IN3060/4060 – Semantic Technologies – Spring 2021 Lecture 10: OWL 2

Jieying Chen

19th March 2021

DEPARTMENT OF INFORMATICS

| | | |

University of Oslo

Two Possibilities

• Rio de Janeiro, Petrobras HQ

- Libra Oil Field: est. 7,900 M barrels
- (compare: Johan Sverdrup at 2,800 M)
- Want to get the data bit right this time!
- Federal Univ. Rio Grande do Sul (Porto Allegre)
 - Research in ontologies
 - How to structure a good ontology?
 - Ontology-based Information systems
 - Applications in Geosciences
 - New project on Digital Twins

• Travel Stipend plus 4 000kr per month

Picture of Petrobras HQ: Eric and Christian - https://www.flickr.com/photos/ericandchristian/4902953581/, CC BY 2.0

• Oblig. 5:

The first deadline today (19.03). The second deadline two weeks after feedback.

- The link to the reading material in the exercise and on the semester page.
- A video about the RDFS semantics is published on the semester page as well.
- Oblig. 6 will be published next week. The first deadline is 16th of April (3 weeks).

IN3060/4060 :: Spring 20

Outline

$\textcircled{1} \mathsf{Reminder:} \ \mathcal{ALC}$

Important assumptions

3 OWL 2

- Axioms and assertions using individuals
- Concept Restrictions
- Modelling 'problems'
- Roles
- Datatypes

IN3060/4060 :: Spring 2021

Reminder: ALC

${\cal ALC}$ Semantics

Interpretation

An interpretation \mathcal{I} fixes a set $\Delta^{\mathcal{I}}$, the *domain*, $A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$ for each concept name A, $R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$ for each role R, and $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$ for each individual a.

Interpretation of concept descriptions

 $\begin{array}{rcl} \top^{\mathcal{I}} & = & \Delta^{\mathcal{I}} \\ \perp^{\mathcal{I}} & = & \emptyset \\ (\neg C)^{\mathcal{I}} & = & \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} & = & C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (C \sqcup D)^{\mathcal{I}} & = & C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ (\forall R. C)^{\mathcal{I}} & = & \{a \in \Delta^{\mathcal{I}} \mid \text{ for all } b, \text{ if } \langle a, b \rangle \in R^{\mathcal{I}} \text{ then } b \in C^{\mathcal{I}} \} \\ (\exists R. C)^{\mathcal{I}} & = & \{a \in \Delta^{\mathcal{I}} \mid \text{ there is a } b \text{ where } \langle a, b \rangle \in R^{\mathcal{I}} \text{ and } b \in C^{\mathcal{I}} \} \end{array}$

Interpretation of Axioms

• $\mathcal{I} \models C \sqsubseteq D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ and $\mathcal{I} \models C \equiv D$ if $C^{\mathcal{I}} = D^{\mathcal{I}}$ • $\mathcal{I} \models C(a)$ if $a^{\mathcal{I}} \in C^{\mathcal{I}}$ and $\mathcal{I} \models R(a, b)$ if $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}$.

$\mathcal{I} \models C(a)$ if $a^{\mathcal{I}} \in C^{\mathcal{I}}$ and $\mathcal{I} \models R(a, b)$ if $\langle a^{\mathcal{I}}, b \rangle$

IN3060/4060 :: Spring 2021

Lecture 10 :: 19th March

Reminder: ALC

The \mathcal{ALC} Description Logic

Vocabulary

Fix a set of concept names $\{A_1, A_2, \dots\}$, roles $\{R_1, R_2, \dots\}$ and individuals $\{a_1, a_2, \dots\}$.

ALC concept descriptions

$\begin{array}{c cccc} C,D \rightarrow & A_i & & (atomic coolsymbol{Gravity} \\ T & & (universal conditional conditional$	oncept/concept names) concept/top concept) oncept) on) restriction) I restriction)
---	---

Axioms

- $C \sqsubseteq D$ and $C \equiv D$ for concept descriptions D and C.
- C(a) and R(a, b) for concept description C, role name R and individuals a, b.

