IN3060/4060 – Semantic Technologies – Spring 2021 Lecture 8: Model Semantics & Reasoning

Jieying Chen

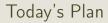
5th March 2021

Department of Informatics

University of Oslo

Oblig 5

- Published today
- First delivery due 19th of March
- Final delivery 2 weeks after feedback
- Extra question for IN4060 students
- "Real" semantics of RDF and RDFS
- Foundations book: Section 3.2
- Still OK to ignore some complications, see oblig text
- We provide an excerpt of Sect. 3.2 with unimportant parts removed.
- Go to group sessions!



- Repetition: RDF semantics
- 2 Literal Semantics
- Blank Node Semantics
- Properties of Entailment by Model Semantics
- 5 Entailment and Derivability

Outline

- Repetition: RDF semantics
- 2 Literal Semantics
- 3 Blank Node Semantics
- Properties of Entailment by Model Semantics
- 5 Entailment and Derivability

• We will simplify things by only looking at certain kinds of RDF graphs.

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - *Classes* like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - *Classes* like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .
individual rdf:type class .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .
individual rdf:type class .

```
class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .
```

- We will simplify things by only looking at certain kinds of RDF graphs.
- No triples "about" properties, classes, etc., except RDFS
- Assume Resources are divided into four disjoint types:
 - Properties like foaf:knows, dc:title
 - Classes like foaf:Person
 - Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- All triples have one of the forms:

individual property individual .
individual rdf:type class .

class rdfs:subClassOf class .
property rdfs:subPropertyOf property .
property rdfs:domain class .
property rdfs:range class .

• Forget blank nodes and literals for a while!

• Resources and Triples are no longer all alike

- Resources and Triples are no longer all alike
- No need to use the same general triple notation

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

Triples	Abbreviation
indi prop indi .	
<pre>indi rdf:type class .</pre>	$C(i_1)$
<pre>class rdfs:subClassOf class .</pre>	$C \sqsubseteq D$ $r \sqsubseteq s$
<pre>prop rdfs:subPropertyOf prop .</pre>	<i>r</i> ⊑ <i>s</i>
<pre>prop rdfs:domain class .</pre>	dom(r, C) rg(r, C)
<pre>prop rdfs:range class .</pre>	rg(<i>r</i> , <i>C</i>)

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

Triples	Abbreviation
indi prop indi .	
indi rdf:type class .	$C(i_1)$
<pre>class rdfs:subClassOf class . prop rdfs:subPropertyOf prop . prop rdfs:domain class . prop rdfs:range class .</pre>	$C \sqsubseteq D$
<pre>prop rdfs:subPropertyOf prop .</pre>	<i>r</i> ⊑ <i>s</i>
<pre>prop rdfs:domain class .</pre>	dom(<i>r</i> , <i>C</i>)
<pre>prop rdfs:range class .</pre>	rg(<i>r</i> , <i>C</i>)

• This is called "Description Logic" (DL) Syntax

- Resources and Triples are no longer all alike
- No need to use the same general triple notation
- Use alternative notation

Triples	Abbreviation
indi prop indi .	$ \begin{array}{c} r(i_1, i_2) \\ C(i_1) \end{array} $
<pre>indi rdf:type class .</pre>	$C(i_1)$
<pre>class rdfs:subClassOf class .</pre>	$C \sqsubseteq D$
<pre>prop rdfs:subPropertyOf prop .</pre>	<i>r</i> ⊑ <i>s</i>
<pre>prop rdfs:domain class .</pre>	$c \equiv b$ $r \equiv s$ $dom(r, C)$ $rg(r, C)$
<pre>prop rdfs:range class .</pre>	rg(<i>r</i> , <i>C</i>)

- This is called "Description Logic" (DL) Syntax
- Used much in particular for OWL

• Triples:

Example

```
    Triples:
```

```
ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .
```


Example

```
Triples:
```

```
ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .
```

• DL syntax, without namespaces:

Example

```
Triples:
```

```
ws:romeo ws:loves ws:juliet .
ws:juliet rdf:type ws:Lady .
ws:Lady rdfs:subClassOf foaf:Person .
ws:loves rdfs:subPropertyOf foaf:knows .
ws:loves rdfs:domain ws:Lover .
ws:loves rdfs:range ws:Beloved .
```

```
• DL syntax, without namespaces:
```

```
loves(romeo, juliet)
Lady(juliet)
```

```
Lady ⊑ Person
loves ⊑ knows
dom(loves, Lover)
rg(loves, Beloved)
```


• To interpret the six kinds of triples, we need to know how to interpret

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- A DL-interpretation ${\mathcal I}$ consists of

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- \bullet A DL-interpretation ${\mathcal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- A DL-interpretation ${\mathcal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - For each individual URI *i*, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- A *DL-interpretation* \mathcal{I} consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - For each individual URI *i*, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
 - For each class URI C, a subset $C^\mathcal{I} \subseteq \Delta^\mathcal{I}$

Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- A DL-interpretation ${\mathcal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - For each individual URI *i*, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
 - For each class URI *C*, a subset $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - For each property URI r, a relation $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$

Interpretations for RDF

- To interpret the six kinds of triples, we need to know how to interpret
 - Individual URIs as real or imagined objects
 - Class URIs as sets of such objects
 - Property URIs as relations between these objects
- A *DL-interpretation* \mathcal{I} consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* (sorry!) of \mathcal{I}
 - For each individual URI *i*, an element $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$
 - For each class URI *C*, a subset $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$
 - For each property URI r, a relation $r^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Delta^\mathcal{I}$
- Given these, it will be possible to say whether a triple holds or not.

•
$$\Delta^{\mathcal{I}_1} = \left\{ \left| \left| \left| \right\rangle \right|, \left| \left| \right\rangle \right|, \left| \left| \right\rangle \right| \right\rangle \right\}$$

•
$$\Delta^{\mathcal{I}_1} = \left\{ \left| \left| \left| \right| \right|, \left| \left| \right| \right| \right|, \left| \left| \right| \right| \right\}$$

• $romeo^{\mathcal{I}_1} = \left| \left| \left| \left| \left| \right| \right| \right| \right| \right\} juliet^{\mathcal{I}_1} = \left| \left| \left| \left| \left| \right| \right| \right| \right\}$

•
$$\Delta^{\mathcal{I}_1} = \left\{ \left| \begin{array}{c} \end{array} \right|, \left| \begin{array}{c} \end{array} \right|, \left| \begin{array}{c} \end{array} \right| \right\}$$

• $romeo^{\mathcal{I}_1} = \left| \begin{array}{c} \end{array} \right| juliet^{\mathcal{I}_1} = \left| \begin{array}{c} \end{array} \right|$
• $Lady^{\mathcal{I}_1} = \left\{ \left| \begin{array}{c} \end{array} \right| \right\} \quad Person^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1}$
 $Lover^{\mathcal{I}_1} = Beloved^{\mathcal{I}_1} = \left\{ \left| \begin{array}{c} \end{array} \right|, \left| \begin{array}{c} \end{array} \right| \right\}$

•
$$\Delta^{\mathcal{I}_{1}} = \left\{ \left| \overbrace{}^{} \overbrace{}^{} , \overbrace{}^{} \overbrace{}^{} , \overbrace{}^{} \right|^{} \right\}$$

• $romeo^{\mathcal{I}_{1}} = \left| \overbrace{}^{} \overbrace{}^{} \right|^{} juliet^{\mathcal{I}_{1}} = \left| \overbrace{}^{} \overbrace{}^{} \right|^{}$
• $Lady^{\mathcal{I}_{1}} = \left\{ \left| \overbrace{}^{} \overbrace{}^{} \right|^{} \right\}$ $Person^{\mathcal{I}_{1}} = \Delta^{\mathcal{I}_{1}}$
 $Lover^{\mathcal{I}_{1}} = Beloved^{\mathcal{I}_{1}} = \left\{ \left| \overbrace{}^{} \overbrace{}^{} , \overbrace{}^{} \right|^{} \right\}$
• $loves^{\mathcal{I}_{1}} = \left\{ \left\langle \left| \overbrace{}^{} \overbrace{}^{} , \overbrace{}^{} \right|^{} \right\rangle, \left\langle \left| \overbrace{}^{} \overbrace{}^{} , \overbrace{}^{} \right|^{} \right\rangle, \left\langle \left| \overbrace{}^{} \right|^{} , \overbrace{}^{} \right\rangle, \left\langle \left| \overbrace{}^{} \right|^{} \right\rangle, \left\langle \left| \overbrace{}^{} \right|^{} \right\rangle, \left\langle \left| \overbrace{}^{} \right|^{} \right\rangle$

•
$$\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

•
$$\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

• $romeo^{\mathcal{I}_2} = 17$ $juliet^{\mathcal{I}_2} = 32$

•
$$\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

- romeo $\mathcal{I}_2 = 17$ juliet $\mathcal{I}_2 = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$

•
$$\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

- romeo $I_2 = 17$ juliet $I_2 = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$

•
$$loves^{\mathcal{I}_2} = <= \{ \langle x, y \rangle \mid x < y \}$$

 $knows^{\mathcal{I}_2} = \le = \{ \langle x, y \rangle \mid x \le y \}$

•
$$\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

- romeo $\mathcal{I}_2 = 17$ juliet $\mathcal{I}_2 = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$

•
$$loves^{\mathcal{I}_2} = <= \{ \langle x, y \rangle \mid x < y \}$$

 $knows^{\mathcal{I}_2} = \le= \{ \langle x, y \rangle \mid x \le y \}$

• Just because names (URIs) look familiar, they don't need to denote what we think!

•
$$\Delta^{\mathcal{I}_2} = \mathbb{N} = \{1, 2, 3, 4, \ldots\}$$

- $romeo^{\mathcal{I}_2} = 17$ $juliet^{\mathcal{I}_2} = 32$
- $Lady^{\mathcal{I}_2} = \{2^n \mid n \in \mathbb{N}\} = \{2, 4, 8, 16, 32, \ldots\}$ $Person^{\mathcal{I}_2} = \{2n \mid n \in \mathbb{N}\} = \{2, 4, 6, 8, 10, \ldots\}$ $Lover^{\mathcal{I}_2} = Beloved^{\mathcal{I}_2} = \mathbb{N}$
- $loves^{\mathcal{I}_2} = <= \{ \langle x, y \rangle \mid x < y \}$ $knows^{\mathcal{I}_2} = \le= \{ \langle x, y \rangle \mid x \le y \}$
- Just because names (URIs) look familiar, they don't need to denote what we think!
- In fact, there is *no way* of ensuring they denote only what we think!

