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Extra question for IN4060 students

“Real” semantics of RDF and RDFS

Foundations book: Section 3.2

Still OK to ignore some complications, see oblig text

We provide an excerpt of Sect. 3.2 with unimportant parts removed.

Go to group sessions!
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-
Today's Plan

@ Repetition: RDF semantics

© Literal Semantics

© Blank Node Semantics

@ Properties of Entailment by Model Semantics

© Entailment and Derivability
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Outline

@ Repetition: RDF semantics
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:

e Properties like foaf :knows, dc:title
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:

e Properties like foaf :knows, dc:title
o Classes like foaf :Person
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:

e Properties like foaf :knows, dc:title

o (lasses like foaf :Person

e Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS

@ Assume Resources are divided into four disjoint types:

Properties like foaf :knows, dc:title

Classes like foaf :Person

Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
e Properties like foaf :knows, dc:title
o C(lasses like foaf :Person
e Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
o Individuals (all the rest, "usual” resources)
@ All triples have one of the forms:
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
Properties like foaf :knows, dc:title
Classes like foaf :Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
@ All triples have one of the forms:
individual property individual .
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
Properties like foaf :knows, dc:title
Classes like foaf :Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
@ All triples have one of the forms:
individual property individual .
individual rdf:type class .
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
Properties like foaf :knows, dc:title
Classes like foaf :Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
@ All triples have one of the forms:

individual property individual .

individual rdf:type class .

class rdfs:subClass0f class .
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.

@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
Properties like foaf :knows, dc:title
Classes like foaf :Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
@ All triples have one of the forms:
individual property individual .
individual rdf:type class .

class rdfs:subClass0f class .
property rdfs:subProperty0f property .
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.

@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
Properties like foaf :knows, dc:title
Classes like foaf :Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
@ All triples have one of the forms:
individual property individual .
individual rdf:type class .

class rdfs:subClass0f class .
property rdfs:subProperty0f property .
property rdfs:domain class .
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.

@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
Properties like foaf :knows, dc:title
Classes like foaf :Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
@ All triples have one of the forms:
individual property individual .
individual rdf:type class .

class rdfs:subClass0f class .
property rdfs:subProperty0f property .
property rdfs:domain class .

property rdfs:range class .
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Restricting RDF /RDFS

@ We will simplify things by only looking at certain kinds of RDF graphs.
@ No triples “about” properties, classes, etc., except RDFS
@ Assume Resources are divided into four disjoint types:
Properties like foaf :knows, dc:title
Classes like foaf :Person
Built-ins, a fixed set including rdf:type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
@ All triples have one of the forms:

individual property individual .

individual rdf:type class .

class rdfs:subClass0f class .
property rdfs:subProperty0f property .
property rdfs:domain class .

property rdfs:range class .

@ Forget blank nodes and literals for a while!

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March



Short Forms

@ Resources and Triples are no longer all alike
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Short Forms

@ Resources and Triples are no longer all alike
@ No need to use the same general triple notation
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Short Forms
@ Resources and Triples are no longer all alike

@ No need to use the same general triple notation
@ Use alternative notation

Triples Abbreviation
indi prop indi . r(in, i2)
indi rdf:type class . C(n)
class rdfs:subClassOf class . cCCD
prop rdfs:subProperty0f prop . || rC s

prop rdfs:domain class . dom(r, C)
prop rdfs:range class . rg(r, C)
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Short Forms
@ Resources and Triples are no longer all alike

@ No need to use the same general triple notation
@ Use alternative notation

Triples Abbreviation
indi prop indi . r(in, i2)
indi rdf:type class . C(n)
class rdfs:subClass0f class . ccoD
prop rdfs:subProperty0f prop . || rC s

prop rdfs:domain class . dom(r, C)
prop rdfs:range class . rg(r, C)

@ This is called “Description Logic” (DL) Syntax
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Short Forms
@ Resources and Triples are no longer all alike

@ No need to use the same general triple notation
@ Use alternative notation

Triples Abbreviation
indi prop indi . r(in, i2)
indi rdf:type class . C(n)
class rdfs:subClass0f class . ccoD
prop rdfs:subProperty0f prop . || rC s

prop rdfs:domain class . dom(r, C)
prop rdfs:range class . rg(r, C)

@ This is called “Description Logic” (DL) Syntax
@ Used much in particular for OWL
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Example

@ Triples:
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Example

o Triples:

ws:romeo ws:loves ws:juliet
ws:juliet rdf:type ws:Lady .

ws:Lady rdfs:subClass0f foaf:Person .
ws:loves rdfs:subProperty0f foaf:knows
ws:loves rdfs:domain ws:Lover

ws:loves rdfs:range ws:Beloved .
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Example

o Triples:

ws:romeo ws:loves ws:juliet
ws:juliet rdf:type ws:Lady .

ws:Lady rdfs:subClass0f foaf:Person .
ws:loves rdfs:subProperty0f foaf:knows
ws:loves rdfs:domain ws:Lover

ws:loves rdfs:range ws:Beloved .

@ DL syntax, without namespaces:

fW\H\ﬁ"
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Example

o Triples:

ws:romeo ws:loves ws:juliet
ws:juliet rdf:type ws:Lady .

ws:Lady rdfs:subClass0f foaf:Person .
ws:loves rdfs:subProperty0f foaf:knows
ws:loves rdfs:domain ws:Lover

ws:loves rdfs:range ws:Beloved .

@ DL syntax, without namespaces:

loves(romeo, juliet)
Lady (juliet)

f U ?\ H\

Lady T Person
loves C knows
dom(loves, Lover)
rg(loves, Beloved)
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Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret
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Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret
e Individual URIs as real or imagined objects
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Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret

e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
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Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret
e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
e Property URIs as relations between these objects
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Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret

e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
e Property URIs as relations between these objects

@ A DlL-interpretation I consists of
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Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret
e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
e Property URIs as relations between these objects
@ A DlL-interpretation I consists of
o A set AT, called the domain (sorry!) of 7
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Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret
e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
e Property URIs as relations between these objects

@ A DlL-interpretation I consists of

o A set AT, called the domain (sorry!) of 7
e For each individual URI i, an element iZ € AT
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Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret
e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
e Property URIs as relations between these objects
@ A DlL-interpretation I consists of
o A set AT, called the domain (sorry!) of 7

e For each individual URI i, an element iZ € AT
e For each class URI C, a subset CT C AT
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Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret
e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
e Property URIs as relations between these objects

@ A DlL-interpretation I consists of

o A set AT, called the domain (sorry!) of 7

e For each individual URI i, an element iZ € AT

e For each class URI C, a subset CT C AT

o For each property URI r, a relation rZ C AT x AT
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Interpretations for RDF

@ To interpret the six kinds of triples, we need to know how to interpret

e Individual URIs as real or imagined objects
e Class URIs as sets of such objects
e Property URIs as relations between these objects

@ A DlL-interpretation I consists of

o A set AT, called the domain (sorry!) of 7

e For each individual URI i, an element iZ € AT

e For each class URI C, a subset CT C AT

o For each property URI r, a relation rZ C AT x AT

@ Given these, it will be possible to say whether a triple holds or not.
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Repetition: RDF semantics

An example “intended” interpretation

— ——_—
I ‘
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Repetition: RDF semantics

An example “intended” interpretation

) 9
Y julieth — "

o A1 =

e romeolr =
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Repetition: RDF semantics

An example “intended” interpretation

. AII:{ 2

T _

@ romeo

-

o Ladyhr = {“} Person™ = A1

Lover’r = Beloved®r = {
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Repetition: RDF semantics

An example “intended” interpretation

°
>
iy
I
i

@ romeo™t =

(]
'\
3
<
b
I
W
&
2
o
3
b
|
>
&

A

knowsTr = ATy x AT
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An example “non-intended’ interpretation

o A2 =N=1{1,234,.}
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An example “non-intended” interpretation

o A2 =N=1{1,234,.}
e romeo™2 = 17
qu/'etI2 =32
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Repetition: RDF semantics

An example “non-intended” interpretation

o A2 =N=1{1,234,.}

e romeo’™? =17
juliet™ = 32

o Lady?2 = {2" | nc N} = {2,4,8,16,32,...}
Person™ = {2n| n € N} = {2,4,6,8,10,...}
Lover™> = Beloved” = N
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Repetition: RDF semantics