IN3060/4060 :: Spring 2021

Lecture 10 :: 19th March

\mathcal{ALC} Examples

Let \mathcal{K} be the following set of axioms:

$Penguin \sqsubseteq Animal \sqcap \forall eats.Fish$	Fish 드 Animal
$\textit{Penguin} \sqcap \textit{Fish} \sqsubseteq \bot$	Animal $\sqsubseteq \exists eats. \top$
Penguin(a)	eats(a, b)

Let ${\mathcal I}$ be an interpretation such that

$$\begin{split} &\Delta^{\mathcal{I}} = \top^{\mathcal{I}} = \{\textit{tweety},\textit{terry},\textit{carl}\}, \quad \bot^{\mathcal{I}} = \emptyset, \quad a^{\mathcal{I}} = \textit{tweety}, \quad b^{\mathcal{I}} = \textit{terry} \\ &Penguin^{\mathcal{I}} = \{a^{\mathcal{I}}\} = \{\textit{tweety}\} \\ &eats^{\mathcal{I}} = \{\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle, \langle b^{\mathcal{I}},\textit{carl} \rangle\} = \{\langle\textit{tweety},\textit{terry} \rangle, \langle\textit{terry},\textit{carl} \rangle\} \\ &Fish^{\mathcal{I}} = \{b^{\mathcal{I}}\} = \{\textit{terry}\} \\ &Animal^{\mathcal{I}} = \{a^{\mathcal{I}}, b^{\mathcal{I}}\} = \{\textit{tweety},\textit{terry}\} \end{split}$$

Now $\mathcal{I} \vDash \mathcal{K}$.

IN3060/4060 :: Spring 2021

8 / /

\mathcal{ALC} Examples

Let ${\mathcal K}$ be the following set of axioms:

$Penguin \sqsubseteq Animal \sqcap orall eats.Fish$	Fish 드 Animal
$\textit{Penguin} \sqcap \textit{Fish} \sqsubseteq \bot$	Animal $\sqsubseteq \exists eats. \top$
Penguin(a)	eats(a, b)

Let $\mathcal J$ be an interpretation such that

```
\begin{split} \Delta^{\mathcal{J}} &= \top^{\mathcal{J}} = \{ \textit{tweety} \}, \quad \bot^{\mathcal{J}} = \emptyset, \quad \textit{a}^{\mathcal{J}} = \textit{tweety}, \textit{b}^{\mathcal{J}} = \textit{tweety} \\ \textit{Animal}^{\mathcal{J}} &= \{ \textit{a}^{\mathcal{J}}, \textit{b}^{\mathcal{J}} \} = \{ \textit{tweety} \}, \\ \textit{Penguin}^{\mathcal{J}} &= \{ \textit{a}^{\mathcal{J}} \} = \{ \textit{tweety} \}, \\ \textit{Fish}^{\mathcal{J}} &= \{ \textit{b}^{\mathcal{J}} \} = \{ \textit{tweety} \} \\ \textit{eats}^{\mathcal{J}} &= \{ \langle \textit{a}^{\mathcal{J}}, \textit{b}^{\mathcal{J}} \rangle, \langle \textit{b}^{\mathcal{J}}, \textit{a}^{\mathcal{J}} \rangle \} = \{ \langle \textit{tweety}, \textit{tweety} \rangle \} \end{split}
```

Lecture 10 :: 19th Marc

Lecture 10 :: 19th March

Now $\mathcal{J} \nvDash \mathcal{K}$ since $\mathcal{J} \nvDash Penguin \sqcap Fish \sqsubseteq \bot$.

Important assumption

Outline

IN3060/4060 :: Spring 2021

1 Reminder: ALC

Important assumptions

3 OWL 2

- Axioms and assertions using individuals
- Concept Restrictions
- Modelling 'problems'
- Roles
- Datatypes

Reminder:

Modelling patterns

So, what can we say with ALC?

- ✓ Every person has a mother.
- ✓ Penguins eats only fish. Horses eats only chocolate.
- X Every nuclear family has two parents, at least two children and a dog.
- ✓ No smoker is a non-smoker (and vice versa).
- X Everybody loves Mary.
- X Adam is not Eve (and vice versa).
- ✓ Everything is black or white.
- \checkmark There is no such thing as a free lunch.
- **X** Brothers of fathers are uncles.
- X My friend's friends are also my friends.
- X If Homer is married to Marge, then Marge is married to Homer.