- Given an interpretation \mathcal{I} , define \models as follows:
 - $\mathcal{I} \models r(i_1, i_2)$ iff $\left\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \right\rangle \in r^{\mathcal{I}}$

- Given an interpretation \mathcal{I} , define \models as follows:
 - $\mathcal{I} \models r(i_1, i_2)$ iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$

•
$$\mathcal{I} \models r(i_1, i_2) \text{ iff } \langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$$

- $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
- $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$

•
$$\mathcal{I} \models r(i_1, i_2)$$
 iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
• $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
• $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
• $\mathcal{I} \models r \sqsubseteq c$ iff $r^{\mathcal{I}} \subseteq c^{\mathcal{I}}$

•
$$\mathcal{I} \models r \sqsubseteq s$$
 iff $r^{\mathcal{I}} \subseteq s$

•
$$\mathcal{I} \models r(i_1, i_2)$$
 iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
• $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
• $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
• $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$

•
$$\mathcal{I} \models \mathsf{dom}(r, C)$$
 iff $\mathsf{dom} r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

• Given an interpretation \mathcal{I} , define \models as follows:

•
$$\mathcal{I} \models r(i_1, i_2)$$
 iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
• $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
• $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
• $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
• $\mathcal{I} \models \operatorname{dom}(r, C)$ iff dom $r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

• $\mathcal{I} \models \operatorname{rg}(r, C)$ iff $\operatorname{rg} r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

•
$$\mathcal{I} \models r(i_1, i_2)$$
 iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
• $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
• $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
• $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
• $\mathcal{I} \models \operatorname{dom}(r, C)$ iff dom $r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

- $\mathcal{I} \models \operatorname{rg}(r, C)$ iff $\operatorname{rg} r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- For a set of triples \mathcal{A} (any of the six kinds)

•
$$\mathcal{I} \models r(i_1, i_2)$$
 iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
• $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
• $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
• $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
• $\mathcal{I} \models \operatorname{dom}(r, C)$ iff dom $r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

- $\mathcal{I} \models \operatorname{rg}(r, C)$ iff $\operatorname{rg} r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- For a set of triples \mathcal{A} (any of the six kinds)
- $\bullet~\mathcal{A}$ is valid in $\mathcal{I},$ written

$$\mathcal{I} \models \mathcal{A}$$

• Given an interpretation \mathcal{I} , define \models as follows:

•
$$\mathcal{I} \models r(i_1, i_2)$$
 iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$
• $\mathcal{I} \models C(i)$ iff $i^{\mathcal{I}} \in C^{\mathcal{I}}$
• $\mathcal{I} \models C \sqsubseteq D$ iff $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
• $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$
• $\mathcal{I} \models \operatorname{dom}(r, C)$ iff dom $r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$

- $\mathcal{I} \models \mathsf{rg}(r, C)$ iff $\mathsf{rg} r^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
- For a set of triples \mathcal{A} (any of the six kinds)
- $\bullet~\mathcal{A}$ is valid in $\mathcal{I},$ written

$$\mathcal{I} \models \mathcal{A}$$

• iff $\mathcal{I} \models A$ for all $A \in \mathcal{A}$.

• $\mathcal{I}_1 \models loves(juliet, romeo)$ because

• $\mathcal{I}_1 \models loves(juliet, romeo)$ because

• $\mathcal{I}_1 \models loves(juliet, romeo)$ because

$$\left. \left. \left. \left\langle \mathsf{P} \right\rangle \in \mathit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \mathsf{P} \right\rangle, \mathsf{P} \right\rangle, \left\langle \mathsf{P} \right\rangle, \mathsf{P} \right\rangle \right\}$$

• $\mathcal{I}_2 \not\models Person(romeo)$ because

• $\mathcal{I}_1 \models loves(juliet, romeo)$ because

$$\left. \left. \left. \left\langle \mathsf{P} \right\rangle \in \mathit{loves}^{\mathcal{I}_1} = \left\{ \left\langle \mathsf{P} \right\rangle, \mathsf{P} \right\rangle, \left\langle \mathsf{P} \right\rangle, \mathsf{P} \right\rangle \right\}$$

• $\mathcal{I}_2 \not\models Person(romeo)$ because $romeo^{\mathcal{I}_2} = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$

• $\mathcal{I}_1 \models loves(juliet, romeo)$ because

- $\mathcal{I}_2 \not\models Person(romeo)$ because romeo $^{\mathcal{I}_2} = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$
- $\mathcal{I}_1 \models Lover \sqsubseteq Person$ because

• $\mathcal{I}_1 \models loves(juliet, romeo)$ because

- $\mathcal{I}_2 \not\models Person(romeo)$ because romeo $^{\mathcal{I}_2} = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$
- $\mathcal{I}_1 \models Lover \sqsubseteq Person$ because

$$Lover^{\mathcal{I}_1} = \left\{ \bigotimes_{i=1}^{\infty}, \bigotimes_{i=1}^{\infty} \right\} \subseteq Person^{\mathcal{I}_1} = \left\{ \bigotimes_{i=1}^{\infty}, \bigotimes_{i=1}^{\infty}, \bigotimes_{i=1}^{\infty} \right\}$$

• $\mathcal{I}_1 \models \textit{loves(juliet, romeo)}$ because

- $\mathcal{I}_2 \not\models Person(romeo)$ because $romeo^{\mathcal{I}_2} = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$
- $\mathcal{I}_1 \models Lover \sqsubseteq Person$ because

• $\mathcal{I}_2 \not\models Lover \sqsubseteq Person$ because

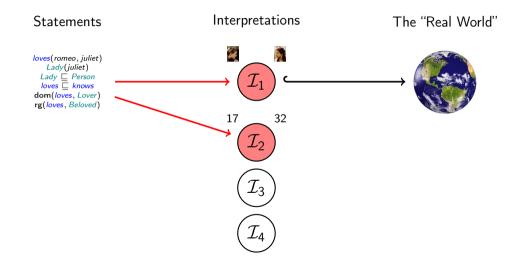
• $\mathcal{I}_1 \models \mathit{loves(juliet, romeo)}$ because

- $\mathcal{I}_2 \not\models Person(romeo)$ because romeo $^{\mathcal{I}_2} = 17 \notin Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$
- $\mathcal{I}_1 \models Lover \sqsubseteq Person$ because

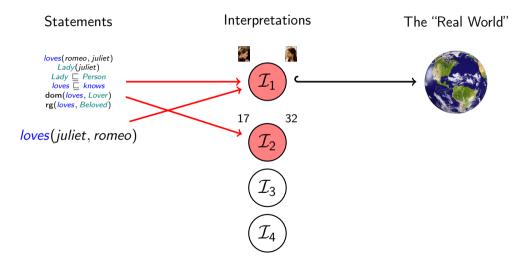
$$\mathit{Lover}^{\mathcal{I}_1} = \left\{ egin{matrix} \mathbb{I}_1 \ \mathbb{I}_2 \$$

• $\mathcal{I}_2 \not\models Lover \sqsubseteq Person$ because $Lover^{\mathcal{I}_2} = \mathbb{N}$ and $Person^{\mathcal{I}_2} = \{2, 4, 6, 8, 10, \ldots\}$

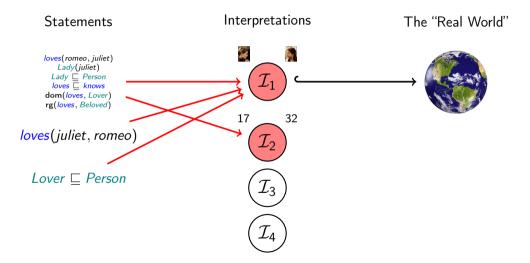
Finding out stuff about Romeo and Juliet



Finding out stuff about Romeo and Juliet



Finding out stuff about Romeo and Juliet



Entailment

• Given a set of triples \mathcal{A} (any of the six kinds)

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)

Entailment

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A} , written $\mathcal{A} \models T$

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A} , written $\mathcal{A} \models T$
- iff
 - For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by A, written $A \models T$
- iff
 - For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
 - $\mathcal{I} \models T$.

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A} , written $\mathcal{A} \models T$
- iff
 - \bullet For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
 - $\mathcal{I} \models T$.
- Example:

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A} , written $\mathcal{A} \models T$
- iff
 - \bullet For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
 - $\mathcal{I} \models T$.
- Example:
 - $\mathcal{A} = \{\dots, Lady(juliet), Lady \sqsubseteq Person, \dots\}$ as before

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A} , written $\mathcal{A} \models T$
- iff
 - \bullet For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
 - $\mathcal{I} \models T$.
- Example:
 - $\mathcal{A} = \{\dots, Lady(juliet), Lady \sqsubseteq Person, \dots\}$ as before
 - $\mathcal{A} \models Person(juliet)$ because...

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A} , written $\mathcal{A} \models T$
- iff
 - $\bullet~$ For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
 - $\mathcal{I} \models T$.
- Example:
 - $\mathcal{A} = \{\dots, Lady(juliet), Lady \sqsubseteq Person, \dots\}$ as before
 - $\mathcal{A} \models Person(juliet)$ because...
 - in any interpretation \mathcal{I} ...

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A} , written $\mathcal{A} \models T$
- iff
 - $\bullet~$ For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
 - $\mathcal{I} \models T$.
- Example:
 - $\mathcal{A} = \{\dots, Lady(juliet), Lady \sqsubseteq Person, \dots\}$ as before
 - $\mathcal{A} \models Person(juliet)$ because...
 - in any interpretation \mathcal{I} ...
 - if $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$ and $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}} \dots$

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A} , written $\mathcal{A} \models T$
- iff
 - $\bullet~$ For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
 - $\mathcal{I} \models T$.
- Example:
 - $\mathcal{A} = \{\dots, Lady(juliet), Lady \sqsubseteq Person, \dots\}$ as before
 - $\mathcal{A} \models Person(juliet)$ because...
 - in any interpretation \mathcal{I} ...
 - if $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$ and $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}} \dots$
 - \bullet then by set theory $\textit{juliet}^\mathcal{I} \in \textit{Person}^\mathcal{I}$

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A} , written $\mathcal{A} \models T$
- iff
 - \bullet For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
 - $\mathcal{I} \models T$.
- Example:
 - $\mathcal{A} = \{\dots, Lady(juliet), Lady \sqsubseteq Person, \dots\}$ as before
 - $\mathcal{A} \models Person(juliet)$ because...
 - in any interpretation \mathcal{I} ...
 - if $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$ and $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}} \dots$
 - \bullet then by set theory $\textit{juliet}^\mathcal{I} \in \textit{Person}^\mathcal{I}$
- Not about T being (intuitively) true or not

- Given a set of triples \mathcal{A} (any of the six kinds)
- And a further triple T (also any kind)
- T is entailed by \mathcal{A} , written $\mathcal{A} \models T$
- iff
 - $\bullet~$ For any interpretation $\mathcal I$ with $\mathcal I \models \mathcal A$
 - $\mathcal{I} \models T$.
- Example:
 - $\mathcal{A} = \{\dots, Lady(juliet), Lady \sqsubseteq Person, \dots\}$ as before
 - $\mathcal{A} \models Person(juliet)$ because...
 - in any interpretation \mathcal{I} ...
 - if $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$ and $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}} \dots$
 - \bullet then by set theory $\textit{juliet}^\mathcal{I} \in \textit{Person}^\mathcal{I}$
- Not about T being (intuitively) true or not
- \bullet Only about whether ${\cal T}$ is a *consequence* of ${\cal A}$

Countermodels

• If $\mathcal{A} \not\models T$,...