An example “non-intended” interpretation

o A2 =N=1{1,2,3,4,...}

e romeo’? = 17
juliet’? = 32

o Lady?> = {2" | ne N} = {2,4,8,16,32,...}
Person™ = {2n| n € N} = {2,4,6,8,10,...}
Lover’? = Beloved® = N

o loves’? =<={(x,y) | x < y}
knows™ =<= {(x,y) | x <y}
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Repetition: RDF semantics

An example “non-intended” interpretation

o A2 =N=1{1,2,3,4,...}

e romeo® =17
juliet™ = 32

o Lady?2 = {2" | nc N} = {2,4,8,16,32,...}
Person™ = {2n| n € N} = {2,4,6,8,10,...}
Lover™> = Beloved” = N

o loves’? =<={(x,y) | x < y}
knows™2 =<= {(x,y) | x < y}

@ Just because names (URIs) look familiar, they don't need to denote what we think!
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Repetition: RDF semantics

An example “non-intended” interpretation

o A2 =N=1{1,2,3,4,...}

e romeo® =17
juliet™ = 32

o Lady?2 = {2" | nc N} = {2,4,8,16,32,...}
Person™ = {2n| n € N} = {2,4,6,8,10,...}
Lover™> = Beloved” = N

o loves’? =<={(x,y) | x < y}
knows™2 =<= {(x,y) | x < y}

@ Just because names (URIs) look familiar, they don't need to denote what we think!

@ In fact, there is no way of ensuring they denote only what we think!
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Validity in Interpretations

e Given an interpretation Z, define |= as follows:
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Validity in Interpretations

e Given an interpretation Z, define |= as follows:
o T=r(in, i) iff (if,if)ert
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Validity in Interpretations

e Given an interpretation Z, define |= as follows:
o T=r(in, i) iff (if,if)ert
o I C(i)iffiTect
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Validity in Interpretations

e Given an interpretation Z, define |= as follows:
o T=r(in, i) iff (if,if)ert
o I C(i)iff it € CT
e IECLCDIiffctcD?
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Validity in Interpretations

e Given an interpretation Z, define |= as follows:
o T=r(in, i) iff (if,if)ert
o I C(i)iff it € CT
e IECLCDIiffctcD?
e IErCsiffrf Cst
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Validity in Interpretations

e Given an interpretation Z, define |= as follows:
T = r(iv, i) iff (if,if) e r*

T C(i)iff it e Ct

Ik CLCDiffctcD?
IkErCsiffrf Cs?

T k= dom(r, C) iff dom r* C CT
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Validity in Interpretations

e Given an interpretation Z, define |= as follows:
T = r(iv, i) iff (if,if) e r*

T C(i)iff it e Ct

Ik CLCDiffctcD?
IkErCsiffrf Cs?

T k= dom(r, C) iff dom r* C CT

T =rg(r,C)iffrgrf C CT
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Validity in Interpretations

e Given an interpretation Z, define |= as follows:
T = r(iv, i) iff (if,if) e r*
TEC(i)iffifec?

Ik CLCDiffctcD?
IkErCsiffrf Cs?

T k= dom(r, C) iff dom r C C*

T =rg(r,C)iffrgrf C CT

@ For a set of triples .A (any of the six kinds)
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Validity in Interpretations

e Given an interpretation Z, define |= as follows:
T = r(iv, i) iff (if,if) e r*
TEC(i)iffifec?

Ik CLCDiffctcD?
IkErCsiffrf Cs?

T k= dom(r, C) iff dom r C C*

T =rg(r,C)iffrgrf C CT

@ For a set of triples .A (any of the six kinds)

o Ais valid in Z, written

TEA
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Validity in Interpretations

e Given an interpretation Z, define |= as follows:
T = r(iv, i) iff (if,if) e r*
TEC(i)iffifec?

Ik CLCDiffctcD?
IkErCsiffrf Cs?

T k= dom(r, C) iff dom r C C*

T =rg(r,C)iffrgrf C CT

For a set of triples A (any of the six kinds)
A is valid in Z, written

TEA

iff Z = Aforall Ac A
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Validity Examples

e 77 = loves(juliet, romeo) because
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Repetition: RDF semantics

Validity Examples

e 77 = loves(juliet, romeo) because
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Repetition: RDF semantics

Validity Examples

e 77 = loves(juliet, romeo) because

@ 7, [~ Person(romeo) because
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Repetition: RDF semantics

Validity Examples

e 77 = loves(juliet, romeo) because

@ 7, [~ Person(romeo) because
romeo’? = 17 ¢ Person’? = {2,4,6,8,10, ...}
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Repetition: RDF semantics

Validity Examples

@ 7; = loves(juliet, romeo) because

@ 7, [~ Person(romeo) because
romeo’? = 17 ¢ Person’? = {2,4,6,8,10, ...}

e 7; = Lover C Person because
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Repetition: RDF semantics

Validity Examples

@ 7; = loves(juliet, romeo) because
oy ,"‘ %y

@ 7, [~ Person(romeo) because
romeo’? = 17 ¢ Person’? = {2,4,6,8,10, ...}

e 7; = Lover C Person because
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Repetition: RDF semantics

Validity Examples

@ 7; = loves(juliet, romeo) because
ey ,"‘ %y

@ 7, [~ Person(romeo) because
romeo’? = 17 ¢ Person’? = {2,4,6,8,10, ...}

e 7; = Lover C Person because

a} C Person’r =

e I, [~ Lover C Person because
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Repetition: RDF semantics

Validity Examples

@ 7; = loves(juliet, romeo) because
oy ,"‘ %y

@ 7, [~ Person(romeo) because
romeo’? = 17 ¢ Person’? = {2,4,6,8,10, ...}

e 7; = Lover C Person because

’} C Person™t = { ,

@ 7, |~ Lover C Person because
Lover” = N and Person’ = {2,4,6,8,10,...}
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Repetition: RDF semantics

Finding out stuff about Romeo and Juliet

Statements Interpretations The “Real World"

loves(romeo, juliet) "

Lady (juliet)
Lady C Person
loves T knows

3 C
dom(loves, Lover)
rg(loves, Beloved)
\1_7 32

O,
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Repetition: RDF semantics

Finding out stuff about Romeo and Juliet

Statements Interpretations

loves(romeo, juliet) "

The “Real World"”

Lady (juliet)
Lady T Person N C
loves T knows {
dom(loves, Lover)

rg(loves, Beloved)

loves(juliet, romeo)
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Repetition: RDF semantics

Finding out stuff about Romeo and Juliet

Statements Interpretations The “Real World"

loves(romeo, juliet) "

Lady (juliet) ’
Lady T Person N C N
loves T knows { 4

dom(loves, Lover)

rg(loves, Beloved)

17 32
loves(juliet, romeo) @
Lover C Person @
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Entailment

@ Given a set of triples A (any of the six kinds)
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Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)
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Entailment
@ Given a set of triples A (any of the six kinds)

@ And a further triple T (also any kind)
e T is entailed by A, written A =T
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Repetition: RDF semantics

Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)

@ T is entailed by A, written A= T
o iff
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Entailment

Given a set of triples A (any of the six kinds)
And a further triple T (also any kind)
T is entailed by A, written A =T
iff
e For any interpretation Z with Z = A
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Repetition: RDF semantics

Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)
e T is entailed by A, written A =T
o iff
e For any interpretation Z with Z = A
e ITET.
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Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)
e T is entailed by A, written A =T
o iff
e For any interpretation Z with Z = A
e ITET.

Example:
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Repetition: RDF semantics

Entailment
@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)
e T is entailed by A, written A =T
o iff
e For any interpretation Z with Z = A
e ITET.
@ Example:

o A={...,Lady(juliet), Lady C Person,...} as before
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Repetition: RDF semantics

Entailment
@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)
e T is entailed by A, written A =T
o iff
e For any interpretation Z with Z = A
e ITET.
@ Example:

o A={...,Lady(juliet), Lady C Person,...} as before
o A | Person(juliet) because. ..
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Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)

e T is entailed by A, written A =T

o iff
e For any interpretation Z with Z = A
e ITET.

Example:

o A={...,Lady(juliet), Lady C Person,...} as before
o A | Person(juliet) because. ..
@ in any interpretation Z. ..
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Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)
e T is entailed by A, written A =T
o iff
e For any interpretation Z with Z = A
e ITET.
@ Example:
o A={...,Lady(juliet), Lady C Person,...} as before
o A | Person(juliet) because. ..
@ in any interpretation Z. ..
o if juliet’ € Lady® and Lady? C Person” ...
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Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)
e T is entailed by A, written A =T
o iff
e For any interpretation Z with Z = A
e ITET.
Example:

A ={..., Lady(juliet), Lady T Person,...} as before
A |= Person(juliet) because. . .

in any interpretation Z. ..

if juliet” € Lady® and Lady? C Person® ...

then by set theory juliet” € Person®
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Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)

e T is entailed by A, written A =T

o iff
e For any interpretation Z with Z = A
e ITET.