Lecture 10 :: 19th March

- $\pmb{\mathsf{X}}$ If Homer is a parent of Bart, then Bart is a child of Homer.
- Today we'll learn how to say more.

IN3060/4060 :: Spring 2021

9 / 46

World assumptions

- Closed World Assumption (CWA)
- Open World Assumption (OWA)
- CWA:
- Complete knowledge.
- Any statement that is not known to be true is false. (*)
- Typical semantics for database systems.

OWA:

- Potential incomplete knowledge.
- (*) does not hold.
- Typical semantics for logic-based systems.

IN3060/4060 :: Spring 2021

ecture 10 :: 19th March

/ 46

IN3060/4060 :: Spring 2021

Name assumptions

- Unique name assumption (UNA)
- Non-unique name assumption (NUNA)
- Under any assumption, equal names (read: individual URIs, DB constants) always denote the same "thing" (obviously).

• i.e., $a^{\mathcal{I}} = a^{\mathcal{I}}$.

- Under UNA, different names always denote different things.
 - E.g., $a^{\mathcal{I}} \neq b^{\mathcal{I}}$.

IN3060/4060 :: Spring 2021

- common in relational databases.
- Under NUNA, different names need not denote different things.
 - Can have , $a^{\mathcal{I}} = b^{\mathcal{I}}$, or
 - dbpedia:Oslo $^{\mathcal{I}} = \text{geo}:34521^{\mathcal{I}}.$

SROIQ(D) and OWL 2

- OWL 2 is based on the DL SROIQ(D):
 - S for ALC^1 plus role transitivity,
 - \mathcal{R} for (complex) roles inclusions,
 - O for closed classes,
 - ${\mathcal I}$ for inverse roles,
 - \mathcal{Q} for qualified cardinality restrictions, and
 - \mathcal{D} for datatypes.
- So, today we'll see:
 - new concept and role builders,
 - new TBox axioms,
 - new ABox axioms,
 - new RBox axioms, and
 - datatypes.

IN3060/4060 :: Spring 2021

¹Attributive Concept Language with Complements

Outline 1 Reminder: ALC 2 Important assumptions 3 OWL 2 • Axioms and assertions using individuals • Concept Restrictions Modelling 'problems' Roles Datatypes 13 / 46 IN3060/4060 :: Spring 2021 Outline **1** Reminder: ALC**2** Important assumptions 3 OWL 2 • Axioms and assertions using individuals

IN3060/4060 :: Spring 2021

Roles

• Datatypes

• Concept Restrictions

Modelling 'problems'

Lecture 10 :: 19th March

OWL 2

• New concept builder.

• DL: {*a*, *b*, ...}

Svntax:

• Example:

Note:

IN3060/4060 :: Spring 2021

• Called *closed classes* in OWL.

• Manchester: {a, b, ...}

Creating concepts using individuals

• Create (anonymous) concepts by explicitly listing all members.

• SimpsonFamily \equiv {Homer, Marge, Bart, Lisa, Maggie}

The individuals does not necessarily represent different objects,
we still need = and ≠ to say that members are the same/different.

• :SimpsonFamily owl:equivalentClass [owl:oneOf (:Homer :Marge :Bart :Lisa :Maggie)] .

Lecture 10 :: 19th March

• RDF/OWL: owl:oneOf + rdf:List++

• "Closed classes of data values" are datatypes.

Individual identity

- New ABox axioms.
- Express equality and non-equality between individuals.
- Syntax:
 - DL: a = b, $a \neq b$;
 - RDF/OWL: :a owl:sameAs :b, :a owl:differentFrom :b,
 - Manchester: SameAs, DifferentFrom.
- Semantics:
 - $\mathcal{I} \models a = b$ iff $a^{\mathcal{I}} = b^{\mathcal{I}}$
 - $\mathcal{I} \models a \neq b$ iff $a^{\mathcal{I}} \neq b^{\mathcal{I}}$
- Examples:
 - sim:Bart owl:sameAs dbpedia:Bart_Simpson,
 - sim:Bart owl:differentFrom sim:Homer.
- Remember:
 - Non unique name assumption (NUNA) in Sem. Web,
 - $\bullet\,$ must sometimes use = and \neq to get expected results.

