can be found using the rules.
@ l.e. we have “enough” rules.

@ Can't be checked separately for each rule, only for whole rule set

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Completeness

e Two directions:
Q If A= B then B can be derived from A
@ If B can be derived from A then A = B

Nr. 1 says that any entailment can be found using the rules.
l.e. we have “enough” rules.

Can't be checked separately for each rule, only for whole rule set

Proofs are more complicated than soundness

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simple Entailment: Completeness

@ Simple entailment is entailment

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simple Entailment: Completeness

@ Simple entailment is entailment
e With blank nodes and literals

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simple Entailment: Completeness

@ Simple entailment is entailment

e With blank nodes and literals
e but without RDFS

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simple Entailment: Completeness

@ Simple entailment is entailment

e With blank nodes and literals
e but without RDFS
e and without RDF axioms like rdf :type rdf:Property .

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simple Entailment: Completeness

@ Simple entailment is entailment

e With blank nodes and literals
e but without RDFS
e and without RDF axioms like rdf :type rdf:Property .

@ sel and se2 are complete for simple entailment, i.e.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simple Entailment: Completeness

@ Simple entailment is entailment

e With blank nodes and literals
e but without RDFS
e and without RDF axioms like rdf :type rdf:Property .

@ sel and se2 are complete for simple entailment, i.e.
if A simply entails B

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simple Entailment: Completeness

@ Simple entailment is entailment
e With blank nodes and literals
e but without RDFS
e and without RDF axioms like rdf :type rdf:Property .
@ sel and se2 are complete for simple entailment, i.e.
if A simply entails B
then A can be extended with sel and se2 to A’ with B C A’.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Simple Entailment: Completeness

@ Simple entailment is entailment

e With blank nodes and literals
e but without RDFS
e and without RDF axioms like rdf :type rdf:Property .

@ sel and se2 are complete for simple entailment, i.e.
if A simply entails B
then A can be extended with sel and se2 to A’ with B C A’.
@ (requires blank node IDs in A and B to be disjoint)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Rules for (simplified) RDF/RDFS

@ See Foundations book, Sect. 3.3

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Rules for (simplified) RDF/RDFS

@ See Foundations book, Sect. 3.3
@ Many rules and axioms not needed for our “simplified” RDF/RDFS

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Rules for (simplified) RDF/RDFS

@ See Foundations book, Sect. 3.3
@ Many rules and axioms not needed for our “simplified” RDF/RDFS
o rdfs:range rdfs:domain rdfs:Class ...

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Rules for (simplified) RDF/RDFS

@ See Foundations book, Sect. 3.3

@ Many rules and axioms not needed for our “simplified” RDF/RDFS
o rdfs:range rdfs:domain rdfs:Class ...

@ Important rules for us:
dom(r,A) r(x,y) rg(r,B) rlxy)

A(x) rdfs2 5(y)

rdfs3

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Rules for (simplified) RDF/RDFS

@ See Foundations book, Sect. 3.3
@ Many rules and axioms not needed for our “simplified” RDF/RDFS

o rdfs:range rdfs:domain rdfs:Class ...

@ Important rules for us:

dom(r, A) r(x,y) rg(r, B) r(x,y)
A(x) rdfs2 B(y) rdfs3
rCs sCt rts r(x,y) ;
P rdfs5 TTr rdfs6 (<) rdfs7

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Rules for (simplified) RDF/RDFS

@ See Foundations book, Sect. 3.3
@ Many rules and axioms not needed for our “simplified” RDF/RDFS

o rdfs:range rdfs:domain rdfs:Class ...

@ Important rules for us:

d A) ,B)
om(r.A) rlxy) e(r.B) r(xy)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Complete?

@ These rules are not complete for our RDF/RDFS semantics

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance

{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance

{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

@ Because for every interpretation Z,

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance

{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

@ Because for every interpretation Z,
o if T = {rg(loves, Beloved), Beloved C Person}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance

{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

@ Because for every interpretation Z,

o if T = {rg(loves, Beloved), Beloved C Person}
e then by semantics, for all (x,y) € loves?, y € Beloved®; and Beloved® C Person.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance

{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

@ Because for every interpretation Z,
o if T = {rg(loves, Beloved), Beloved C Person}
e then by semantics, for all (x,y) € loves?, y € Beloved®; and Beloved® C Person.
o Therefore, by set theory, for all {x,y) € lovesT, y € Persont.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance
{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

@ Because for every interpretation Z,

if Z = {rg(loves, Beloved), Beloved T Person}

then by semantics, for all (x,y) € loves?, y € Beloved®; and Beloved® C Person.
Therefore, by set theory, for all (x,y) € loves?, y € PersonT.