Example:

A ={..., Lady(juliet), Lady T Person,...} as before
A |= Person(juliet) because. . .

in any interpretation Z. ..

if juliet” € Lady® and Lady? C Person® ...

then by set theory juliet” € Person®

@ Not about T being (intuitively) true or not
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Entailment

@ Given a set of triples A (any of the six kinds)
@ And a further triple T (also any kind)

e T is entailed by A, written A =T

o iff
e For any interpretation Z with Z = A
e ITET.

Example:

A ={..., Lady(juliet), Lady C Person, ...} as before
A |= Person(juliet) because. . .

in any interpretation Z. ..

if juliet” € Lady® and Lady? C Person® ...

then by set theory juliet” € Person®

@ Not about T being (intuitively) true or not

@ Only about whether T is a consequence of A
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Countermodels

o If AT, ..
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Countermodels

o If AT, ..

@ then there is an Z with
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Countermodels

o If AT, ..
@ then there is an Z with
° I'ZA
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Countermodels

o If AT, ..

@ then there is an Z with
OI':A
OI%T
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Countermodels

o If AT, ..

@ then there is an Z with
OI':A
OI%T

o Vice-versa: if Z|=Aand Z = T, then AT
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Countermodels

o If AT, ..

@ then there is an Z with
OI':A
OI%T

o Vice-versa: if Z|=Aand Z = T, then AT
@ Such an Z is called a counter-model (for the assumption that A entails T)
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Countermodels

IfARET,. ..
then there is an Z with
o ITE A
o THET
Vice-versa: if Z|=Aand Z [~ T, then A= T
Such an Z is called a counter-model (for the assumption that A entails T)
To show that A = T does not hold:
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Countermodels

o If AT, ..
@ then there is an Z with
e IEA
o THET
o Vice-versa: if Z=Aand Z £~ T, then AT

Such an Z is called a counter-model (for the assumption that A entails T)
To show that A = T does not hold:

o Describe an interpretation Z (using your fantasy)
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Countermodels

o If AT, ..
@ then there is an Z with
e IEA
o THET
o Vice-versa: if Z=Aand Z £~ T, then AT

Such an Z is called a counter-model (for the assumption that A entails T)
To show that A = T does not hold:

o Describe an interpretation Z (using your fantasy)
e Prove that Z = A (using the semantics)
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Countermodels

o If AT, ..
@ then there is an Z with
e IEA
o THET
o Vice-versa: if Z=Aand Z £~ T, then AT

Such an Z is called a counter-model (for the assumption that A entails T)
To show that A = T does not hold:

o Describe an interpretation Z (using your fantasy)
e Prove that Z = A (using the semantics)
e Prove that Z = T (using the semantics)
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Outline

© Literal Semantics
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Motivating example

o Consider again the set of triples A:
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Literal Semantics

Motivating example

o Consider again the set of triples A:

loves(romeo, juliet)
Lady (juliet)

Lady T Person
loves T knows
dom(loves, Lover)
rg(loves, Beloved)
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Motivating example

o Consider again the set of triples A:
loves(romeo, juliet)
Lady (juliet)
Lady T Person
loves T knows
dom(loves, Lover)
rg(loves, Beloved)

@ We can now say something about if A is valid in an interpretation Z
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Motivating example

o Consider again the set of triples A:
loves(romeo, juliet)
Lady (juliet)

Lady T Person
loves T knows
dom(loves, Lover)
rg(loves, Beloved)

@ We can now say something about if A is valid in an interpretation Z
e Say we add the triple T = age(juliet,"13")
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Motivating example

o Consider again the set of triples A:
loves(romeo, juliet)
Lady (juliet)

Lady T Person
loves T knows
dom(loves, Lover)
rg(loves, Beloved)

@ We can now say something about if A is valid in an interpretation Z
@ Say we add the triple T = age(juliet,"13")

@ Is this new set of triples valid in any of our interpretations Z; or Z,, why?
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Simplifying Literals

@ Literals can only occur as objects of triples
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Simplifying Literals

@ Literals can only occur as objects of triples
@ Have datatype, can be with or without language tag
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Simplifying Literals

@ Literals can only occur as objects of triples

@ Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:
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Simplifying Literals

@ Literals can only occur as objects of triples

@ Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
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Simplifying Literals

@ Literals can only occur as objects of triples
@ Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"
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Simplifying Literals

@ Literals can only occur as objects of triples
@ Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"

e We simplify things by:

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March



Simplifying Literals

@ Literals can only occur as objects of triples
@ Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:

ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"

e We simplify things by:
e considering only string literals without language tag, and
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Simplifying Literals

@ Literals can only occur as objects of triples

@ Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"
e We simplify things by:
e considering only string literals without language tag, and
e allowing either resource objects or literal objects for any predicate
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Simplifying Literals

Literals can only occur as objects of triples

Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"
e We simplify things by:
e considering only string literals without language tag, and
e allowing either resource objects or literal objects for any predicate
Five types of resources:
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Simplifying Literals

Literals can only occur as objects of triples

Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"
e We simplify things by:
e considering only string literals without language tag, and
e allowing either resource objects or literal objects for any predicate
Five types of resources:
e Object Properties like foaf :knows
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Simplifying Literals

Literals can only occur as objects of triples

Have datatype, can be with or without language tag
@ The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"
e We simplify things by:
e considering only string literals without language tag, and
e allowing either resource objects or literal objects for any predicate
Five types of resources:

e Object Properties like foaf :knows
e Datatype Properties like dc:title, foaf :name
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Literal Semantics

Simplifying Literals

Literals can only occur as objects of triples

Have datatype, can be with or without language tag
The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"
We simplify things by:
e considering only string literals without language tag, and
e allowing either resource objects or literal objects for any predicate
Five types of resources:
e Object Properties like foaf :knows
e Datatype Properties like dc:title, foaf :name
o (lasses like foaf :Person
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Simplifying Literals

Literals can only occur as objects of triples

Have datatype, can be with or without language tag
The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .

ex:me ex:likes "some string"

We simplify things by:

e considering only string literals without language tag, and

e allowing either resource objects or literal objects for any predicate
@ Five types of resources:
Object Properties like foaf :knows
Datatype Properties like dc:title, foaf :name
Classes like foaf :Person
Built-ins, a fixed set including rdf : type, rdfs:domain, etc.
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Simplifying Literals

@ Literals can only occur as objects of triples

@ Have datatype, can be with or without language tag

@ The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"

e We simplify things by:

e considering only string literals without language tag, and

e allowing either resource objects or literal objects for any predicate
@ Five types of resources:
Object Properties like foaf :knows
Datatype Properties like dc:title, foaf :name
Classes like foaf :Person
Built-ins, a fixed set including rdf : type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)
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Simplifying Literals

@ Literals can only occur as objects of triples

@ Have datatype, can be with or without language tag

@ The same predicate can be used with literals and resources:
ex:me ex:likes dbpedia:Berlin .
ex:me ex:likes "some string"

e We simplify things by:

e considering only string literals without language tag, and

e allowing either resource objects or literal objects for any predicate
@ Five types of resources:

e Object Properties like foaf :knows

e Datatype Properties like dc:title, foaf :name

o (lasses like foaf :Person

e Built-ins, a fixed set including rdf :type, rdfs:domain, etc.
Individuals (all the rest, “usual” resources)

e Why? — simpler, object/datatype split is in OWL
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Literal Semantics

Allowed triples

Allow only triples using object properties and datatype properties as intended

Triples

Abbreviation

indi o-prop indi
indi d-prop "lit"
indi rdf:type class

class rdfs:subClass0f class

o-prop rdfs:subProperty0f o-prop .
d-prop rdfs:subProperty0f d-prop .

o-prop rdfs:domain class
o-prop rdfs:range class

r(il, i2)
a(i, 1)
C(i)

cch
rCs
alCb
dom(r, C)
re(r, C)
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Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
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Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
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Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations

e A DL-interpretation I consists of
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Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings

e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of

o A set AT called the domain of T
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Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of

o A set AT called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March



Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of

o A set A7, called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before
e For each datatype property URI a, a relation a© C AT x A
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Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of

o A set A7, called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before
e For each datatype property URI a, a relation a© C AT x A