Lecture 10 :: 19th March

IN3060/4060 :: Spring 2021

OWL 2 Axioms and assertions using individuals

Axioms involving individuals: Negative Property Assertions

- New ABox axiom.
- Syntax:
 - DL: ¬R(a, b),
 - RDF/OWL: owl:NegativePropertyAssertion (Class of assertions/triples)
 - Manchester: a not R b.
- Semantics:

• $\mathcal{I} \models \neg R(a, b)$ iff $\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \notin R^{\mathcal{I}}$,

- Notes:
 - Works both for object properties and datatype properties.
- Examples:

IN3060/4060 :: Spring 2021

- :Bart not :hasFather :NedFlanders
- :Bart not :hasAge "2"^^xsd:int

Lect

Lecture 10 :: 19th March

Outline D Reminder: ALC

-

Important assumptions

3 OWL 2

- \bullet Axioms and assertions using individuals
- Concept Restrictions
- Modelling 'problems'
- Roles
- Datatypes

IN3060/4060 :: Spring 2021

19 / 46

Lecture 10 :: 19th March

20 / 4

Recap of existential and universal restrictions

- Existential restrictions
 - have the form $\exists R.D.$
 - typically used to connect classes,
 - $C \sqsubset \exists R.D$: a C is R-related to (at least) some D:
 - Example: a person has a female parent: *Person* $\sqsubseteq \exists hasParent.Woman$.
 - Note that C-objects can be R-related to other things:
 - A person may have other parents who are not women—but there should be one who's a woman
- Universal restrictions
 - have the form $\forall R.D$.
 - restrict the things an object can be connected to.
 - $C \sqsubset \forall R.D$: C is R-related to D's only:
 - Example: A horse eats only chocolate: Horse $\Box \forall eats. Chocolate$.
 - Note that C-objects may not be R-related to anything at all:
 - A horse does not have to eat something-but if it does it must be chocolate. Lecture 10 :: 19th March

IN3060/4060 :: Spring 2021

Example cardinality restriction

- Car $\sqsubseteq \leq_2 driveAxle. \top$
 - "A car has at most two drive axles."
- RangeRover $\Box =_1$ driveAxle.FrontAxle $\Box =_1$ driveAxle.RearAxle
 - "A Range Rover has one front axle as drive axle and one rear axle as drive axle".
- Human $\Box =_2$ has Biological Parent. \top
 - "A human has two biological parents."
- Mammal $\Box =_1$ hasParent.Female $\Box =_1$ hasParent.Male
 - "A mammal has one parent that is a female and one parent that is a male."
- \geq_2 owns. Houses $\sqcup \geq_5$ own. Car \sqsubseteq Rich
 - "Everyone who owns more than two houses or five cars is rich."

Cardinality restrictions

- New concept builder.
- Svntax:
 - DL: $\leq_n R.D$ and $\geq_n R.D$ (and $=_n R.D$).
 - RDF/OWL: owl:minCardinality, owl:maxCardinality, owl:cardinality.
 - Manchester: min, max, exactly.
- Semantics:

IN3060/4060 :: Spring 202

- $(\leq_n R.D)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} : |\{b : \langle a, b \rangle \in R^{\mathcal{I}} \land b \in D^{\mathcal{I}}\}| \leq n\}$ $(\geq_n R.D)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} : |\{b : \langle a, b \rangle \in R^{\mathcal{I}} \land b \in D^{\mathcal{I}}\}| \geq n\}$
- Restricts the number of relations a type of object can/must have.
- TBox axioms read:
 - $C \sqsubset \Box_n R.D$: "a C is R-related to n number of D's."
 - <: at most
 - >: at least
 - $\bullet =: exactly$