Countermodels

- If $\mathcal{A} \not\models T$,...
- \bullet then there is an ${\mathcal I}$ with

- If $\mathcal{A} \not\models \mathcal{T}, \ldots$
- \bullet then there is an ${\mathcal I}$ with
 - $\mathcal{I} \models \mathcal{A}$

- If $\mathcal{A} \not\models \mathcal{T}, \ldots$
- \bullet then there is an ${\mathcal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$

- If $\mathcal{A} \not\models \mathcal{T}, \ldots$
- $\bullet\,$ then there is an ${\cal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$

- If $\mathcal{A} \not\models \mathcal{T}, \ldots$
- $\bullet\,$ then there is an ${\cal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an \mathcal{I} is called a *counter-model* (for the assumption that \mathcal{A} entails \mathcal{T})

- If $\mathcal{A} \not\models \mathcal{T}, \dots$
- $\bullet\,$ then there is an ${\cal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an \mathcal{I} is called a *counter-model* (for the assumption that \mathcal{A} entails \mathcal{T})
- To show that $\mathcal{A} \models \mathcal{T}$ does *not* hold:

- If $\mathcal{A} \not\models \mathcal{T}, \dots$
- $\bullet\,$ then there is an ${\cal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an \mathcal{I} is called a *counter-model* (for the assumption that \mathcal{A} entails \mathcal{T})
- To show that $\mathcal{A} \models \mathcal{T}$ does *not* hold:
 - Describe an interpretation ${\mathcal I}$ (using your fantasy)

- If $\mathcal{A} \not\models \mathcal{T}, \dots$
- $\bullet\,$ then there is an ${\cal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an \mathcal{I} is called a *counter-model* (for the assumption that \mathcal{A} entails \mathcal{T})
- To show that $\mathcal{A} \models \mathcal{T}$ does *not* hold:
 - Describe an interpretation \mathcal{I} (using your fantasy)
 - Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)

- If $\mathcal{A} \not\models \mathcal{T}, \dots$
- $\bullet\,$ then there is an ${\cal I}$ with
 - $\mathcal{I} \models \mathcal{A}$
 - $\mathcal{I} \not\models T$
- Vice-versa: if $\mathcal{I} \models \mathcal{A}$ and $\mathcal{I} \not\models \mathcal{T}$, then $\mathcal{A} \not\models \mathcal{T}$
- Such an \mathcal{I} is called a *counter-model* (for the assumption that \mathcal{A} entails \mathcal{T})
- To show that $\mathcal{A} \models \mathcal{T}$ does *not* hold:
 - Describe an interpretation \mathcal{I} (using your fantasy)
 - Prove that $\mathcal{I} \models \mathcal{A}$ (using the semantics)
 - Prove that $\mathcal{I} \not\models \mathcal{T}$ (using the semantics)

Outline

- Repetition: RDF semantics
- 2 Literal Semantics
 - 3 Blank Node Semantics
- Properties of Entailment by Model Semantics
- 5 Entailment and Derivability

• Consider again the set of triples \mathcal{A} :

loves(romeo, juliet)
Lady(juliet)

```
Lady ⊑ Person
loves ⊑ knows
dom(loves, Lover)
rg(loves, Beloved)
```

```
loves(romeo, juliet)
Lady(juliet)
Lady ⊑ Person
loves ⊑ knows
dom(loves, Lover)
```

- rg(loves, Beloved)
- \bullet We can now say something about if ${\mathcal A}$ is valid in an interpretation ${\mathcal I}$

```
loves(romeo, juliet)
Lady(juliet)
Lady ⊆ Person
loves ⊆ knows
dom(loves, Lover)
rg(loves, Beloved)
```

- \bullet We can now say something about if ${\mathcal A}$ is valid in an interpretation ${\mathcal I}$
- Say we add the triple T = age(juliet, "13")

```
loves(romeo, juliet)
Lady(juliet)
Lady ⊑ Person
loves ⊑ knows
dom(loves, Lover)
rg(loves, Beloved)
```

- \bullet We can now say something about if ${\mathcal A}$ is valid in an interpretation ${\mathcal I}$
- Say we add the triple T = age(juliet, "13")
- Is this new set of triples valid in any of our interpretations \mathcal{I}_1 or \mathcal{I}_2 , why?

• Literals can only occur as *objects* of triples

- Literals can only occur as *objects* of triples
- Have datatype, can be with or without language tag

- Literals can only occur as *objects* of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

- Literals can only occur as *objects* of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources: ex:me ex:likes dbpedia:Berlin .

- Literals can only occur as *objects* of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string" .

- Literals can only occur as *objects* of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string" .

• We simplify things by:

- Literals can only occur as *objects* of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

ex:me ex:likes "some string" .

- We simplify things by:
 - considering only string literals without language tag, and

- Literals can only occur as *objects* of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

ex:me ex:likes "some string" .

- We simplify things by:
 - considering only string literals without language tag, and
 - allowing either resource objects or literal objects for any predicate

- Literals can only occur as *objects* of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

ex:me ex:likes "some string" .

- We simplify things by:
 - considering only string literals without language tag, and
 - allowing either resource objects or literal objects for any predicate
- Five types of resources:

- Literals can only occur as *objects* of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
 - considering only string literals without language tag, and
 - allowing either resource objects or literal objects for any predicate
- Five types of resources:
 - Object Properties like foaf: knows

- Literals can only occur as *objects* of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
 - considering only string literals without language tag, and
 - allowing either resource objects or literal objects for any predicate
- Five types of resources:
 - Object Properties like foaf: knows
 - Datatype Properties like dc:title, foaf:name

- Literals can only occur as *objects* of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
 - considering only string literals without language tag, and
 - allowing either resource objects or literal objects for any predicate
- Five types of resources:
 - Object Properties like foaf: knows
 - Datatype Properties like dc:title, foaf:name
 - Classes like foaf:Person

- Literals can only occur as *objects* of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
 - considering only string literals without language tag, and
 - allowing either resource objects or literal objects for any predicate
- Five types of resources:
 - Object Properties like foaf: knows
 - Datatype Properties like dc:title, foaf:name
 - Classes like foaf:Person
 - *Built-ins*, a fixed set including rdf:type, rdfs:domain, etc.

- Literals can only occur as *objects* of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
 - considering only string literals without language tag, and
 - allowing either resource objects or literal objects for any predicate
- Five types of resources:
 - Object Properties like foaf: knows
 - Datatype Properties like dc:title, foaf:name
 - Classes like foaf:Person
 - *Built-ins*, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)

- Literals can only occur as *objects* of triples
- Have datatype, can be with or without language tag
- The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .

- We simplify things by:
 - considering only string literals without language tag, and
 - allowing either resource objects or literal objects for any predicate
- Five types of resources:
 - Object Properties like foaf:knows
 - Datatype Properties like dc:title, foaf:name
 - Classes like foaf:Person
 - *Built-ins*, a fixed set including rdf:type, rdfs:domain, etc.
 - Individuals (all the rest, "usual" resources)
- Why? simpler, object/datatype split is in OWL

Allowed triples

Allow only triples using object properties and datatype properties as intended

Triples	Abbreviation
indi o-prop indi .	$r(i_1, i_2)$
indi d-prop "lit" .	a(i, l)
<pre>indi rdf:type class .</pre>	$C(i_1)$
class rdfs:subClassOf class .	$C \sqsubseteq D$
<pre>o-prop rdfs:subPropertyOf o-prop .</pre>	<i>r</i> ⊑ <i>s</i>
d-prop rdfs:subPropertyOf d-prop .	a
o-prop rdfs:domain class .	dom(<i>r</i> , <i>C</i>)
o-prop rdfs:range class .	rg(<i>r</i> , <i>C</i>)

 \bullet Let Λ be the set of all literal values, i.e. all strings

- \bullet Let Λ be the set of all literal values, i.e. all strings
 - Chosen once and for all, same for all interpretations

- \bullet Let Λ be the set of all literal values, i.e. all strings
 - Chosen once and for all, same for all interpretations
- A *DL-interpretation* \mathcal{I} consists of

- \bullet Let Λ be the set of all literal values, i.e. all strings
 - Chosen once and for all, same for all interpretations
- A DL-interpretation $\mathcal I$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* of \mathcal{I}

- \bullet Let Λ be the set of all literal values, i.e. all strings
 - Chosen once and for all, same for all interpretations
- A DL-interpretation $\mathcal I$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* of \mathcal{I}
 - Interpretations $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$, $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, and $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ as before

- Let Λ be the set of all literal values, i.e. all strings
 - Chosen once and for all, same for all interpretations
- \bullet A DL-interpretation ${\cal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* of \mathcal{I}
 - Interpretations $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$, $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, and $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ as before
 - For each datatype property URI a, a relation $a^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Lambda$

- \bullet Let Λ be the set of all literal values, i.e. all strings
 - Chosen once and for all, same for all interpretations
- \bullet A DL-interpretation ${\cal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* of \mathcal{I}
 - Interpretations $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$, $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, and $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ as before
 - For each datatype property URI *a*, a relation $a^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Lambda$
- Semantics:

- \bullet Let Λ be the set of all literal values, i.e. all strings
 - Chosen once and for all, same for all interpretations
- \bullet A DL-interpretation ${\cal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* of \mathcal{I}
 - Interpretations $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$, $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, and $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ as before
 - For each datatype property URI *a*, a relation $a^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Lambda$
- Semantics:
 - $\mathcal{I} \models r(i_1, i_2)$ iff $\left< i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \right> \in r^{\mathcal{I}}$ for object property r

- \bullet Let Λ be the set of all literal values, i.e. all strings
 - Chosen once and for all, same for all interpretations
- A DL-interpretation ${\mathcal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* of \mathcal{I}
 - Interpretations $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$, $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, and $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ as before
 - For each datatype property URI *a*, a relation $a^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Lambda$
- Semantics:
 - $\mathcal{I} \models r(i_1, i_2)$ iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ for object property r
 - $\mathcal{I} \models a(i, I)$ iff $\langle i^{\mathcal{I}}, I \rangle \in a^{\mathcal{I}}$ for datatype property a

- Let Λ be the set of all literal values, i.e. all strings
 - Chosen once and for all, same for all interpretations
- A DL-interpretation ${\mathcal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* of \mathcal{I}
 - Interpretations $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$, $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, and $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ as before
 - For each datatype property URI a, a relation $a^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Lambda$
- Semantics:
 - $\mathcal{I} \models r(i_1, i_2)$ iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ for object property r
 - $\mathcal{I} \models a(i, I)$ iff $\langle i^{\mathcal{I}}, I \rangle \in a^{\mathcal{I}}$ for datatype property a
 - $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$ for object properties r, s

- Let Λ be the set of all literal values, i.e. all strings
 - Chosen once and for all, same for all interpretations
- A DL-interpretation ${\mathcal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* of \mathcal{I}
 - Interpretations $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$, $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, and $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ as before
 - For each datatype property URI a, a relation $a^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Lambda$
- Semantics:
 - $\mathcal{I} \models r(i_1, i_2)$ iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ for object property r
 - $\mathcal{I} \models a(i, I)$ iff $\langle i^{\mathcal{I}}, I \rangle \in a^{\mathcal{I}}$ for datatype property a
 - $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$ for object properties r, s
 - $\mathcal{I} \models a \sqsubseteq b$ iff $a^{\mathcal{I}} \subseteq b^{\mathcal{I}}$ for datatype properties a, b

- \bullet Let Λ be the set of all literal values, i.e. all strings
 - Chosen once and for all, same for all interpretations
- A DL-interpretation ${\mathcal I}$ consists of
 - A set $\Delta^{\mathcal{I}}$, called the *domain* of \mathcal{I}
 - Interpretations $i^{\mathcal{I}} \in \Delta^{\mathcal{I}}$, $C^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$, and $r^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ as before
 - For each datatype property URI a, a relation $a^\mathcal{I} \subseteq \Delta^\mathcal{I} imes \Lambda$
- Semantics:
 - $\mathcal{I} \models r(i_1, i_2)$ iff $\langle i_1^{\mathcal{I}}, i_2^{\mathcal{I}} \rangle \in r^{\mathcal{I}}$ for object property r
 - $\mathcal{I} \models a(i, I)$ iff $\langle i^{\mathcal{I}}, I \rangle \in a^{\mathcal{I}}$ for datatype property a
 - $\mathcal{I} \models r \sqsubseteq s$ iff $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$ for object properties r, s
 - $\mathcal{I} \models a \sqsubseteq b$ iff $a^{\mathcal{I}} \subseteq b^{\mathcal{I}}$ for datatype properties a, b
- Note: Literals I are in Λ , don't need to be interpreted.