@ Semantics:
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Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of
o A set AT called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before
e For each datatype property URI a, a relation a© C AT x A
@ Semantics:
o I |=r(ir, i) iff (if,if) € r’ for object property r
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Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of
o A set AT called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before
e For each datatype property URI a, a relation a© C AT x A
@ Semantics:
o I |=r(ir, i) iff (if,if) € r’ for object property r
o Z|=a(i,l)iff (if,I) € a* for datatype property a
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Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of
o A set A7, called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before
e For each datatype property URI a, a relation a© C AT x A
@ Semantics:
o I |=r(ir, i) iff (if,if) € r’ for object property r
o I |=a(i,l)iff (if,I) € a* for datatype property a
o T rCsiff rf Cs? for object properties r, s
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Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of
o A set AT called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before
e For each datatype property URI a, a relation a© C AT x A
@ Semantics:
T [= r(i, i) iff (i, i) € r* for object property r
T [= a(i, 1) iff (i*,1) € a* for datatype property a
T |=r C s iff rf C s7 for object properties r, s
T = aC biff a C b” for datatype properties a, b
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Interpretation with Literals

@ Let A be the set of all literal values, i.e. all strings
e Chosen once and for all, same for all interpretations
e A DL-interpretation I consists of
o A set AT called the domain of T
o Interpretations iZ € AT, CT C AZ, and rT C AT x AT as before
e For each datatype property URI a, a relation a© C AT x A
@ Semantics:
T [= r(i, i) iff (i, i) € r* for object property r
T [= a(i, 1) iff (i*,1) € a* for datatype property a
T |=r C s iff rf C s7 for object properties r, s
T = aC biff a C b” for datatype properties a, b

@ Note: Literals / are in A, don't need to be interpreted.
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Literal Semantics

Example: Interpretation with a Datatype Property

L1 4
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Literal Semantics

Example: Interpretation with a Datatype Property
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Literal Semantics

Example: Interpretation with a Datatype Property
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Outline

© Blank Node Semantics
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Blank Node Semantics

Motivating example
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Blank Node Semantics

Motivating example
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Blank Node Semantics

Motivating example
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Blank Node Semantics

Motivating example

- -

e agel = < ("; A "16"> , <i” "almost 14“> , <;‘, “13"> , }
Y i i
b

Let b; and b, be blank nodes
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Blank Node Semantics

Motivating example

- -

;*“; ' "16"> , <i’7 "a1lmost 14||> , <;‘, II13II> , }
Let b; and b, be blank nodes
A = {age(by1,"16"), loves(by, by), age(bo, "13")}

(]
x
D
S
Il
—N—
P
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Blank Node Semantics

Motivating example

;*“; ' "16"> , <i’7 "a1lmost 14||> , <;‘, II13II> , }
Let b; and b, be blank nodes

A = {age(by1,"16"), loves(by, by), age(bo, "13")}

Is A valid in Z17 why?

(]
x
D
S
Il
—N—
P
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Blank Nodes

@ Remember: Blank nodes are just like resources. ..
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Blank Nodes

@ Remember: Blank nodes are just like resources. ..
@ ...but without a “global” URI.
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Blank Nodes

@ Remember: Blank nodes are just like resources. ..
@ ...but without a “global” URI.

@ Blank node has a local “blank node identifier” instead.
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Blank Nodes

@ Remember: Blank nodes are just like resources. ..
@ ...but without a “global” URI.
@ Blank node has a local “blank node identifier” instead.

@ A blank node can be used in several triples. ..
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Blank Nodes

Remember: Blank nodes are just like resources. . .
... but without a “global” URI.

Blank node has a local “blank node identifier” instead.

A blank node can be used in several triples. ..

... but they have to be in the same “file” or “data set”
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Blank Nodes

Remember: Blank nodes are just like resources. . .
... but without a “global” URI.

Blank node has a local “blank node identifier” instead.

A blank node can be used in several triples. ..

... but they have to be in the same “file” or “data set”

Semantics of blank nodes require looking at a set of triples
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Blank Nodes

Remember: Blank nodes are just like resources. . .
... but without a “global” URI.

Blank node has a local “blank node identifier” instead.

A blank node can be used in several triples. ..

... but they have to be in the same “file” or “data set”

Semantics of blank nodes require looking at a set of triples

But we still need to interpret single triples.
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Blank Nodes

Remember: Blank nodes are just like resources. . .
... but without a “global” URI.

Blank node has a local “blank node identifier” instead.

A blank node can be used in several triples. ..

... but they have to be in the same “file” or “data set”

Semantics of blank nodes require looking at a set of triples

But we still need to interpret single triples.

Solution: pass in blank node interpretation, deal with sets later!
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Blank Node Valuations

e Given an interpretation Z with domain AZ. ..
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Blank Node Valuations

e Given an interpretation Z with domain AZ. ..
e A blank node valuation j3. ..
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Blank Node Valuations

e Given an interpretation Z with domain AZ. ..

e A blank node valuation j3. ..
o ...gives a domain element or literal value 3(b) € AT UA...
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Blank Node Valuations

e Given an interpretation Z with domain AZ. ..

e A blank node valuation j3. ..
o ...gives a domain element or literal value 3(b) € AT UA...
e ...for every blank node ID b
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Blank Node Valuations

e Given an interpretation Z with domain AZ. ..

e A blank node valuation j3. ..
o ...gives a domain element or literal value 3(b) € AT UA...
e ...for every blank node ID b

@ Now define L8

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March



Blank Node Valuations

e Given an interpretation Z with domain AZ. ..
e A blank node valuation j3. ..
o ...gives a domain element or literal value 3(b) € AT UA...
e ...for every blank node ID b
o Now define -2
o i1 =T for individual URIs i
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Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..
e A blank node valuation (. ..
o ...gives a domain element or literal value 3(b) € AT UA. ..
e ...for every blank node ID b

o Now define -2

o LA =T for individual URIs i
o T8 = | for literals /
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Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..
e A blank node valuation (. ..
o ...gives a domain element or literal value 3(b) € AT UA. ..
e ...for every blank node ID b
o Now define -2
o i1 =T for individual URIs i
o 118 = for literals /
o b1# = B(b) for blank node IDs b
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Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..

e A blank node valuation (. ..
o ...gives a domain element or literal value 3(b) € AT UA. ..
e ...for every blank node ID b
o Now define 28
o 1% =T for individual URIs i
o 118 = [ for literals /
o b1# = B(b) for blank node IDs b

@ Interpretation:
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Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..
e A blank node valuation (. ..
.. gives a domain element or literal value 8(b) € AT UA. ..
.. for every blank node ID b
o Now define -2
o i1 =T for individual URIs i
o 118 = for literals /
o b1# = B(b) for blank node IDs b

@ Interpretation:

o 7,8 E r(x, )|fF<Iﬂ Iﬂ>
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Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..
e A blank node valuation (. ..
.. gives a domain element or literal value 8(b) € AT UA. ..
.. for every blank node ID b
o Now define -2
o i1 =T for individual URIs i
o 118 = for literals /
o b1# = B(b) for blank node IDs b

@ Interpretation:

o 7,8 E r(x, )|fF<Iﬂ Iﬂ>

.. for any Iegal combination of URIs/IiteraIs/bIank nodes x, y
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Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..
e A blank node valuation (. ..
.. gives a domain element or literal value 8(b) € AT UA. ..
.. for every blank node ID b
o Now define -2
o i1 =T for individual URIs i
o 118 = for literals /
o b1# = B(b) for blank node IDs b

@ Interpretation:
o 7,8 E r(x, )|fF<Iﬂ Iﬂ>
.. for any Iegal combination of URIs/IiteraIs/bIank nodes x, y
e ...and object/datatype property r
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Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..
e A blank node valuation (. ..
.. gives a domain element or literal value 8(b) € AT UA. ..
.. for every blank node ID b

o Now define 28
o 1% =T for individual URIs i
o 118 = [ for literals /
o b1# = B(b) for blank node IDs b
@ Interpretation:
Z,B E r(x,y) iff (x58,yTF) e
.. for any Iegal combination of URIs/IiteraIs/bIank nodes x, y

..and object/datatype property r
T, 8 | C(x) iff x2:8 € CTP
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Blank Node Valuations