Lecture 10 :: 19th Marc

One more value restriction

- Restrictions of the form $\forall R.D, \exists R.D, <_n R.D, >_n R.D$ are called *qualified* when D is not Τ.
- We can also qualify with a closed class.
- Syntax:
 - RDF/OWL: hasValue,
 - DL, Manchester: just use: {...}.
- Example:
 - Bieberette \equiv Girl $\sqcap \exists loves. \{J.Bieber\}$
 - $\top \Box \exists loves. \{Mary\}$
 - Norwegian \equiv Person $\sqcap \exists$ citizenOf. {Norway}

IN3060/4060 :: Spring 2021

IN3060/4060 :: Spring 2021

Lecture 10 ··· 19th Ma

Self restriction

- New construct builder.
- Local reflexivity restriction. Restricts to objects which are related to themselves.
- Syntax:
 - DL: ∃*R*.*Self*
 - RDF/OWL: owl:hasSelf,
 - Manchester: Self
- Semantics:

• $(\exists R.Self)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \mid \langle x, x \rangle \in R^{\mathcal{I}}\}$

• Examples:

IN3060/4060 :: Spring 2021

- AutoregulatingProcess $\sqsubseteq \exists regulate.Self$
- $\exists hasBoss.Self \sqsubseteq SelfEmployed$

OWL 2 Modelling 'problems

Lecture 10 :: 19th March

Unexpected (non-)results

25 / 46

It does not follow from TBox + ABox that oslo is an *Orchestra*:

- An ensemble need neither be an orchestra nor a chamber ensemble, its "just" an ensemble.
- Add "covering axiom" Ensemble ⊆ Orchestra ⊔ ChamberEnsemble:
 An ensemble is an orchestra or a chamber ensemble.

It still does not follow that oslo is an Orchestra:

- This is due to the NUNA.
- We cannot assume that skolem and lie are distinct.
- The statement skolem owl:differentFrom lie, i.e., skolem \neq lie, makes oslo an orchestra.

Lecture 10 :: 19th March

- If we remove firstViolin(oslo, lie), is oslo a ChamberEnsemble?
- it does not follow that oslo is a *ChamberEnsemble*.
- This is due to the OWA:

IN3060/4060 :: Spring 2021

• oslo may have other first violinists.

Protégé demo of previous slide

- Make class Ensemble.
- Make subclass Orchestra.
- Make subclass ChamberEnsemble.
- Make object property firstViolin.
- Make firstViolin max 1 superclass of ChamberEnsemble.
- Make an Ensemble oslo
- Make a Thing skolem
- Make a Thing lie

IN3060/4060 :: Spring 2021

- Add firstViolin skolem to oslo
- Add firstViolin lie to oslo
- Classify! Nothing happens.
- Add covering axiom: Orchestra or ChamberEnsemble superclass of Ensemble.
- Classify! Nothing happens.
- skolem is different from lie
- Classify! Bingo! oslo is an Orchestra!

Role characteristics and relationships (PRov)

Noie	Characteristics	anu	relationships	(INDOX)	

Vocabulary

Given the roles $\{R_1, R_2, \dots\}$

Role descriptions

IN3060/4060 :: Spring 2021

R, S ightarrow	R_i op role $\neg R$ R^- $R \sqcap S$ $R \circ S$	 (atomic role) (universal role) (bottom role) (complement role) (inverse role) (role intersection) (role chain)
-----------------	--	--

Lecture 10 :: 19th Marc

1 Reminder: ALC 2 Important assumptions 3 OWL 2 • Axioms and assertions using individuals • Concept Restrictions

- Modelling 'problems'
- Roles

IN3060/4060 :: Spring 2021

29 / 46

Outline

• Datatypes

Rbox (cont.)

- Role axioms: Let R and S be roles, then we can assert
 - subsumption: $R \sqsubset S$ $(R^{\mathcal{I}} \subseteq S^{\mathcal{I}}),$
 - equivalence: $R \equiv S$ $(R^{\mathcal{I}} = S^{\mathcal{I}}),$
 - $(R^{\mathcal{I}} \cap S^{\mathcal{I}} \subseteq \emptyset),$ • disjointness: $R \sqcap S \sqsubseteq \perp_{role}$
 - key: R is a key for concept C.
- A role can have the characteristics (axioms):
 - reflexive, irreflexive,
 - symmetric, asymmetric,
 - transitive, or/and²
 - functional, inverse functional.