Example: Interpretation with a Datatype Property

•
$$\Delta^{\mathcal{I}_1} = \left\{ \bigotimes, \bigotimes, \bigotimes, \bigotimes \right\}$$

Example: Interpretation with a Datatype Property

•
$$\Delta^{\mathcal{I}_{1}} = \left\{ \left| \left\langle \right\rangle, \left| \left\rangle, \right\rangle, \right\rangle \right\rangle \right\}$$

• $loves^{\mathcal{I}_{1}} = \left\{ \left\langle \left| \left\langle \right\rangle, \left| \left\rangle, \right\rangle \right\rangle \right\rangle, \left\langle \left| \left\rangle, \right\rangle, \left\langle \right\rangle \right\rangle \right\rangle \right\}$
 $knows^{\mathcal{I}_{1}} = \Delta^{\mathcal{I}_{1}} \times \Delta^{\mathcal{I}_{1}}$

Example: Interpretation with a Datatype Property

•
$$\Delta^{\mathcal{I}_1} = \left\{ \left| \left\langle \left| \left\langle \right\rangle \right\rangle, \left| \left\langle \right\rangle \right\rangle \right\rangle \right\}$$

• $loves^{\mathcal{I}_1} = \left\{ \left\langle \left| \left\langle \left| \left\langle \right\rangle \right\rangle, \left| \left\langle \right\rangle \right\rangle \right\rangle \right\rangle, \left\langle \left| \left\langle \left| \left\langle \right\rangle \right\rangle, \left\langle \left| \left\langle \right\rangle \right\rangle \right\rangle \right\rangle \right\rangle \right\}$
 $knows^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_1}$
• $age^{\mathcal{I}_1} = \left\{ \left\langle \left| \left\langle \left| \left\langle \right\rangle \right\rangle, \left| 16^{"} \right\rangle \right\rangle, \left\langle \left| \left| \left\langle \right\rangle \right\rangle, \left| 18^{"} \right\rangle \right\rangle \right\}$

Outline

- Repetition: RDF semantics
- 2 Literal Semantics
- Blank Node Semantics
- Properties of Entailment by Model Semantics
- 5 Entailment and Derivability

•
$$\Delta^{\mathcal{I}_1} = \left\{ \left| \left| \left| \left| \right\rangle \right|^2, \left| \left| \left| \left| \right\rangle \right|^2 \right| \right\rangle \right\} \right\}$$

$$knows^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_1}$$

• Let b_1 and b_2 be blank nodes

- Let b_1 and b_2 be blank nodes
- $\mathcal{A} = \{age(b_1, "16"), loves(b_1, b_2), age(b_2, "13")\}$

- Let b_1 and b_2 be blank nodes
- $\mathcal{A} = \{age(b_1, "16"), loves(b_1, b_2), age(b_2, "13")\}$
- Is \mathcal{A} valid in \mathcal{I}_1 ? why?

• Remember: Blank nodes are just like resources...

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.
- Blank node has a local "blank node identifier" instead.

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node *can* be used in several triples...

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node *can* be used in several triples. . .
- ... but they have to be in the same "file" or "data set"

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node *can* be used in several triples. . .
- ... but they have to be in the same "file" or "data set"
- Semantics of blank nodes require looking at a set of triples

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node *can* be used in several triples...
- ... but they have to be in the same "file" or "data set"
- Semantics of blank nodes require looking at a set of triples
- But we still need to interpret single triples.

Blank Nodes

- Remember: Blank nodes are just like resources...
- ... but without a "global" URI.
- Blank node has a local "blank node identifier" instead.
- A blank node *can* be used in several triples...
- ... but they have to be in the same "file" or "data set"
- Semantics of blank nodes require looking at a set of triples
- But we still need to interpret single triples.
- Solution: pass in blank node interpretation, deal with sets later!

• Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}}$...

- Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}} \ldots$
 - A blank node valuation β ...

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}}$...
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}}$...
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b

- Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}} \ldots$
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$

- Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}} \ldots$
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - . . . for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs i

- Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}} \ldots$
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs *i*
 - $I^{\mathcal{I},\beta} = I$ for literals I

- Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}} \ldots$
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs *i*
 - $I^{\mathcal{I},\beta} = I$ for literals I
 - $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b

- Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}} \ldots$
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs *i*
 - $I^{\mathcal{I},\beta} = I$ for literals I
 - $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- Interpretation:

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}}$...
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs *i*
 - $I^{\mathcal{I},\beta} = I$ for literals I
 - $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- Interpretation:

•
$$\mathcal{I}, \beta \models r(x, y) \text{ iff } \langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta} \rangle \in r^{\mathcal{I}} \dots$$

- Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}} \dots$
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - . . . for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs i
 - $I^{\mathcal{I},\beta} = I$ for literals I
 - $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- Interpretation:
 - $\mathcal{I}, \beta \models r(x, y) \text{ iff } \langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta} \rangle \in r^{\mathcal{I}} \dots$
 - ... for any legal combination of URIs/literals/blank nodes x, y

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}}$...
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - ... for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs i
 - $I^{\mathcal{I},\beta} = I$ for literals I
 - $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- Interpretation:
 - $\mathcal{I}, \beta \models r(x, y) \text{ iff } \langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta} \rangle \in r^{\mathcal{I}} \dots$
 - ... for any legal combination of URIs/literals/blank nodes x, y
 - ... and object/datatype property r

- Given an interpretation \mathcal{I} with domain $\Delta^{\mathcal{I}}$...
 - A blank node valuation β ...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - . . . for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs i
 - $I^{\mathcal{I},\beta} = I$ for literals I
 - $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- Interpretation:
 - $\mathcal{I}, \beta \models r(x, y) \text{ iff } \langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta} \rangle \in r^{\mathcal{I}} ...$
 - ... for any legal combination of URIs/literals/blank nodes x, y
 - ... and object/datatype property r
 - $\mathcal{I}, \beta \models C(x)$ iff $x^{\mathcal{I},\beta} \in C^{\mathcal{I},\beta}$

- Given an interpretation ${\mathcal I}$ with domain $\Delta^{{\mathcal I}} \ldots$
 - A blank node valuation β...
 - ... gives a domain element or literal value $\beta(b) \in \Delta^{\mathcal{I}} \cup \Lambda$...
 - . . . for every blank node ID b
- Now define $\cdot^{\mathcal{I},\beta}$
 - $i^{\mathcal{I},\beta} = i^{\mathcal{I}}$ for individual URIs i
 - $I^{\mathcal{I},\beta} = I$ for literals I
 - $b^{\mathcal{I},\beta} = \beta(b)$ for blank node IDs b
- Interpretation:
 - $\mathcal{I}, \beta \models r(x, y) \text{ iff } \langle x^{\mathcal{I}, \beta}, y^{\mathcal{I}, \beta} \rangle \in r^{\mathcal{I}} \dots$
 - ... for any legal combination of URIs/literals/blank nodes x, y
 - ... and object/datatype property r
 - $\mathcal{I}, \beta \models C(x)$ iff $x^{\mathcal{I},\beta} \in C^{\mathcal{I},\beta}$
 - ... for any URI/blank node x

• Given a set \mathcal{A} of triples with blank nodes...

- $\bullet\,$ Given a set ${\cal A}$ of triples with blank nodes. . .
- $\mathcal{I}, \beta \models \mathcal{A} \text{ iff } \mathcal{I}, \beta \models \mathcal{A} \text{ for all } \mathcal{A} \in \mathcal{A}$

- \bullet Given a set ${\mathcal A}$ of triples with blank nodes. . .
- $\mathcal{I}, \beta \models \mathcal{A} \text{ iff } \mathcal{I}, \beta \models \mathcal{A} \text{ for all } \mathcal{A} \in \mathcal{A}$
- $\bullet \ \mathcal{A}$ is valid in \mathcal{I}

- \bullet Given a set ${\mathcal A}$ of triples with blank nodes. . .
- $\mathcal{I}, \beta \models \mathcal{A} \text{ iff } \mathcal{I}, \beta \models \mathcal{A} \text{ for all } \mathcal{A} \in \mathcal{A}$
- $\bullet \ \mathcal{A}$ is valid in \mathcal{I}

 $\mathcal{I} \models \mathcal{A}$

- \bullet Given a set ${\mathcal A}$ of triples with blank nodes. . .
- $\mathcal{I}, \beta \models \mathcal{A} \text{ iff } \mathcal{I}, \beta \models \mathcal{A} \text{ for all } \mathcal{A} \in \mathcal{A}$
- $\bullet \ \mathcal{A}$ is valid in \mathcal{I}

 $\mathcal{I} \models \mathcal{A}$ if there is a β such that $\mathcal{I}, \beta \models \mathcal{A}$

- \bullet Given a set ${\cal A}$ of triples with blank nodes. . .
- $\mathcal{I}, \beta \models \mathcal{A} \text{ iff } \mathcal{I}, \beta \models \mathcal{A} \text{ for all } \mathcal{A} \in \mathcal{A}$
- $\bullet \ \mathcal{A}$ is valid in \mathcal{I}

 $\mathcal{I} \models \mathcal{A}$ if there is a β such that $\mathcal{I}, \beta \models \mathcal{A}$

• I.e. if there exists some valuation for the blank nodes that makes all triples true.

•
$$\Delta^{\mathcal{I}_1} = \left\{ \left| \left| \left| \left| \right| \right| \right| \right| , \left| \left| \left| \left| \right| \right| \right| \right| \right\}$$

•
$$\Delta^{\mathcal{I}_1} = \left\{ \left| \left\langle \right\rangle, \left| \left\rangle, \right\rangle \right\rangle, \left| \left\rangle \right\rangle \right\rangle \right\}$$

• $loves^{\mathcal{I}_1} = \left\{ \left\langle \left| \left\langle \right\rangle, \left| \left\rangle \right\rangle \right\rangle, \left\langle \left| \left\rangle \right\rangle, \left\langle \left| \left\rangle \right\rangle \right\rangle \right\rangle \right\rangle \right\}$

$$knows^{\mathcal{I}_1} = \Delta^{\mathcal{I}_1} \times \Delta^{\mathcal{I}_1}$$

• Let b_1 , b_2 , b_3 be blank nodes

- Let b_1 , b_2 , b_3 be blank nodes
- $\mathcal{A} = \{age(b_1, "16"), knows(b_1, b_2), loves(b_2, b_3), age(b_3, "13")\}$

- Let b_1 , b_2 , b_3 be blank nodes
- $\mathcal{A} = \{ age(b_1, "16"), knows(b_1, b_2), loves(b_2, b_3), age(b_3, "13") \}$
- $\bullet \ \ \text{Valid} \ \text{in} \ \mathcal{I}_1?$

- Let b_1 , b_2 , b_3 be blank nodes
- $\mathcal{A} = \{ age(b_1, "16"), knows(b_1, b_2), loves(b_2, b_3), age(b_3, "13") \}$
- Valid in \mathcal{I}_1 ?

• Pick
$$\beta(b_1) = \beta(b_2) =$$
, $\beta(b_3) =$

- Let b_1 , b_2 , b_3 be blank nodes
- $\mathcal{A} = \{age(b_1, "16"), knows(b_1, b_2), loves(b_2, b_3), age(b_3, "13")\}$
- Valid in \mathcal{I}_1 ?

• Pick
$$\beta(b_1) = \beta(b_2) = \bigotimes_{i=1}^{n} \beta(b_3) = \bigotimes_{$$

• Then $\mathcal{I}_1, \beta \models \mathcal{A}$

- Let b_1 , b_2 , b_3 be blank nodes
- $\mathcal{A} = \{age(b_1, "16"), knows(b_1, b_2), loves(b_2, b_3), age(b_3, "13")\}$
- Valid in \mathcal{I}_1 ?