By semantics, Z |= rg(loves, Person)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance
{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

@ Because for every interpretation Z,

if Z = {rg(loves, Beloved), Beloved T Person}

then by semantics, for all (x,y) € loves?, y € Beloved®; and Beloved® C Person.
Therefore, by set theory, for all (x,y) € loves?, y € PersonT.

By semantics, Z |= rg(loves, Person)

@ But there is no way to derive this using the given rules

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance
{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

@ Because for every interpretation Z,

if Z = {rg(loves, Beloved), Beloved T Person}

then by semantics, for all (x,y) € loves?, y € Beloved®; and Beloved® C Person.
Therefore, by set theory, for all (x,y) € loves?, y € PersonT.

By semantics, Z |= rg(loves, Person)

@ But there is no way to derive this using the given rules
e There is no rule which allows to derive a range statement.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Complete?

These rules are not complete for our RDF/RDFS semantics

For instance

{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

Because for every interpretation Z,

if Z = {rg(loves, Beloved), Beloved T Person}

then by semantics, for all (x,y) € loves?, y € Beloved®; and Beloved® C Person.
Therefore, by set theory, for all (x,y) € loves?, y € PersonT.

By semantics, Z |= rg(loves, Person)

@ But there is no way to derive this using the given rules
e There is no rule which allows to derive a range statement.

@ We could now add rules to make the system complete

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Complete?

These rules are not complete for our RDF/RDFS semantics

For instance

{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

Because for every interpretation Z,

if Z = {rg(loves, Beloved), Beloved T Person}

then by semantics, for all (x,y) € loves?, y € Beloved®; and Beloved® C Person.
Therefore, by set theory, for all (x,y) € loves?, y € PersonT.

By semantics, Z |= rg(loves, Person)

@ But there is no way to derive this using the given rules
e There is no rule which allows to derive a range statement.

@ We could now add rules to make the system complete
@ Won't bother to do that now. Will get completeness for OWL.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Outlook

e RDFS allows some simple modelling: “all ladies are persons”

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Outlook

e RDFS allows some simple modelling: “all ladies are persons”
@ The following lectures will be about OWL

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Outlook

e RDFS allows some simple modelling: “all ladies are persons”

@ The following lectures will be about OWL
o Will allow to say things like

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Outlook

e RDFS allows some simple modelling: “all ladies are persons”

@ The following lectures will be about OWL
o Will allow to say things like
e Every car has a motor

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Outlook

@ RDFS allows some simple modelling: “all ladies are persons”
@ The following lectures will be about OWL

o Will allow to say things like

e Every car has a motor
e Every car has at least three parts of type wheel

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Entailment and Derivability

Outlook

@ RDFS allows some simple modelling: “all ladies are persons”
@ The following lectures will be about OWL
o Will allow to say things like

o Every car has a motor

e Every car has at least three parts of type wheel
e A mother is a person who is female and has at least one child

IN3060/4060 :: Spring 2021

Lecture 8 :: 5th March

Entailment and Derivability

Outlook

@ RDFS allows some simple modelling: “all ladies are persons”

@ The following lectures will be about OWL
o Will allow to say things like
e Every car has a motor
e Every car has at least three parts of type wheel

e A mother is a person who is female and has at least one child
e The friends of my friends are also my friends

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Outlook

@ RDFS allows some simple modelling: “all ladies are persons”

@ The following lectures will be about OWL
o Will allow to say things like

e Every car has a motor

Every car has at least three parts of type wheel

A mother is a person who is female and has at least one child
The friends of my friends are also my friends

A metropolis is a town with at least a million inhabitants

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Outlook

@ RDFS allows some simple modelling: “all ladies are persons”

@ The following lectures will be about OWL
o Will allow to say things like

e Every car has a motor

Every car has at least three parts of type wheel

A mother is a person who is female and has at least one child
The friends of my friends are also my friends

A metropolis is a town with at least a million inhabitants
...and many more

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Outlook

@ RDFS allows some simple modelling: “all ladies are persons”

@ The following lectures will be about OWL
o Will allow to say things like
e Every car has a motor
Every car has at least three parts of type wheel
A mother is a person who is female and has at least one child
The friends of my friends are also my friends
A metropolis is a town with at least a million inhabitants
...and many more

@ Modeling will not be done by writing triples manually:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

Outlook

RDFS allows some simple modelling: “all ladies are persons”

The following lectures will be about OWL

o Will allow to say things like

e Every car has a motor
Every car has at least three parts of type wheel
A mother is a person who is female and has at least one child
The friends of my friends are also my friends
A metropolis is a town with at least a million inhabitants
...and many more

Modeling will not be done by writing triples manually:

Will use ontology editor Protégé.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March

	Repetition: RDF semantics
	Literal Semantics
	Blank Node Semantics
	Properties of Entailment by Model Semantics
	Entailment and Derivability