²Restrictions apply

IN3060/4060 :: Spring 2021

30 / 46

New roles

- The universal role, and the empty role-for both object roles and data roles.
- Syntax:
 - (DL: *U* (universal object role), *D* (universal data value role))
 - RDF/OWL, Manchester: owl:topObjectProperty, owl:topDataProperty, owl:bottomObjectProperty, owl:bottomDataProperty
- Semantics:
 - $U^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$
 - $\mathcal{D}^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Lambda$
- Reads:
 - all pairs of individuals are connected by owl:topObjectProperty,
 - no individuals are connected by owl:bottomObjectProperty.
 - all possible individuals are connected with all literals by owl:topDataProperty,

Lecture 10 :: 19th Marc

• no individual is connected by owl:bottomDataProperty to a literal.

IN3060/4060 :: Spring 2021

IN3060/4060 :: Spring 2021

OWL 2 Roles

Role chaining and inverses illustrated

Lecture 10 ·· 19th Mar

OWL 2

Lecture 10 :: 19th Marc

Lecture 10 ··· 19th Mai

Corresponding mathematical properties and operations

If R and S are binary relations on X then • $R^- = \{ \langle a, b \rangle \mid \langle b, a \rangle \in R \}$ • $R \circ S = \{ \langle a, c \rangle \mid \langle a, b \rangle \in R, \langle b, c \rangle \in S \}$

Examples inverses and chains

Some inverses:

IN3060/4060 :: Spring 2021

33 / 46

- $hasParent \equiv hasChild^-$
- hasBiologicalMother \equiv gaveBirthTo⁻
- $olderThan \equiv youngerThan^{-}$

Some role chains:

IN3060/4060 :: Spring 2021

- $hasParent \circ hasParent \sqsubseteq hasGrandParent$
- hasAncestor hasAncestor ⊑ hasAncestor
- hasParent hasBrother ⊑ hasUncle

Common properties of roles

	Set Theory ($R \subseteq X imes X$)	$\mid DL \ (\mathcal{R}^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}})$
Reflexive: Irreflexive:	if $\langle a, a \rangle \in R$ for all $a \in X$ if $\langle a, a \rangle \notin R$ for all $a \in X$	$\top \sqsubseteq \exists R.Self \\ \top \sqsubset \neg \exists R.Self$
Symmetric: Asymmetric:	if $\langle a, b \rangle \in R$ implies $\langle b, a \rangle \in R$ if $\langle a, b \rangle \in R$ implies $\langle b, a \rangle \notin R$	$R^{-} \sqsubseteq R$ $R^{-} \sqsubseteq \neg R$
Transitive:	$if\; \langle a,b\rangle, \langle b,c\rangle \in R \; implies\; \langle a,c\rangle \in R$	$R \circ R \sqsubseteq R$
Functional: Inverse functional:	$\begin{array}{l} \text{if } \langle a,b\rangle, \langle a,c\rangle \in R \text{ implies } b=c \\ \text{if } \langle a,b\rangle, \langle c,b\rangle \in R \text{ implies } a=c \end{array}$	$ op \sqsubseteq \leq_1 R. op$ $ op \sqsubseteq \leq_1 R^ op$

Lecture 10 :: 19th March

OWL 2 Role

Some relations from ordinary language

- Symmetric relations:
 - hasSibling
 - differentFrom
- Non-symmetric relations:
 - hasBrother
- Asymmetric relations:
 - olderThan
 - memberOf
- Transitive relations:
 - olderThan

IN3060/4060 :: Spring 2021

- hasSibling
- Functional relations:
 - hasBiologicalMother
- Inverse functional relations:
 - gaveBirthTo

IN3060/4060 :: Spring 2021

Properties in OWL

Remember: three kinds of *mutually disjoint* properties in OWL:

- owl:DatatypeProperty
 - link individuals to data values, e.g., xsd:string.
 - Examples: :hasAge, :hasSurname.
- owl:ObjectProperty
 - link individuals to individuals.
 - Example: :hasFather, :driveAxle.
- ③ owl:AnnotationProperty
 - has no logical implication, ignored by reasoners.
 - Examples: rdfs:label, dc:creator.