• Pick
$$\beta(b_1) = \beta(b_2) =$$
, $\beta(b_3) =$

- Then $\mathcal{I}_1, \beta \models \mathcal{A}$
- So, yes, $\mathcal{I}_1 \models \mathcal{A}$.

• Entailment is defined just like without blank nodes:

- Entailment is defined just like without blank nodes:
 - Given sets of triples \mathcal{A} and \mathcal{B} ,

- Entailment is defined just like without blank nodes:
 - Given sets of triples \mathcal{A} and \mathcal{B} ,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$

- Entailment is defined just like without blank nodes:
 - Given sets of triples \mathcal{A} and \mathcal{B} ,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.

- Entailment is defined just like without blank nodes:
 - Given sets of triples \mathcal{A} and \mathcal{B} ,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- $\bullet\,$ This expands to: for any interpretation ${\cal I}$

- Entailment is defined just like without blank nodes:
 - Given sets of triples \mathcal{A} and \mathcal{B} ,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- $\bullet\,$ This expands to: for any interpretation ${\cal I}$
 - such that there exists a β with $\mathcal{I}, \beta \models \mathcal{A}$

- Entailment is defined just like without blank nodes:
 - Given sets of triples \mathcal{A} and \mathcal{B} ,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- $\bullet\,$ This expands to: for any interpretation ${\cal I}$
 - such that there exists a β with $\mathcal{I},\beta\models \mathcal{A}$
 - there also exists a β such that $\mathcal{I},\beta\models\mathcal{B}$

- Entailment is defined just like without blank nodes:
 - Given sets of triples \mathcal{A} and \mathcal{B} ,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- $\bullet\,$ This expands to: for any interpretation ${\cal I}$
 - such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
 - there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- Two different blank node valuations!

- Entailment is defined just like without blank nodes:
 - Given sets of triples \mathcal{A} and \mathcal{B} ,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- $\bullet\,$ This expands to: for any interpretation ${\cal I}$
 - such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
 - there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- Two different blank node valuations!
- Can evaluate the same blank node name differently in \mathcal{A} and \mathcal{B} .

- Entailment is defined just like without blank nodes:
 - Given sets of triples \mathcal{A} and \mathcal{B} ,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- $\bullet\,$ This expands to: for any interpretation ${\cal I}$
 - such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
 - there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- Two different blank node valuations!
- Can evaluate the same blank node name differently in \mathcal{A} and \mathcal{B} .
- Example:

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
 - Given sets of triples \mathcal{A} and \mathcal{B} ,
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- $\bullet\,$ This expands to: for any interpretation ${\cal I}$
 - such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
 - there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- Two different blank node valuations!
- Can evaluate the same blank node name differently in \mathcal{A} and \mathcal{B} .
- Example:

 $\{loves(b_1, juliet), knows(juliet, romeo), age(juliet, "13")\}$

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
 - $\bullet~$ Given sets of triples ${\cal A}$ and ${\cal B},$
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- $\bullet\,$ This expands to: for any interpretation ${\cal I}$
 - such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
 - there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- Two different blank node valuations!
- Can evaluate the same blank node name differently in \mathcal{A} and \mathcal{B} .
- Example:

 $\{loves(b_1, juliet), knows(juliet, romeo), age(juliet, "13")\} \\ \models \{loves(b_2, b_1), knows(b_1, romeo)\}$

Entailment with Blank Nodes

- Entailment is defined just like without blank nodes:
 - $\bullet~$ Given sets of triples ${\cal A}$ and ${\cal B},$
 - \mathcal{A} entails \mathcal{B} , written $\mathcal{A} \models \mathcal{B}$
 - iff for any interpretation \mathcal{I} with $\mathcal{I} \models \mathcal{A}$, also $\mathcal{I} \models \mathcal{B}$.
- $\bullet\,$ This expands to: for any interpretation ${\cal I}$
 - such that there exists a β_1 with $\mathcal{I}, \beta_1 \models \mathcal{A}$
 - there also exists a β_2 such that $\mathcal{I}, \beta_2 \models \mathcal{B}$
- Two different blank node valuations!
- Can evaluate the same blank node name differently in \mathcal{A} and \mathcal{B} .
- Example:

 $\{loves(b_1, juliet), knows(juliet, romeo), age(juliet, "13")\}$

 $\models \{loves(b_2, b_1), knows(b_1, romeo)\}$

• Simple entailment: entailment with blank nodes, but no RDFS semantics

$$\frac{r(u,x)}{r(u,b_1)} \operatorname{se1} \qquad \frac{r(u,x)}{r(b_1,x)} \operatorname{se2}$$

Where b_1 is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal/Blank node x resp. u.

$$\frac{r(u,x)}{r(u,b_1)} \operatorname{sel} \frac{r(u,x)}{r(b_1,x)} \operatorname{se2}$$

Where b_1 is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal/Blank node x resp. u.

{loves(b₁, juliet), knows(juliet, romeo), age(juliet, "13")}

$$\frac{r(u,x)}{r(u,b_1)} \operatorname{sel} \frac{r(u,x)}{r(b_1,x)} \operatorname{se2}$$

Where b_1 is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal/Blank node x resp. u.

{loves(b₁, juliet), knows(juliet, romeo), age(juliet, "13")}

$$\models \{loves(b_2, b_3), knows(b_3, romeo)\}$$

$$\frac{r(u,x)}{r(u,b_1)} \operatorname{sel} \qquad \frac{r(u,x)}{r(b_1,x)} \operatorname{se2}$$

Where b_1 is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal/Blank node x resp. u.

```
\{loves(b_1, juliet), knows(juliet, romeo), age(juliet, "13")\}
loves(b_2, juliet) se2, (b_2 \rightarrow b_1)
```

$$\models \{loves(b_2, b_3), knows(b_3, romeo)\}$$
 renamed blank nodes in $\mathcal{B}!$

$$\frac{r(u,x)}{r(u,b_1)} \operatorname{sel} \qquad \frac{r(u,x)}{r(b_1,x)} \operatorname{se2}$$

Where b_1 is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal/Blank node x resp. u.

```
\{loves(b_1, juliet), knows(juliet, romeo), age(juliet, "13")\}
loves(b_2, juliet) se2, (b_2 \rightarrow b_1)
loves(b_2, b_3) se1, (b_3 \rightarrow juliet)
```

 $\models \{loves(b_2, b_3), knows(b_3, romeo)\}$ renamed blank nodes in $\mathcal{B}!$

$$\frac{r(u,x)}{r(u,b_1)} \operatorname{sel} \qquad \frac{r(u,x)}{r(b_1,x)} \operatorname{se2}$$

Where b_1 is a blank node identifier, that either

- has not been used before in the graph, or
- has been used, but for the same URI/Literal/Blank node x resp. u.

```
 \{loves(b_1, juliet), knows(juliet, romeo), age(juliet, "13")\} 
 loves(b_2, juliet) \qquad se2, (b_2 \rightarrow b_1) 
 loves(b_2, b_3) \qquad se1, (b_3 \rightarrow juliet) 
 knows(b_3, romeo) \qquad se2, (reusing b_3 \rightarrow juliet) 
 \models \{loves(b_2, b_3), knows(b_3, romeo)\} \qquad renamed \ blank \ nodes \ in \ \mathcal{B}!
```

Outline

- Repetition: RDF semantics
- 2 Literal Semantics
- 3 Blank Node Semantics
- Properties of Entailment by Model Semantics
- 5 Entailment and Derivability

• Assume $\mathcal{A} \models \mathcal{B}$

- Assume $\mathcal{A} \models \mathcal{B}$
- Now add information to $\mathcal{A},$ i.e. $\mathcal{A}'\supseteq \mathcal{A}$

- Assume $\mathcal{A} \models \mathcal{B}$
- Now add information to $\mathcal{A},$ i.e. $\mathcal{A}'\supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}' \models \mathcal{B}$

- Assume $\mathcal{A} \models \mathcal{B}$
- \bullet Now add information to $\mathcal{A},$ i.e. $\mathcal{A}'\supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}' \models \mathcal{B}$
- We say that RDF/RDFS entailment is *monotonic*

- Assume $\mathcal{A} \models \mathcal{B}$
- \bullet Now add information to $\mathcal{A},$ i.e. $\mathcal{A}'\supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}' \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- What would non-monotonic reasoning be like?

- Assume $\mathcal{A} \models \mathcal{B}$
- \bullet Now add information to $\mathcal{A},$ i.e. $\mathcal{A}'\supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}' \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- What would non-monotonic reasoning be like?
 - { $Bird \sqsubseteq CanFly, Bird(tweety)$ } $\models CanFly(tweety)$

- Assume $\mathcal{A} \models \mathcal{B}$
- \bullet Now add information to $\mathcal{A},$ i.e. $\mathcal{A}'\supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}' \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- What would non-monotonic reasoning be like?
 - { $Bird \sqsubseteq CanFly, Bird(tweety)$ } $\models CanFly(tweety)$
 - {..., Penguin \sqsubseteq Bird, Penguin(tweety), Penguin $\sqsubseteq \neg$ CanFly} \nvDash CanFly(tweety)

- Assume $\mathcal{A} \models \mathcal{B}$
- \bullet Now add information to $\mathcal{A},$ i.e. $\mathcal{A}'\supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}' \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- What would non-monotonic reasoning be like?
 - { $Bird \sqsubseteq CanFly, Bird(tweety)$ } $\models CanFly(tweety)$
 - {..., Penguin \sqsubseteq Bird, Penguin(tweety), Penguin $\sqsubseteq \neg$ CanFly} $\not\models$ CanFly(tweety)
 - Interesting for human-style reasoning

- Assume $\mathcal{A} \models \mathcal{B}$
- \bullet Now add information to $\mathcal{A},$ i.e. $\mathcal{A}'\supseteq \mathcal{A}$
- Then \mathcal{B} is still entailed: $\mathcal{A}' \models \mathcal{B}$
- We say that RDF/RDFS entailment is monotonic
- What would non-monotonic reasoning be like?
 - { $Bird \sqsubseteq CanFly, Bird(tweety)$ } $\models CanFly(tweety)$
 - {..., Penguin \sqsubseteq Bird, Penguin(tweety), Penguin $\sqsubseteq \neg$ CanFly} $\not\models$ CanFly(tweety)
 - Interesting for human-style reasoning
 - Hard to combine with semantic web technologies

Note that,

• RDFS cannot express inconsistencies, so any RDFS graph is consistent.

Note that,

- RDFS cannot express inconsistencies, so any RDFS graph is consistent.
- RDFS has no notion of negation at all

Note that,

- RDFS cannot express inconsistencies, so any RDFS graph is consistent.
- RDFS has no notion of negation at all
 - For instance, the two triples

Note that,

- RDFS cannot express inconsistencies, so any RDFS graph is consistent.
- RDFS has no notion of negation at all
 - For instance, the two triples

ex:Joe rdf:type ex:Smoker .

Note that,

- RDFS cannot express inconsistencies, so any RDFS graph is consistent.
- RDFS has no notion of negation at all
 - For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

Note that,

- RDFS cannot express inconsistencies, so any RDFS graph is consistent.
- RDFS has no notion of negation at all
 - For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .
are not inconsistent.