@ Given an interpretation Z with domain AZ. ..
e A blank node valuation (. ..
.. gives a domain element or literal value 8(b) € AT UA. ..
.. for every blank node ID b

e Now define -Z:8
o L8 =T for individual URIs i
o T8 = for literals /
o b1# = B(b) for blank node IDs b

@ Interpretation:
o 7,8 E r(x, )|fF<Iﬂ Iﬂ>
.. for any Iegal combination of URIs/IiteraIs/bIank nodes x, y
e ...and object/datatype property r
o I,B = C(x) iff xtP € CTF
..for any URI/blank node x
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Sets of Triples with Blank Nodes

@ Given a set A of triples with blank nodes. ..
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Sets of Triples with Blank Nodes

@ Given a set A of triples with blank nodes. ..

e Z.pEAIfZ,f=Aforall Ac A
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Sets of Triples with Blank Nodes

@ Given a set A of triples with blank nodes. ..

e Z.pEAIfZ,f=Aforall Ac A

@ AisvaldinZ
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Sets of Triples with Blank Nodes

@ Given a set A of triples with blank nodes. ..

e Z.pEAIfZ,f=Aforall Ac A

@ AisvaldinZ
IEA
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Sets of Triples with Blank Nodes

@ Given a set A of triples with blank nodes. ..

e Z.pEAIfZ,f=Aforall Ac A

o AisvalidinZ
IEA
if there isa S suchthat Z,8 = A
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Sets of Triples with Blank Nodes

@ Given a set A of triples with blank nodes. ..

o I, AT, B =Aforall Ac A

o AisvalidinZ
IEA
if there isa S suchthat Z,8 = A

@ l.e. if there exists some valuation for the blank nodes that makes all triples true.
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Blank Node Semantics

Example: Blank Node Semantics
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Blank Node Semantics

Example: Blank Node Semantics
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Blank Node Semantics

Example: Blank Node Semantics

o ageh = { | 1e><" ‘almost 14><a 1) |
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Blank Node Semantics

Example: Blank Node Semantics

st~ { () (R e o) () )

Let b1, by, bs be blank nodes
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Blank Node Semantics

Example: Blank Node Semantics

P T
o
T A
f": 7’> ) <aa 7
S 1 ,

4

o). <é‘ ratnost 14 ) <;‘ 1) |

Let b1, by, bs be blank nodes
A = {age(b1, "16"), knows(bs, by), loves(b, bs), age(bs, "13")}

)

®
o
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S
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—N
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Blank Node Semantics

Example: Blank Node Semantics

P T
o
T A
f": 7’> ) <aa 7
S 1 ,

4

o). <é‘ ratnost 14 ) <;‘ 1) |

Let b1, by, bs be blank nodes
A = {age(b1, "16"), knows(bs, by), loves(b, bs), age(bs, "13")}
Valid in Z77

)

®
o
()
S
Il
—N
P
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Blank Node Semantics

Example: Blank Node Semantics
AR
Y “a e

4

o). <;‘ ratnost 14 ) <;‘ 1) |

Let b1, by, bs be blank nodes

)

®
o
()
S
Il
—N
P

°
o A = {age(b1,"16"), knows(b1, b), loves(by, b3), age(bs, "13")}
e Valid in 717
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~
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N
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Blank Node Semantics

Example: Blank Node Semantics

{ ‘v‘;” 7a !}
“‘:"‘:d ,‘> ’ <;” “:‘“‘j’
YN i |

4

o). <;‘ ratnost 14 ) <;‘ 1) |

Let b1, by, bs be blank nodes

)

®
o
()
S
Il
—N
P

°
o A = {age(b1,"16"), knows(b1, b), loves(by, b3), age(bs, "13")}
e Valid in 717

()
Y,
(@]
~
=@
—~
o
[y
N—r
I
=@
~—~
on
N
N
I

e ThenZ;,0 E A
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Blank Node Semantics

Example: Blank Node Semantics

{ ‘v‘;” 7a !}
“‘:"‘:d ,‘> ’ <;” “:‘“‘j’
YN i |

4

o). <;‘ ratnost 14 ) <;‘ 1) |

Let b1, by, bs be blank nodes

)

®
o
()
S
Il
—N
P

°
o A = {age(b1,"16"), knows(b1, b), loves(by, b3), age(bs, "13")}
e Valid in 717

()
Y,
(@]
~
=@
—~
o
[y
N—r
I
=@
~—~
on
N
N
I

Then Il, B ': A
e So, yes, 7; = A.
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Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
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Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
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Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:

e Given sets of triples A and B,
e A entails B, written A = B
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Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
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Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:

e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.

@ This expands to: for any interpretation 7
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Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
@ This expands to: for any interpretation 7
e such that there exists a 5 with Z, 5 = A
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Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
@ This expands to: for any interpretation 7

e such that there exists a 5 with Z, 5 = A
e there also exists a 3 such that Z,8 E B
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Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
@ This expands to: for any interpretation 7

e such that there exists a 51 with Z, 3, = A
o there also exists a /3> such that Z, 5> = B

@ Two different blank node valuations!
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Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:

e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.

@ This expands to: for any interpretation 7

e such that there exists a 51 with Z, 3, = A
e there also exists a 3> such that Z, 5, = B

@ Two different blank node valuations!

@ Can evaluate the same blank node name differently in A and B.
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Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
This expands to: for any interpretation Z

e such that there exists a 51 with Z, 3, = A
e there also exists a 3> such that Z, 5, = B

Two different blank node valuations!

Can evaluate the same blank node name differently in A and B.

Example:
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Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
This expands to: for any interpretation Z

e such that there exists a 51 with Z, 3, = A
e there also exists a 3> such that Z, 5, = B

Two different blank node valuations!

Can evaluate the same blank node name differently in A and B.

Example:
{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}
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Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
This expands to: for any interpretation Z

e such that there exists a 51 with Z, 3, = A
e there also exists a 3> such that Z, 5, = B

Two different blank node valuations!

Can evaluate the same blank node name differently in A and B.

Example:
{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}
E {loves(by, by), knows(by, romeo)}
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Entailment with Blank Nodes

e Entailment is defined just like without blank nodes:
e Given sets of triples A and B,
e A entails B, written A = B
o iff for any interpretation Z with Z = A, also Z = 5.
This expands to: for any interpretation Z

e such that there exists a 51 with Z, 3, = A
e there also exists a 3> such that Z, 5, = B

Two different blank node valuations!

Can evaluate the same blank node name differently in A and B.

Example:
{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}
E {loves(by, by), knows(by, romeo)}

@ Simple entailment: entailment with blank nodes, but no RDFS semantics
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Simple Entailment: Rules and Example

o) )
r(u, by) > r(by, x) >
Where by is a blank node identifier, that either

e has not been used before in the graph, or
o has been used, but for the same URI/Literal/Blank node x resp. u.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March



Simple Entailment: Rules and Example
r(u,x) r(u,x)

7r(u,b1) sel 7r(bl,x) se2

Where b; is a blank node identifier, that either

e has not been used before in the graph, or
o has been used, but for the same URI/Literal/Blank node x resp. u.

{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}
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Simple Entailment: Rules and Example
r(u,x) r(u,x)

7r(u,b1) sel 7r(bl,x) se2

Where b; is a blank node identifier, that either

e has not been used before in the graph, or
o has been used, but for the same URI/Literal/Blank node x resp. u.

{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}

= {loves(by, b3), knows(bsz, romeo)} renamed blank nodes in B!
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Simple Entailment: Rules and Example
r(u,x) r(u,x)

7r(u,b1) sel 7r(bl,x) se2

Where b; is a blank node identifier, that either

e has not been used before in the graph, or
o has been used, but for the same URI/Literal/Blank node x resp. u.

{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}
loves(by, juliet) se2, (by — b1)

= {loves(by, b3), knows(bs, romeo)} renamed blank nodes in B!
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Simple Entailment: Rules and Example
r(u,x) r(u,x)

7r(u,b1) sel 7r(bl,x) se2

Where b; is a blank node identifier, that either

e has not been used before in the graph, or
o has been used, but for the same URI/Literal/Blank node x resp. u.

{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}
loves(by, juliet) se2, (by — b1)
loves(by, b3) sel, (b3 — juliet)

= {loves(by, b3), knows(bs, romeo)} renamed blank nodes in B!
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Simple Entailment: Rules and Example
r(u,x) r(u,x)

7r(u,b1) sel 7r(bl,x) se2

Where b; is a blank node identifier, that either

e has not been used before in the graph, or
o has been used, but for the same URI/Literal/Blank node x resp. u.