Characteristics of OWL properties

• Object properties link individuals to individuals, so all characteristics and operations are defined for them.

Lecture 10 :: 19th March

- Datatype properties link individuals to data values, so they cannot be
 - reflexive—or they would not be datatype properties,
 - ${\ensuremath{\bullet}}$ transitive—since no property takes data values in 1. position,
 - symmetric—as above,
 - inverses—as above,
 - inverse functional—for computational reasons,
 - part of chains—as above,
 - so, what remains is: functionality,
 - (and subsumption, equivalence and disjointness).
- (Annotation properties have no logical implication, so nothing can be said about them.)

IN3060/4060 :: Spring 2021

Lecture 10 :: 19th March

IN3060/4060 :: Spring 2021

Lecture 10 :: 19th March

40_/

Quirks

Role modelling in OWL 2 can get excessively complicated.

- For instance:
 - transitive roles cannot be irreflexive or asymmetric,
 - role inclusions are not allowed to cycle, i.e. not hasParent ∘ hasHusband ⊑ hasFather hasFather ⊑ hasParent.
 - transitive roles R and S cannot be declared disjoint
- Note:

IN3060/4060 :: Spring 2021

- these restrictions can be hard to keep track of
- the reason they exist are computational, not logical
- Fortunately:
 - There are also *simple* patterns
 - that are quite useful.

Creating datatypes

- Many predefined datatypes are available in OWL:
 - all common XSD datatypes: xsd:string, xsd:int, ...
 - a few from RDF: rdf:PlainLiteral,
 - and a few of their own: owl:real and owl:rational.
- New datatypes can be defined by boolean operations: \neg , \sqcap , \sqcup :
 - owl:datatypeComplementOf, owl:intersectionOf, owl:unionOf.
- Datatypes may be restricted with *constraining facets*, borrowed from XML Schema.

Lecture 10 ·· 19th March

Lecture 10 :: 19th March

- For numeric datatypes: xsd:minInclusive, xsd:maxInclusive
- For string datatypes: xsd:minLenght, xsd:maxLenght, xsd:pattern.
- Example:

IN3060/4060 :: Spring 2021

- Teenager is equivalent to: (Manchester)
- Person and (age some positiveInteger[>= 13, <= 19])
- "A teenager is a person of age 13 to 19."

Modelling patterns

Outline

3 OWL 2

41 / 46

Roles

IN3060/4060 :: Spring 2021

Datatypes

1 Reminder: ALC

2 Important assumptions

• Concept Restrictions

Modelling 'problems'

• Axioms and assertions using individuals

So, what can we say now?

- ✓ A person has a mother.
- ✓ A penguin eats only fish. A horse eats only chocolate.
- ✓ A nuclear family has two parents, at least two children and a dog. (NuclearFam ⊑ =2 hasMember.Parent □ ≥2 hasMember.Child □ ∃hasMember.Dog)
- \checkmark A smoker is not a non-smoker (and vice versa).
- ✓ Everybody loves Mary. ($\top \sqsubseteq \exists loves.{mary}$ or Person $\sqsubseteq \exists loves.{mary}$)
- ✓ Adam is not Eve (and vice versa). ($adam \neq eve$)
- Everything is black or white.
- ✓ The brother of my father is my uncle. (*hasFather* \circ *hasBrother* \sqsubseteq *hasUncle*)
- ✓ My friend's friends are also my friends. (*hasFriend* \circ *hasFriend*) → *hasFriend*)
- ✓ If Homer is married to Marge, then Marge is married to Homer. (marriedTo⁻ \sqsubseteq marriedTo)

Lecture 10 :: 19th March

- ✓ If Homer is a parent of Bart, then Bart is a child of Homer. (*parentOf*⁻ \sqsubseteq *childOf*)
- ... and more!

IN3060/4060 :: Spring 2021

10 :: 19th March