Note that,

- RDFS cannot express inconsistencies, so any RDFS graph is consistent.
- RDFS has no notion of negation at all
 - For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

• (It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

Therefore,

Note that,

- RDFS cannot express inconsistencies, so any RDFS graph is consistent.
- RDFS has no notion of negation at all
 - For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

• (It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

Therefore,

• RDFS supports no reasoning services that require consistency-checking.

Note that,

- RDFS cannot express inconsistencies, so any RDFS graph is consistent.
- RDFS has no notion of negation at all
 - For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

• (It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

Therefore,

- RDFS supports no reasoning services that require consistency-checking.
- If negation or consistency-checks are needed, one must turn to OWL.

Note that,

- RDFS cannot express inconsistencies, so any RDFS graph is consistent.
- RDFS has no notion of negation at all
 - For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.

• (It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

Therefore,

- RDFS supports no reasoning services that require consistency-checking.
- If negation or consistency-checks are needed, one must turn to OWL.
- More about that next week.

Entailment and SPARQL

• Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. ?y :q ?z.}

Entailment and SPARQL

- Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. ?y :q ?z.}
- The query means: find x, y, z with p(x, y) and q(y, z)

Entailment and SPARQL

- Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. ?y :q ?z.}
- The query means: find x, y, z with p(x, y) and q(y, z)
- Semantics: find x, y, z with

 $KB \models \{p(x, y), q(y, z)\}$

Entailment and SPARQL

- Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. ?y :q ?z.}
- The query means: find x, y, z with p(x, y) and q(y, z)
- Semantics: find x, y, z with

$$KB \models \{p(x, y), q(y, z)\}$$

• E.g. an answer

$$x \leftarrow \text{ex:a} \quad y \leftarrow \text{ifi:in3060} \quad z \leftarrow "a"$$

means

$$KB \models \{p(a, in3060), q(in3060, "a")\}$$

Entailment and SPARQL

- Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. ?y :q ?z.}
- The query means: find x, y, z with p(x, y) and q(y, z)
- Semantics: find x, y, z with

$$KB \models \{p(x, y), q(y, z)\}$$

• E.g. an answer

$$x \leftarrow \text{ex:a} \quad y \leftarrow \text{ifi:in3060} \quad z \leftarrow "a"$$

means

$$KB \models \{p(a, in3060), q(in3060, "a")\}$$

• Monotonicity:

$$KB \cup \{\cdots\} \models \{p(a, \texttt{in3060}), q(\texttt{in3060}, \texttt{"a"})\}$$

Entailment and SPARQL

- Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. ?y :q ?z.}
- The query means: find x, y, z with p(x, y) and q(y, z)
- Semantics: find x, y, z with

$$KB \models \{p(x, y), q(y, z)\}$$

• E.g. an answer

$$x \leftarrow \text{ex:a} \quad y \leftarrow \text{ifi:in3060} \quad z \leftarrow "a"$$

means

$$KB \models \{p(a, in3060), q(in3060, "a")\}$$

• Monotonicity:

$$KB \cup \{\cdots\} \models \{p(a, in3060), q(in3060, "a")\}$$

• Answers remain valid with new information!

• Knowledge base *KB*:

Person(harald) Person(haakon) isFatherOf(harald, haakon)

• Knowledge base *KB*:

Person(*harald*) *Person*(*haakon*)

isFatherOf(harald, haakon)

• Question: is there a person without a father?

• Knowledge base *KB*:

Person(harald) Person(haakon)

- Question: is there a person without a father?
- Ask a database:

• Knowledge base *KB*:

Person(harald) Person(haakon)

- Question: is there a person without a father?
- Ask a database:
 - Yes: harald

• Knowledge base *KB*:

Person(harald) Person(haakon)

- Question: is there a person without a father?
- Ask a database:
 - Yes: harald
- ask a semantics based system

• Knowledge base *KB*:

Person(*harald*) *Person*(*haakon*)

- Question: is there a person without a father?
- Ask a database:
 - Yes: harald
- ask a semantics based system
 - find x with $KB \models 'x$ has no father'

• Knowledge base *KB*:

Person(*harald*) *Person*(*haakon*)

- Question: is there a person without a father?
- Ask a database:
 - Yes: harald
- ask a semantics based system
 - find x with $KB \models 'x$ has no father'
 - No answer: don't know

• Knowledge base *KB*:

Person(*harald*) *Person*(*haakon*)

- Question: is there a person without a father?
- Ask a database:
 - Yes: harald
- ask a semantics based system
 - find x with $KB \models 'x$ has no father'
 - No answer: don't know
- Why?

• Knowledge base *KB*:

Person(*harald*) *Person*(*haakon*)

- Question: is there a person without a father?
- Ask a database:
 - Yes: harald
- ask a semantics based system
 - find x with $KB \models 'x$ has no father'
 - No answer: don't know
- Why?
 - Monotonicity!

• Knowledge base *KB*:

Person(harald) Person(haakon)

- Question: is there a person without a father?
- Ask a database:
 - Yes: harald
- ask a semantics based system
 - find x with $KB \models 'x$ has no father'
 - No answer: don't know
- Why?
 - Monotonicity!
 - $KB \cup \{isFatherOf(olav, harald)\} \models harald does have a father$

• Knowledge base *KB*:

Person(harald) Person(haakon)

- Question: is there a person without a father?
- Ask a database:
 - Yes: harald
- ask a semantics based system
 - find x with $KB \models 'x$ has no father'
 - No answer: don't know
- Why?
 - Monotonicity!
 - $KB \cup \{isFatherOf(olav, harald)\} \models harald does have a father$
 - In some models of KB, harald has a father, in others not.

• Closed World Assumption (CWA)

- Closed World Assumption (CWA)
 - If a thing is not listed in the knowledge base, it doesn't exist

- Closed World Assumption (CWA)
 - If a thing is not listed in the knowledge base, it doesn't exist
 - If a fact isn't stated (or derivable) it's false

- Closed World Assumption (CWA)
 - If a thing is not listed in the knowledge base, it doesn't exist
 - If a fact isn't stated (or derivable) it's false
 - Typical semantics for database systems

- Closed World Assumption (CWA)
 - If a thing is not listed in the knowledge base, it doesn't exist
 - If a fact isn't stated (or derivable) it's false
 - Typical semantics for database systems
- Open World Assumption (OWA)

- Closed World Assumption (CWA)
 - If a thing is not listed in the knowledge base, it doesn't exist
 - If a fact isn't stated (or derivable) it's false
 - Typical semantics for database systems
- Open World Assumption (OWA)
 - There might be things not mentioned in the knowledge base

- Closed World Assumption (CWA)
 - If a thing is not listed in the knowledge base, it doesn't exist
 - If a fact isn't stated (or derivable) it's false
 - Typical semantics for database systems
- Open World Assumption (OWA)
 - There might be things not mentioned in the knowledge base
 - There might be facts that are true, although they are not stated

- Closed World Assumption (CWA)
 - If a thing is not listed in the knowledge base, it doesn't exist
 - If a fact isn't stated (or derivable) it's false
 - Typical semantics for database systems
- Open World Assumption (OWA)
 - There might be things not mentioned in the knowledge base
 - There might be facts that are true, although they are not stated
 - Typical semantics for logic-based systems

- Closed World Assumption (CWA)
 - If a thing is not listed in the knowledge base, it doesn't exist
 - If a fact isn't stated (or derivable) it's false
 - Typical semantics for database systems
- Open World Assumption (OWA)
 - There might be things not mentioned in the knowledge base
 - There might be facts that are true, although they are not stated
 - Typical semantics for logic-based systems
- What is best for the Semantic Web?

- Closed World Assumption (CWA)
 - If a thing is not listed in the knowledge base, it doesn't exist
 - If a fact isn't stated (or derivable) it's false
 - Typical semantics for database systems
- Open World Assumption (OWA)
 - There might be things not mentioned in the knowledge base
 - There might be facts that are true, although they are not stated
 - Typical semantics for logic-based systems
- What is best for the Semantic Web?
 - Will never know all information sources

- Closed World Assumption (CWA)
 - If a thing is not listed in the knowledge base, it doesn't exist
 - If a fact isn't stated (or derivable) it's false
 - Typical semantics for database systems
- Open World Assumption (OWA)
 - There might be things not mentioned in the knowledge base
 - There might be facts that are true, although they are not stated
 - Typical semantics for logic-based systems
- What is best for the Semantic Web?
 - Will never know all information sources
 - Can "discover" new information by following links

- Closed World Assumption (CWA)
 - If a thing is not listed in the knowledge base, it doesn't exist
 - If a fact isn't stated (or derivable) it's false
 - Typical semantics for database systems
- Open World Assumption (OWA)
 - There might be things not mentioned in the knowledge base
 - There might be facts that are true, although they are not stated
 - Typical semantics for logic-based systems
- What is best for the Semantic Web?
 - Will never know all information sources
 - Can "discover" new information by following links
 - New information can be produced at any time

- Closed World Assumption (CWA)
 - If a thing is not listed in the knowledge base, it doesn't exist
 - If a fact isn't stated (or derivable) it's false
 - Typical semantics for database systems
- Open World Assumption (OWA)
 - There might be things not mentioned in the knowledge base
 - There might be facts that are true, although they are not stated
 - Typical semantics for logic-based systems
- What is best for the Semantic Web?
 - Will never know all information sources
 - Can "discover" new information by following links
 - New information can be produced at any time
 - Therefore: Open World Assumption

• Robust under missing information

- Robust under missing information
- Any answer given by

- Robust under missing information
- Any answer given by
 - Entailment

 $KB \models Person(juliet)$

- Robust under missing information
- Any answer given by
 - Entailment

 $KB \models Person(juliet)$

• SPARQL query answering (entailment in disguise)

 $KB \models \{p(a, in3060), q(in3060, "a")\}$

- Robust under missing information
- Any answer given by
 - Entailment

 $KB \models Person(juliet)$

• SPARQL query answering (entailment in disguise)

 $KB \models \{p(a, in3060), q(in3060, "a")\}$

- Robust under missing information
- Any answer given by
 - Entailment

 $KB \models Person(juliet)$

• SPARQL query answering (entailment in disguise)

 $KB \models \{p(a, in3060), q(in3060, "a")\}$

remains valid when new information is added to ${\it KB}$

• Some things make no sense with this semantics

- Robust under missing information
- Any answer given by
 - Entailment

 $KB \models Person(juliet)$

• SPARQL query answering (entailment in disguise)

 $KB \models \{p(a, in3060), q(in3060, "a")\}$

- Some things make no sense with this semantics
 - Queries with negation ("not")

- Robust under missing information
- Any answer given by
 - Entailment

$$KB \models Person(juliet)$$

• SPARQL query answering (entailment in disguise)

$$KB \models \{p(a, in3060), q(in3060, "a")\}$$

- Some things make no sense with this semantics
 - Queries with negation ("not")
 - might be satisfied later on

- Robust under missing information
- Any answer given by
 - Entailment

$$KB \models Person(juliet)$$

• SPARQL query answering (entailment in disguise)

$$KB \models \{p(a, in3060), q(in3060, "a")\}$$

- Some things make no sense with this semantics
 - Queries with negation ("not")
 - might be satisfied later on
 - Queries with aggregation (counting, adding,...)

Consequences of the Open World Assumption

- Robust under missing information
- Any answer given by
 - Entailment

$$KB \models Person(juliet)$$

• SPARQL query answering (entailment in disguise)

$$KB \models \{p(a, in3060), q(in3060, "a")\}$$

remains valid when new information is added to ${\it KB}$

- Some things make no sense with this semantics
 - Queries with negation ("not")
 - might be satisfied later on
 - $\bullet~$ Queries with aggregation (counting, adding, . . .)
 - can change when more information comes

Outline

- Repetition: RDF semantics
- 2 Literal Semantics
- 3 Blank Node Semantics
- Properties of Entailment by Model Semantics
- 5 Entailment and Derivability

• We now have two ways of describing logical consequence...