{loves(by, juliet), knows(juliet, romeo), age(juliet,"13")}
loves(by, juliet) se2, (by — b1)

loves(by, b3) sel, (b3 — juliet)

knows(bs, romeo)  se2, (reusing bz — juliet)

= {loves(by, b3), knows(bs, romeo)} renamed blank nodes in B!
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Properties of Entailment by Model Semantics
Outline

@ Properties of Entailment by Model Semantics
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Properties of Entailment by Model Semantics
Monotonicity

@ Assume A= B
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Properties of Entailment by Model Semantics
Monotonicity

@ Assume A= B
@ Now add information to A, i.e. A’ D A
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Properties of Entailment by Model Semantics
Monotonicity

@ Assume A= B
@ Now add information to A, i.e. A’ D A
@ Then B is still entailed: A" =B
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Properties of Entailment by Model Semantics
Monotonicity

@ Assume A= B
@ Now add information to A, i.e. A’ D A
@ Then B is still entailed: A" =B

@ We say that RDF/RDFS entailment is monotonic
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Properties of Entailment by Model Semantics
Monotonicity

Assume A = B
Now add information to A, i.e. A’ D A
@ Then B is still entailed: A" =B

We say that RDF/RDFS entailment is monotonic

@ What would non-monotonic reasoning be like?
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Properties of Entailment by Model Semantics
Monotonicity

Assume A = B
Now add information to A, i.e. A’ D A
@ Then B is still entailed: A" =B

We say that RDF/RDFS entailment is monotonic

@ What would non-monotonic reasoning be like?
e {Bird C CanFly, Bird(tweety)} = CanFly(tweety)
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Properties of Entailment by Model Semantics
Monotonicity

Assume A = B
Now add information to A, i.e. A’ D A
@ Then B is still entailed: A" =B

We say that RDF/RDFS entailment is monotonic

@ What would non-monotonic reasoning be like?

e {Bird C CanFly, Bird(tweety)} = CanFly(tweety)
o {..., Penguin C Bird, Penguin(tweety), Penguin C = CanFly} = CanFly(tweety)
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Properties of Entailment by Model Semantics
Monotonicity

Assume A = B
Now add information to A, i.e. A’ D A
@ Then B is still entailed: A" =B

We say that RDF/RDFS entailment is monotonic

@ What would non-monotonic reasoning be like?
e {Bird C CanFly, Bird(tweety)} = CanFly(tweety)
o {..., Penguin C Bird, Penguin(tweety), Penguin C = CanFly} = CanFly(tweety)
e Interesting for human-style reasoning
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Properties of Entailment by Model Semantics
Monotonicity

Assume A = B
Now add information to A, i.e. A’ D A
@ Then B is still entailed: A" =B

We say that RDF/RDFS entailment is monotonic

@ What would non-monotonic reasoning be like?

{Bird C CanFly, Bird(tweety)} |= CanFly(tweety)

{..., Penguin C Bird, Penguin(tweety), Penguin C = CanFly} = CanFly(tweety)
Interesting for human-style reasoning

Hard to combine with semantic web technologies
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Expressive limitations of RDFS

Note that,

@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.
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Expressive limitations of RDFS

Note that,

@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.
@ RDFS has no notion of negation at all
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Expressive limitations of RDFS

Note that,

@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.

@ RDFS has no notion of negation at all
e For instance, the two triples
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Expressive limitations of RDFS

Note that,

@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.
@ RDFS has no notion of negation at all
e For instance, the two triples

ex:Joe rdf:type ex:Smoker .
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Properties of Entailment by Model Semantics

Expressive limitations of RDFS

Note that,
@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.

@ RDFS has no notion of negation at all
e For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .
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Properties of Entailment by Model Semantics

Expressive limitations of RDFS

Note that,
@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.
@ RDFS has no notion of negation at all
e For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.
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Properties of Entailment by Model Semantics

Expressive limitations of RDFS

Note that,
@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.
@ RDFS has no notion of negation at all
e For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .
are not inconsistent.
o (It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

Therefore,
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Properties of Entailment by Model Semantics

Expressive limitations of RDFS

Note that,
@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.

@ RDFS has no notion of negation at all
e For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.
o (It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

Therefore,
@ RDFS supports no reasoning services that require consistency-checking.
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Properties of Entailment by Model Semantics

Expressive limitations of RDFS

Note that,
@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.
@ RDFS has no notion of negation at all
e For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.
o (It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

Therefore,
@ RDFS supports no reasoning services that require consistency-checking.

@ If negation or consistency-checks are needed, one must turn to OWL.
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Properties of Entailment by Model Semantics

Expressive limitations of RDFS

Note that,
@ RDFS cannot express inconsistencies, so any RDFS graph is consistent.

@ RDFS has no notion of negation at all
e For instance, the two triples

ex:Joe rdf:type ex:Smoker .
ex:Joe rdf:type ex:NonSmoker .

are not inconsistent.
o (It is not possible to in RDFS to say that ex:Smoker and ex:nonSmoker are disjoint).

Therefore,
@ RDFS supports no reasoning services that require consistency-checking.

@ If negation or consistency-checks are needed, one must turn to OWL.

@ More about that next week.

Lecture 8 :: 5th March
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Entailment and SPARQL

@ Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. 7?7y :q 7z.}
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Entailment and SPARQL

@ Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. 7?7y :q 7z.}
@ The query means: find x, y, z with p(x,y) and ¢g(y, z)

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March



Entailment and SPARQL

@ Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. 7?7y :q 7z.}
@ The query means: find x, y, z with p(x,y) and ¢g(y, z)

@ Semantics: find x, y, z with
KB = {p(x,y), qly,z)}
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Entailment and SPARQL

Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. 7y :q 7z.}

The query means: find x, y, z with p(x,y) and ¢(y, z)

Semantics: find x, y, z with
KB = {p(x,y), a(y,2)}

o E.g. an answer
X ¢ ex:a y <« ifi:in3060 =z <« "a"

means
KB = {p(a, in3060), g(in3060, "a")}
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Entailment and SPARQL

Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. 7y :q 7z.}
The query means: find x, y, z with p(x,y) and ¢(y, z)

Semantics: find x, y, z with
KB = {p(x,y), a(y,2)}

o E.g. an answer
X ¢ ex:a y <« ifi:in3060 =z <« "a"

means
KB = {p(a, in3060), g(in3060, "a")}

@ Monotonicity:
KBU {---} |= {p(a, in3060), q(in3060, "a")}

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March



Entailment and SPARQL

Given a knowledge base KB and a query SELECT * WHERE {?x :p ?y. 7y :q 7z.}
The query means: find x, y, z with p(x,y) and ¢(y, z)

Semantics: find x, y, z with
KB = {p(x,y), a(y,2)}

o E.g. an answer
X ¢ ex:a y <« ifi:in3060 =z <« "a"

means
KB = {p(a, in3060), g(in3060, "a")}

@ Monotonicity:
KBU {---} |= {p(a, in3060), q(in3060, "a")}

@ Answers remain valid with new information!
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Database Lookup versus Entailment

@ Knowledge base KB:

Person(harald) Person(haakon) isFatherOf (harald, haakon)
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Database Lookup versus Entailment

@ Knowledge base KB:
Person(harald) Person(haakon) isFatherOf (harald, haakon)

@ Question: is there a person without a father?
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Database Lookup versus Entailment

@ Knowledge base KB:
Person(harald) Person(haakon) isFatherOf (harald, haakon)

@ Question: is there a person without a father?
@ Ask a database:
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Database Lookup versus Entailment

@ Knowledge base KB:
Person(harald) Person(haakon) isFatherOf (harald, haakon)

@ Question: is there a person without a father?
@ Ask a database:
e Yes: harald
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Database Lookup versus Entailment

@ Knowledge base KB:
Person(harald) Person(haakon) isFatherOf (harald, haakon)

@ Question: is there a person without a father?
@ Ask a database:

e Yes: harald
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Database Lookup versus Entailment

Knowledge base KB:

Person(harald) Person(haakon) isFatherOf (harald, haakon)

Question: is there a person without a father?
@ Ask a database:
e Yes: harald
@ ask a semantics based system
e find x with KB |= ‘x has no father
e No answer: don't know
Why?
e Monotonicity!
o KB U {isFatherOf(olav, harald)} |= harald does have a father
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Database Lookup versus Entailment

Knowledge base KB:

Person(harald) Person(haakon) isFatherOf (harald, haakon)

Question: is there a person without a father?
@ Ask a database:
e Yes: harald

@ ask a semantics based system

e find x with KB |= ‘x has no father

e No answer: don't know
Why?

e Monotonicity!

e KB U {isFatherOf (olav, harald)} |= harald does have a father
e In some models of KB, harald has a father, in others not.
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Open World versus Closed World

@ Closed World Assumption (CWA)
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@ Closed World Assumption (CWA)
e If a thing is not listed in the knowledge base, it doesn’t exist
o If a fact isn't stated (or derivable) it's false
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Open World versus Closed World

@ Closed World Assumption (CWA)

e If a thing is not listed in the knowledge base, it doesn’t exist
o If a fact isn't stated (or derivable) it's false
e Typical semantics for database systems

@ Open World Assumption (OWA)
e There might be things not mentioned in the knowledge base
e There might be facts that are true, although they are not stated
e Typical semantics for logic-based systems

@ What is best for the Semantic Web?
e Will never know all information sources
e Can “discover” new information by following links
e New information can be produced at any time
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Properties of Entailment by Model Semantics

Open World versus Closed World

@ Closed World Assumption (CWA)

e If a thing is not listed in the knowledge base, it doesn’t exist
o If a fact isn't stated (or derivable) it's false
e Typical semantics for database systems

@ Open World Assumption (OWA)

e There might be things not mentioned in the knowledge base
e There might be facts that are true, although they are not stated
e Typical semantics for logic-based systems

@ What is best for the Semantic Web?

Will never know all information sources

Can “discover” new information by following links
New information can be produced at any time
Therefore: Open World Assumption
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Consequences of the Open World Assumption

@ Robust under missing information
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e SPARQL query answering (entailment in disguise)

KB = {p(a, in3060), q(in3060,"a")}
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e SPARQL query answering (entailment in disguise)
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e Queries with negation (“not”)
@ might be satisfied later on
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Consequences of the Open World Assumption

@ Robust under missing information
@ Any answer given by
e Entailment
KB [= Person(juliet)

e SPARQL query answering (entailment in disguise)

KB = {p(a, in3060), g(in3060,"a")}

remains valid when new information is added to KB
@ Some things make no sense with this semantics
e Queries with negation (“not”)
@ might be satisfied later on
e Queries with aggregation (counting, adding,...)
@ can change when more information comes
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Entailment and Derivability
Outline

© Entailment and Derivability
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Two Kinds of Consequence?

@ We now have two ways of describing logical consequence. . .
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:juliet a :Person .

rdfs9
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Two Kinds of Consequence?

@ We now have two ways of describing logical consequence. . .
1. Using RDFS rules:
:Lady rdfs:subClass0Of :Person . :juliet a :Lady .

:juliet a :Person . rdfs9

Lady T Person Lady (juliet)
Person(juliet)

rdfs9

2. Using the model semantics

o If T |= Lady C Person and Z |= Lady/(juliet). ..
o ...then Lady? C Person” and juliet” € Lady”...
e ...so by set theory, juliet’ € Person”...

]

...and therefore Z |= Person(juliet).
o Together: {Lady C Person, Lady(juliet)} = Person(juliet)
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Two Kinds of Consequence?

@ We now have two ways of describing logical consequence. . .
1. Using RDFS rules:
:Lady rdfs:subClass0Of :Person . :juliet a :Lady .

:juliet a :Person . rdfs9

Lady T Person Lady (juliet)
Person(juliet)

rdfs9

2. Using the model semantics

o If T |= Lady C Person and Z |= Lady/(juliet). ..
...then Lady® C Person® and juliet’ € Lady™...

"]
e ...so by set theory, juliet’ € Person”...
]

...and therefore Z |= Person(juliet).

o Together: {Lady C Person, Lady(juliet)} = Person(juliet)
@ What is the connection between these two?
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Entailment and Derivability

@ Actually, two different notions!
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@ Actually, two different notions!
@ Entailment is defined using the model semantics.
@ The rules say what can be derived

e derivability
e provability
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Entailment and Derivability

Actually, two different notions!
@ Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
Entailment
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Entailment and Derivability

Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
e Entailment
e is closely related to the meaning of things
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Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
e Entailment
e is closely related to the meaning of things
@ higher confidence in model semantics than in a bunch of rules
e The semantics given by the standard, rules are just “informative”
e can't be directly checked mechanically (co many interpretations)

Derivability
e can be checked mechanically
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Entailment and Derivability

Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
e Entailment
e is closely related to the meaning of things
@ higher confidence in model semantics than in a bunch of rules
e The semantics given by the standard, rules are just “informative”
e can't be directly checked mechanically (co many interpretations)
Derivability
e can be checked mechanically
e forward or backward chaining
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Entailment and Derivability

Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
e Entailment
e is closely related to the meaning of things
@ higher confidence in model semantics than in a bunch of rules
e The semantics given by the standard, rules are just “informative”
e can't be directly checked mechanically (co many interpretations)
Derivability
e can be checked mechanically
e forward or backward chaining
@ Want these notions to correspond:
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Entailment and Derivability

Actually, two different notions!

Entailment is defined using the model semantics.
The rules say what can be derived
e derivability
e provability
e Entailment
e is closely related to the meaning of things
@ higher confidence in model semantics than in a bunch of rules
e The semantics given by the standard, rules are just “informative”
e can't be directly checked mechanically (co many interpretations)
Derivability
e can be checked mechanically
e forward or backward chaining
@ Want these notions to correspond:
e AEB iff B can be derived from A
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Soundness

@ Two directions:
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Soundness

e Two directions:
© If A= B then B can be derived from A
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Soundness

@ Two directions:
© If A= B then B can be derived from A
@ If B can be derived from A then A = B

@ Nr. 2 usually considered more important:

@ If the calculus says that something is entailed then it is really entailed.
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Soundness

Two directions:
© If A= B then B can be derived from A
@ If B can be derived from A then A = B

Nr. 2 usually considered more important:

If the calculus says that something is entailed then it is really entailed.

The calculus gives no “wrong” answers.

This is known as soundness
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Soundness

Two directions:
© If A= B then B can be derived from A
@ If B can be derived from A then A = B

Nr. 2 usually considered more important:

If the calculus says that something is entailed then it is really entailed.
The calculus gives no “wrong” answers.

This is known as soundness

The calculus is said to be sound (w.r.t. the model semantics)
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Showing Soundness

@ Soundness of every rule has to be (manually) checked!
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@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

C
= BLC rdfs11

@ Soundness means that

e For any choice of three classes A, B, C
e {ALB,BCLC}EALCC
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Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

C
= BLC rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ALB,BCLC}EALCC

@ Proof:
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Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

ACB B
ACC

L C rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ALB,BCLC}EALCC
@ Proof:
o Let Z be an arbitrary interpretation with Z = {AC B,BLC C}
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Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

ACB B
ACC

L C rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ACBBCC}EALCC
@ Proof:
o Let Z be an arbitrary interpretation with Z = {AC B,BLC C}
e Then by model semantics, AZ C BZ and BT C C*
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@ Soundness means that
e For any choice of three classes A, B, C
e {ACBBCC}EALCC
@ Proof:
o Let Z be an arbitrary interpretation with Z = {AC B,BLC C}
e Then by model semantics, AZ C BZ and BT C C*
o By set theory, AT C CT
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@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

ACB B
ACC

L C rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ALB,BCLC}EALCC
@ Proof:
o Let Z be an arbitrary interpretation with Z = {AC B,BLC C}
e Then by model semantics, AZ C BZ and BT C C*
o By set theory, AT C CT
e By model semantics, ZE=ALC C
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Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

ACB B
ACC

L C rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ACBBCC}EALCC
@ Proof:
o Let Z be an arbitrary interpretation with Z = {AC B,BLC C}
Then by model semantics, AZ C B% and BZ C C*
By set theory, AT C C*
By model semantics, Z}=AC C
Q.E.D.
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Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

ACB B
ACC

L C rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ACBBCC}EALCC
@ Proof:
o Let Z be an arbitrary interpretation with Z = {AC B,BLC C}
e Then by model semantics, AZ C BZ and BT C C*
o By set theory, AT C CT
e By model semantics, ZE=ALC C
e Q.E.D.
@ This can be done similarly for all of the rules.
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Showing Soundness

@ Soundness of every rule has to be (manually) checked!
o E.g. rdfsll,

ACB B
ACC

L C rdfs11

@ Soundness means that
e For any choice of three classes A, B, C
e {ACBBCC}EALCC
@ Proof:
o Let Z be an arbitrary interpretation with Z = {AC B,BLC C}
e Then by model semantics, AZ C BZ and BT C C*
o By set theory, AT C CT
e By model semantics, ZE=ALC C
e Q.E.D.
@ This can be done similarly for all of the rules.
e All given SE/RDF/RDFS rules are sound w.r.t. the model semantics!
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Completeness

@ Two directions:
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@ Nr. 1 says that any entailment can be found using the rules.
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@ l.e. we have “enough” rules.
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Completeness

e Two directions:
Q If A= B then B can be derived from A
@ If B can be derived from A then A = B

@ Nr. 1 says that any entailment can be found using the rules.
@ l.e. we have “enough” rules.