- We now have two ways of describing logical consequence...
- 1. Using RDFS rules:

```
:Lady rdfs:subClassOf :Person . :juliet a :Lady .
:juliet a :Person . rdfs9
```

- We now have two ways of describing logical consequence...
- 1. Using RDFS rules:

- We now have two ways of describing logical consequence...
- 1. Using RDFS rules:

:Lady rdfs:subClassOf :Person . :juliet a :Lady . :juliet a :Person . rdfs9 <u>Lady [Person Lady(juliet)</u> <u>Person(juliet)</u> rdfs9

2. Using the model semantics

- We now have two ways of describing logical consequence...
- 1. Using RDFS rules:

:Lady rdfs:subClassOf :Person . :juliet a :Lady . :juliet a :Person . rdfs9 <u>Lady [Person Lady(juliet)</u> <u>Person(juliet)</u> rdfs9

- 2. Using the model semantics
 - If $\mathcal{I} \models Lady \sqsubseteq Person$ and $\mathcal{I} \models Lady(juliet)...$

- We now have two ways of describing logical consequence...
- 1. Using RDFS rules:

:Lady rdfs:subClassOf :Person . :juliet a :Lady . :juliet a :Person . rdfs9 $\frac{Lady \sqsubseteq Person \qquad Lady(juliet)}{Person(juliet)}$ rdfs9

- 2. Using the model semantics
 - If $\mathcal{I} \models Lady \sqsubseteq Person$ and $\mathcal{I} \models Lady(juliet)...$
 - ... then $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$ and $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$...

- We now have two ways of describing logical consequence...
- 1. Using RDFS rules:

:Lady rdfs:subClassOf :Person . :juliet a :Lady . :juliet a :Person . rdfs9 $\frac{Lady \sqsubseteq Person \qquad Lady(juliet)}{Person(juliet)}$ rdfs9

- 2. Using the model semantics
 - If $\mathcal{I} \models Lady \sqsubseteq Person$ and $\mathcal{I} \models Lady(juliet)...$
 - ... then $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$ and $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$...
 - ... so by set theory, $\textit{juliet}^\mathcal{I} \in \textit{Person}^\mathcal{I} \ldots$

- We now have two ways of describing logical consequence...
- 1. Using RDFS rules:

- 2. Using the model semantics
 - If $\mathcal{I} \models Lady \sqsubseteq Person$ and $\mathcal{I} \models Lady(juliet)...$
 - ... then $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$ and $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$...
 - ... so by set theory, $\textit{juliet}^\mathcal{I} \in \textit{Person}^\mathcal{I} ...$
 - ... and therefore $\mathcal{I} \models Person(juliet)$.

- We now have two ways of describing logical consequence...
- 1. Using RDFS rules:

- 2. Using the model semantics
 - If $\mathcal{I} \models Lady \sqsubseteq Person$ and $\mathcal{I} \models Lady(juliet)...$
 - ... then $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$ and $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$...
 - ... so by set theory, $\textit{juliet}^\mathcal{I} \in \textit{Person}^\mathcal{I} \ldots$
 - ... and therefore $\mathcal{I} \models Person(juliet)$.
 - Together: $\{Lady \sqsubseteq Person, Lady(juliet)\} \models Person(juliet)$

- We now have two ways of describing logical consequence...
- 1. Using RDFS rules:

 $\frac{:\text{Lady rdfs:subClassOf :Person . :juliet a :Lady .}{:juliet a :Person .} rdfs9$ $\frac{\textit{Lady} \sqsubseteq \textit{Person Lady(juliet)}}{\textit{Person(juliet)}} rdfs9$

- 2. Using the model semantics
 - If $\mathcal{I} \models Lady \sqsubseteq Person$ and $\mathcal{I} \models Lady(juliet)...$
 - ... then $Lady^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$ and $juliet^{\mathcal{I}} \in Lady^{\mathcal{I}}$...
 - ... so by set theory, $\textit{juliet}^\mathcal{I} \in \textit{Person}^\mathcal{I} ...$
 - ... and therefore $\mathcal{I} \models Person(juliet)$.
 - Together: $\{Lady \sqsubseteq Person, Lady(juliet)\} \models Person(juliet)$
- What is the connection between these two?

• Actually, two different notions!

- Actually, two different notions!
- Entailment is defined using the model semantics.

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
 - derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
 - derivability
 - provability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
 - derivability
 - provability
- Entailment

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"
 - can't be directly checked mechanically (∞ many interpretations)

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"
 - can't be directly checked mechanically (∞ many interpretations)
- Derivability

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"
 - can't be directly checked mechanically (∞ many interpretations)
- Derivability
 - can be checked mechanically

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"
 - can't be directly checked mechanically (∞ many interpretations)
- Derivability
 - can be checked mechanically
 - forward or backward chaining

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"
 - can't be directly checked mechanically (∞ many interpretations)
- Derivability
 - can be checked mechanically
 - forward or backward chaining
- Want these notions to correspond:

- Actually, two different notions!
- Entailment is defined using the model semantics.
- The rules say what can be *derived*
 - derivability
 - provability
- Entailment
 - is closely related to the *meaning* of things
 - higher confidence in model semantics than in a bunch of rules
 - The semantics given by the standard, rules are just "informative"
 - can't be directly checked mechanically (∞ many interpretations)
- Derivability
 - can be checked mechanically
 - forward or backward chaining
- Want these notions to correspond:
 - $\bullet \ \mathcal{A} \models \mathcal{B} \quad \text{iff} \quad \mathcal{B} \text{ can be derived from } \mathcal{A}$

• Two directions:

- Two directions:

- Two directions:

 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$

- Two directions:
 - $\textcircled{0} \ \ \, \text{If } \mathcal{A} \models \mathcal{B} \ \, \text{then} \ \, \mathcal{B} \ \, \text{can be derived from} \ \, \mathcal{A}$
 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 2 usually considered more important:

- Two directions:

 - 2 If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 2 usually considered more important:
- If the calculus says that something is entailed then it is really entailed.

- Two directions:

 - 2 If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 2 usually considered more important:
- If the calculus says that something is entailed then it is really entailed.
- The calculus gives no "wrong" answers.

- Two directions:

 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 2 usually considered more important:
- If the calculus says that something is entailed then it is really entailed.
- The calculus gives no "wrong" answers.
- This is known as *soundness*

- Two directions:
 - $\textcircled{0} \ \ \mathsf{If} \ \mathcal{A} \models \mathcal{B} \ \mathsf{then} \ \mathcal{B} \ \mathsf{can} \ \mathsf{be} \ \mathsf{derived} \ \mathsf{from} \ \mathcal{A}$
 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 2 usually considered more important:
- If the calculus says that something is entailed then it is really entailed.
- The calculus gives no "wrong" answers.
- This is known as *soundness*
- The calculus is said to be *sound* (w.r.t. the model semantics)

Showing Soundness

• Soundness of every rule has to be (manually) checked!

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
rdfs11

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
rdfs11

• Soundness means that

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
rdfs11

- Soundness means that
 - For any choice of three classes A, B, C

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
rdfs11

- Soundness means that
 - For any choice of three classes A, B, C

•
$$\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$$

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
rdfs11

- Soundness means that
 - For any choice of three classes A, B, C

•
$$\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$$

• Proof:

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
rdfs11

- Soundness means that
 - For any choice of three classes A, B, C
 - $\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$
- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
rdfs11

- Soundness means that
 - For any choice of three classes A, B, C

•
$$\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$$

- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$
 - Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\dot{\mathcal{I}}} \subseteq C^{\overline{\mathcal{I}}}$

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B}{A \sqsubseteq C} \xrightarrow{B \sqsubseteq C} \mathsf{rdfs11}$$

- Soundness means that
 - For any choice of three classes A, B, C

•
$$\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$$

- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$
 - Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\overline{\mathcal{I}}}$
 - By set theory, $\mathcal{A}^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
rdfs11

- Soundness means that
 - For any choice of three classes A, B, C

•
$$\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$$

- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$
 - Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\overline{\mathcal{I}}}$
 - By set theory, $\mathcal{A}^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$
 - By model semantics, $\mathcal{I} \models A \sqsubseteq C$

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
rdfs11

- Soundness means that
 - For any choice of three classes A, B, C

•
$$\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$$

- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$
 - Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\overline{\mathcal{I}}}$
 - By set theory, $\mathcal{A}^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$
 - By model semantics, $\mathcal{I} \models A \sqsubseteq C$
 - Q.E.D.

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
rdfs11

- Soundness means that
 - For any choice of three classes A, B, C

•
$$\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$$

- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$
 - Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\overline{\mathcal{I}}}$
 - By set theory, $\mathcal{A}^\mathcal{I} \subseteq \mathcal{C}^\mathcal{I}$
 - By model semantics, $\mathcal{I} \models A \sqsubseteq C$
 - Q.E.D.
- This can be done similarly for all of the rules.

- Soundness of every rule has to be (manually) checked!
- E.g. rdfs11,

$$\frac{A \sqsubseteq B \qquad B \sqsubseteq C}{A \sqsubseteq C}$$
rdfs11

- Soundness means that
 - For any choice of three classes A, B, C

•
$$\{A \sqsubseteq B, B \sqsubseteq C\} \models A \sqsubseteq C$$

- Proof:
 - Let \mathcal{I} be an arbitrary interpretation with $\mathcal{I} \models \{A \sqsubseteq B, B \sqsubseteq C\}$
 - Then by model semantics, $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$ and $B^{\mathcal{I}} \subseteq C^{\overline{\mathcal{I}}}$
 - By set theory, $A^{\mathcal{I}} \subseteq C^{\mathcal{I}}$
 - By model semantics, $\mathcal{I} \models A \sqsubseteq C$
 - Q.E.D.
- This can be done similarly for all of the rules.
 - All given SE/RDF/RDFS rules are sound w.r.t. the model semantics!

• Two directions:

- Two directions:
 - $If \mathcal{A} \models \mathcal{B} \text{ then } \mathcal{B} \text{ can be derived from } \mathcal{A}$

- Two directions:
 - $If \mathcal{A} \models \mathcal{B} \text{ then } \mathcal{B} \text{ can be derived from } \mathcal{A}$
 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$

- Two directions:
 - $\bullet \ \ \, If \ \mathcal{A} \models \mathcal{B} \ \text{then} \ \mathcal{B} \ \text{can be derived from} \ \mathcal{A}$
 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 1 says that any entailment can be found using the rules.

- Two directions:
 - $\bullet \ \ \, {\rm If} \ {\cal A} \models {\cal B} \ {\rm then} \ {\cal B} \ {\rm can} \ {\rm be} \ {\rm derived} \ {\rm from} \ {\cal A}$
 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 1 says that any entailment can be found using the rules.
- I.e. we have "enough" rules.

- Two directions:
 - $\textcircled{0} \ \ \mathsf{If} \ \mathcal{A} \models \mathcal{B} \ \mathsf{then} \ \mathcal{B} \ \mathsf{can} \ \mathsf{be} \ \mathsf{derived} \ \mathsf{from} \ \mathcal{A}$
 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 1 says that any entailment can be found using the rules.
- I.e. we have "enough" rules.
- Can't be checked separately for each rule, only for whole rule set

- Two directions:
 - $\bullet \ \ \, {\rm If} \ {\cal A} \models {\cal B} \ {\rm then} \ {\cal B} \ {\rm can} \ {\rm be} \ {\rm derived} \ {\rm from} \ {\cal A}$
 - **2** If \mathcal{B} can be derived from \mathcal{A} then $\mathcal{A} \models \mathcal{B}$
- Nr. 1 says that any entailment can be found using the rules.
- I.e. we have "enough" rules.
- Can't be checked separately for each rule, only for whole rule set
- Proofs are more complicated than soundness

• Simple entailment is entailment

- Simple entailment is entailment
 - With blank nodes and literals

- Simple entailment is entailment
 - With blank nodes and literals
 - $\bullet\,$ but without RDFS

- Simple entailment is entailment
 - With blank nodes and literals
 - but without RDFS
 - and without RDF axioms like rdf:type rdf:Property .

- Simple entailment is entailment
 - With blank nodes and literals
 - but without RDFS
 - and without RDF axioms like rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.

- Simple entailment is entailment
 - With blank nodes and literals
 - $\bullet\,$ but without RDFS
 - \bullet and without RDF axioms like rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.
 - if $\, \mathcal{A} \mbox{ simply entails } \mathcal{B} \,$

- Simple entailment is entailment
 - With blank nodes and literals
 - but without RDFS
 - and without RDF axioms like rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.
 - if $\, \mathcal{A} \mbox{ simply entails } \mathcal{B} \,$

then \mathcal{A} can be extended with se1 and se2 to \mathcal{A}' with $\mathcal{B} \subseteq \mathcal{A}'$.

- Simple entailment is entailment
 - With blank nodes and literals
 - but without RDFS
 - and without RDF axioms like rdf:type rdf:Property .
- se1 and se2 are complete for simple entailment, i.e.
 - if $\, \mathcal{A} \mbox{ simply entails } \mathcal{B} \,$

then \mathcal{A} can be extended with se1 and se2 to \mathcal{A}' with $\mathcal{B} \subseteq \mathcal{A}'$.

• (requires blank node IDs in \mathcal{A} and \mathcal{B} to be disjoint)

• See Foundations book, Sect. 3.3

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
 - rdfs:range rdfs:domain rdfs:Class ...

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
 - rdfs:range rdfs:domain rdfs:Class ...
- Important rules for us:

$$\frac{\operatorname{dom}(r,A) \quad r(x,y)}{A(x)} \operatorname{rdfs2} \qquad \frac{\operatorname{rg}(r,B) \quad r(x,y)}{B(y)} \operatorname{rdfs3}$$

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
 - rdfs:range rdfs:domain rdfs:Class ...
- Important rules for us:

$$\frac{\operatorname{dom}(r,A) \quad r(x,y)}{A(x)} \operatorname{rdfs2} \qquad \frac{\operatorname{rg}(r,B) \quad r(x,y)}{B(y)} \operatorname{rdfs3}$$

$$\frac{r \sqsubseteq s \quad s \sqsubseteq t}{r \sqsubseteq t} \operatorname{rdfs5} \quad \frac{r \sqsubseteq r}{r \sqsubseteq r} \operatorname{rdfs6} \quad \frac{r \sqsubseteq s \quad r(x,y)}{s(x,y)} \operatorname{rdfs7}$$

- See Foundations book, Sect. 3.3
- Many rules and axioms not needed for our "simplified" RDF/RDFS
 - rdfs:range rdfs:domain rdfs:Class ...
- Important rules for us:

$$\frac{\operatorname{dom}(r,A) \quad r(x,y)}{A(x)} \operatorname{rdfs2} \qquad \frac{\operatorname{rg}(r,B) \quad r(x,y)}{B(y)} \operatorname{rdfs3}$$

$$\frac{r \sqsubseteq s \quad s \sqsubseteq t}{r \sqsubseteq t} \operatorname{rdfs5} \quad \frac{r \sqsubseteq s \quad r(x,y)}{r \sqsubseteq r} \operatorname{rdfs6} \quad \frac{r \sqsubseteq s \quad r(x,y)}{s(x,y)} \operatorname{rdfs7}$$

$$\frac{A \sqsubseteq B \quad A(x)}{B(x)} \operatorname{rdfs9} \quad \frac{A \sqsubseteq A}{A \sqsubseteq A} \operatorname{rdfs10} \quad \frac{A \sqsubseteq B \quad B \sqsubseteq C}{A \sqsubseteq C} \operatorname{rdfs13}$$

Complete?

• These rules are not complete for our RDF/RDFS semantics

Complete?

- These rules are not complete for our RDF/RDFS semantics
- For instance

 $\{rg(loves, Beloved), Beloved \sqsubseteq Person\} \models rg(loves, Person)$

Complete?

- These rules are not complete for our RDF/RDFS semantics
- For instance

 $\{rg(loves, Beloved), Beloved \sqsubseteq Person\} \models rg(loves, Person)$

 \bullet Because for every interpretation $\mathcal I,$

- These rules are not complete for our RDF/RDFS semantics
- For instance

- Because for every interpretation \mathcal{I} ,
 - if $\mathcal{I} \models \{ \mathsf{rg}(\mathit{loves}, \mathit{Beloved}), \mathit{Beloved} \sqsubseteq \mathit{Person} \}$

- These rules are not complete for our RDF/RDFS semantics
- For instance

- Because for every interpretation \mathcal{I} ,
 - if $\mathcal{I} \models \{ \mathsf{rg}(\mathit{loves}, \mathit{Beloved}), \mathit{Beloved} \sqsubseteq \mathit{Person} \}$
 - then by semantics, for all $\langle x, y \rangle \in loves^{\mathcal{I}}$, $y \in Beloved^{\mathcal{I}}$; and $Beloved^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$.

- These rules are not complete for our RDF/RDFS semantics
- For instance

- Because for every interpretation \mathcal{I} ,
 - if $\mathcal{I} \models \{ \mathsf{rg}(\mathit{loves}, \mathit{Beloved}), \mathit{Beloved} \sqsubseteq \mathit{Person} \}$
 - then by semantics, for all $\langle x, y \rangle \in loves^{\mathcal{I}}$, $y \in Beloved^{\mathcal{I}}$; and $Beloved^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$.
 - Therefore, by set theory, for all $\langle x, y \rangle \in Ioves^{\mathcal{I}}$, $y \in Person^{\mathcal{I}}$.

- These rules are not complete for our RDF/RDFS semantics
- For instance

- \bullet Because for every interpretation $\mathcal I$,
 - if $\mathcal{I} \models \{ \mathsf{rg}(\mathit{loves}, \mathit{Beloved}), \mathit{Beloved} \sqsubseteq \mathit{Person} \}$
 - then by semantics, for all $\langle x, y \rangle \in loves^{\mathcal{I}}$, $y \in Beloved^{\mathcal{I}}$; and $Beloved^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$.
 - Therefore, by set theory, for all $\langle x, y \rangle \in loves^{\mathcal{I}}$, $y \in Person^{\mathcal{I}}$.
 - By semantics, $\mathcal{I} \models \mathsf{rg}(\mathit{loves}, \mathit{Person})$

- These rules are not complete for our RDF/RDFS semantics
- For instance

- \bullet Because for every interpretation $\mathcal I$,
 - if $\mathcal{I} \models \{ \mathsf{rg}(\mathit{loves}, \mathit{Beloved}), \mathit{Beloved} \sqsubseteq \mathit{Person} \}$
 - then by semantics, for all $\langle x, y \rangle \in loves^{\mathcal{I}}$, $y \in Beloved^{\mathcal{I}}$; and $Beloved^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$.
 - Therefore, by set theory, for all $\langle x, y \rangle \in loves^{\mathcal{I}}$, $y \in Person^{\mathcal{I}}$.
 - By semantics, $\mathcal{I} \models \mathsf{rg}(\mathit{loves}, \mathit{Person})$
- But there is no way to derive this using the given rules

- These rules are not complete for our RDF/RDFS semantics
- For instance

- \bullet Because for every interpretation $\mathcal I$,
 - if $\mathcal{I} \models \{ \mathsf{rg}(\mathit{loves}, \mathit{Beloved}), \mathit{Beloved} \sqsubseteq \mathit{Person} \}$
 - then by semantics, for all $\langle x, y \rangle \in loves^{\mathcal{I}}$, $y \in Beloved^{\mathcal{I}}$; and $Beloved^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$.
 - Therefore, by set theory, for all $\langle x, y \rangle \in loves^{\mathcal{I}}$, $y \in Person^{\mathcal{I}}$.
 - By semantics, $\mathcal{I} \models \mathsf{rg}(\mathit{loves}, \mathit{Person})$
- But there is no way to derive this using the given rules
 - There is no rule which allows to derive a range statement.

- These rules are not complete for our RDF/RDFS semantics
- For instance

- \bullet Because for every interpretation $\mathcal I$,
 - if $\mathcal{I} \models \{ \mathsf{rg}(\mathit{loves}, \mathit{Beloved}), \mathit{Beloved} \sqsubseteq \mathit{Person} \}$
 - then by semantics, for all $\langle x, y \rangle \in loves^{\mathcal{I}}$, $y \in Beloved^{\mathcal{I}}$; and $Beloved^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$.
 - Therefore, by set theory, for all $\langle x, y \rangle \in loves^{\mathcal{I}}$, $y \in Person^{\mathcal{I}}$.
 - By semantics, $\mathcal{I} \models \mathsf{rg}(\mathit{loves}, \mathit{Person})$
- But there is no way to derive this using the given rules
 - There is no rule which allows to derive a range statement.
- We could now add rules to make the system complete

- These rules are not complete for our RDF/RDFS semantics
- For instance

- \bullet Because for every interpretation $\mathcal I$,
 - if $\mathcal{I} \models \{ \mathsf{rg}(\mathit{loves}, \mathit{Beloved}), \mathit{Beloved} \sqsubseteq \mathit{Person} \}$
 - then by semantics, for all $\langle x, y \rangle \in loves^{\mathcal{I}}$, $y \in Beloved^{\mathcal{I}}$; and $Beloved^{\mathcal{I}} \subseteq Person^{\mathcal{I}}$.
 - Therefore, by set theory, for all $\langle x, y \rangle \in loves^{\mathcal{I}}$, $y \in Person^{\mathcal{I}}$.
 - By semantics, $\mathcal{I} \models \mathsf{rg}(\mathit{loves}, \mathit{Person})$
- But there is no way to derive this using the given rules
 - There is no rule which allows to derive a range statement.
- We could now add rules to make the system complete
- Won't bother to do that now. Will get completeness for OWL.

• RDFS allows some simple modelling: "all ladies are persons"

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel
 - A mother is a person who is female and has at least one child

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel
 - A mother is a person who is female and has at least one child
 - The friends of my friends are also my friends

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel
 - A mother is a person who is female and has at least one child
 - The friends of my friends are also my friends
 - A metropolis is a town with at least a million inhabitants

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel
 - A mother is a person who is female and has at least one child
 - The friends of my friends are also my friends
 - A metropolis is a town with at least a million inhabitants
 - ... and many more

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel
 - A mother is a person who is female and has at least one child
 - The friends of my friends are also my friends
 - A metropolis is a town with at least a million inhabitants
 - \bullet \ldots and many more
- Modeling will not be done by writing triples manually:

- RDFS allows some simple modelling: "all ladies are persons"
- The following lectures will be about OWL
- Will allow to say things like
 - Every car has a motor
 - Every car has at least three parts of type wheel
 - A mother is a person who is female and has at least one child
 - The friends of my friends are also my friends
 - A metropolis is a town with at least a million inhabitants
 - \bullet \ldots and many more
- Modeling will not be done by writing triples manually:
- Will use ontology editor Protégé.