@ Can't be checked separately for each rule, only for whole rule set
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Completeness

e Two directions:
Q If A= B then B can be derived from A
@ If B can be derived from A then A = B

Nr. 1 says that any entailment can be found using the rules.
l.e. we have “enough” rules.

Can't be checked separately for each rule, only for whole rule set

Proofs are more complicated than soundness
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Simple Entailment: Completeness

@ Simple entailment is entailment
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@ Simple entailment is entailment
e With blank nodes and literals
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Simple Entailment: Completeness

@ Simple entailment is entailment
e With blank nodes and literals
e but without RDFS
e and without RDF axioms like rdf :type rdf:Property .
@ sel and se2 are complete for simple entailment, i.e.
if A simply entails B
then A can be extended with sel and se2 to A’ with B C A’.
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Simple Entailment: Completeness

@ Simple entailment is entailment

e With blank nodes and literals
e but without RDFS
e and without RDF axioms like rdf :type rdf:Property .

@ sel and se2 are complete for simple entailment, i.e.
if A simply entails B
then A can be extended with sel and se2 to A’ with B C A’.
@ (requires blank node IDs in A and B to be disjoint)
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Rules for (simplified) RDF/RDFS

@ See Foundations book, Sect. 3.3
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@ See Foundations book, Sect. 3.3
@ Many rules and axioms not needed for our “simplified” RDF/RDFS
o rdfs:range rdfs:domain rdfs:Class ...
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Rules for (simplified) RDF/RDFS

@ See Foundations book, Sect. 3.3

@ Many rules and axioms not needed for our “simplified” RDF/RDFS
o rdfs:range rdfs:domain rdfs:Class ...

@ Important rules for us:
dom(r,A)  r(x,y) rg(r,B)  rlxy)

A(x) rdfs2 5(y)

rdfs3
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Rules for (simplified) RDF/RDFS

@ See Foundations book, Sect. 3.3
@ Many rules and axioms not needed for our “simplified” RDF/RDFS

o rdfs:range rdfs:domain rdfs:Class ...

@ Important rules for us:

dom(r, A) r(x,y) rg(r, B) r(x,y)
A(x) rdfs2 B(y) rdfs3
rCs sCt rts r(x,y) ;
P rdfs5 TTr rdfs6 (<) rdfs7
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Rules for (simplified) RDF/RDFS

@ See Foundations book, Sect. 3.3
@ Many rules and axioms not needed for our “simplified” RDF/RDFS

o rdfs:range rdfs:domain rdfs:Class ...

@ Important rules for us:

d A ) ,B )
om(r.A)  rlxy) e(r.B)  r(xy)
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Complete?

@ These rules are not complete for our RDF/RDFS semantics
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Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance

{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)
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Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance

{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

@ Because for every interpretation Z,
o if T = {rg(loves, Beloved), Beloved C Person}
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Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance

{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

@ Because for every interpretation Z,

o if T = {rg(loves, Beloved), Beloved C Person}
e then by semantics, for all (x,y) € loves?, y € Beloved®; and Beloved® C Person.
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Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance

{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

@ Because for every interpretation Z,
o if T = {rg(loves, Beloved), Beloved C Person}
e then by semantics, for all (x,y) € loves?, y € Beloved®; and Beloved® C Person.
o Therefore, by set theory, for all {x,y) € lovesT, y € Persont.
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Entailment and Derivability

Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance
{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

@ Because for every interpretation Z,

if Z = {rg(loves, Beloved), Beloved T Person}

then by semantics, for all (x,y) € loves?, y € Beloved®; and Beloved® C Person.
Therefore, by set theory, for all (x,y) € loves?, y € PersonT.

By semantics, Z |= rg(loves, Person)
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Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance
{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

@ Because for every interpretation Z,

if Z = {rg(loves, Beloved), Beloved T Person}

then by semantics, for all (x,y) € loves?, y € Beloved®; and Beloved® C Person.
Therefore, by set theory, for all (x,y) € loves?, y € PersonT.

By semantics, Z |= rg(loves, Person)

@ But there is no way to derive this using the given rules
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Complete?

@ These rules are not complete for our RDF/RDFS semantics

@ For instance
{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

@ Because for every interpretation Z,

if Z = {rg(loves, Beloved), Beloved T Person}

then by semantics, for all (x,y) € loves?, y € Beloved®; and Beloved® C Person.
Therefore, by set theory, for all (x,y) € loves?, y € PersonT.

By semantics, Z |= rg(loves, Person)

@ But there is no way to derive this using the given rules
e There is no rule which allows to derive a range statement.
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Complete?

These rules are not complete for our RDF/RDFS semantics

For instance

{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

Because for every interpretation Z,

if Z = {rg(loves, Beloved), Beloved T Person}

then by semantics, for all (x,y) € loves?, y € Beloved®; and Beloved® C Person.
Therefore, by set theory, for all (x,y) € loves?, y € PersonT.

By semantics, Z |= rg(loves, Person)

@ But there is no way to derive this using the given rules
e There is no rule which allows to derive a range statement.

@ We could now add rules to make the system complete
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Complete?

These rules are not complete for our RDF/RDFS semantics

For instance

{rg(loves, Beloved), Beloved T Person} = rg(loves, Person)

Because for every interpretation Z,

if Z = {rg(loves, Beloved), Beloved T Person}

then by semantics, for all (x,y) € loves?, y € Beloved®; and Beloved® C Person.
Therefore, by set theory, for all (x,y) € loves?, y € PersonT.

By semantics, Z |= rg(loves, Person)

@ But there is no way to derive this using the given rules
e There is no rule which allows to derive a range statement.

@ We could now add rules to make the system complete
@ Won't bother to do that now. Will get completeness for OWL.
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Outlook

e RDFS allows some simple modelling: “all ladies are persons”
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Outlook

@ RDFS allows some simple modelling: “all ladies are persons”
@ The following lectures will be about OWL

o Will allow to say things like

e Every car has a motor
e Every car has at least three parts of type wheel
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Entailment and Derivability

Outlook

@ RDFS allows some simple modelling: “all ladies are persons”
@ The following lectures will be about OWL
o Will allow to say things like

o Every car has a motor

e Every car has at least three parts of type wheel
e A mother is a person who is female and has at least one child
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o Will allow to say things like
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e Every car has at least three parts of type wheel

e A mother is a person who is female and has at least one child
e The friends of my friends are also my friends
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@ The following lectures will be about OWL
o Will allow to say things like
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Every car has at least three parts of type wheel

A mother is a person who is female and has at least one child
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A metropolis is a town with at least a million inhabitants

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March



Outlook

@ RDFS allows some simple modelling: “all ladies are persons”

@ The following lectures will be about OWL
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Every car has at least three parts of type wheel

A mother is a person who is female and has at least one child
The friends of my friends are also my friends
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Outlook

@ RDFS allows some simple modelling: “all ladies are persons”

@ The following lectures will be about OWL
o Will allow to say things like
e Every car has a motor
Every car has at least three parts of type wheel
A mother is a person who is female and has at least one child
The friends of my friends are also my friends
A metropolis is a town with at least a million inhabitants
...and many more

@ Modeling will not be done by writing triples manually:
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Outlook

RDFS allows some simple modelling: “all ladies are persons”

The following lectures will be about OWL

o Will allow to say things like

e Every car has a motor
Every car has at least three parts of type wheel
A mother is a person who is female and has at least one child
The friends of my friends are also my friends
A metropolis is a town with at least a million inhabitants
...and many more

Modeling will not be done by writing triples manually:

Will use ontology editor Protégé.

IN3060/4060 :: Spring 2021 Lecture 8 :: 5th March



	Repetition: RDF semantics
	Literal Semantics
	Blank Node Semantics
	Properties of Entailment by Model Semantics
	Entailment and Derivability

