
IN3060/4060 – Semantic Technologies – Spring 2021

Lecture 11: OWL: Loose Ends

Jieying Chen

26th March 2021

Department of

Informatics

University of

Oslo

Mandatory exercises

Oblig 6 published after lecture.

First attempt by April 16th.

Second attempt two weeks after feedback.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 2 / 46

Reminder: OWL

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 3 / 46

Reminder: OWL

Make it simple!

“Data level” with resources

“Ontology level” with properties and “classes”

Can have rdf:type relation between data objects and classes

Allow a fixed vocabulary for relations between classes and properties

Interpret:
Class as set of data objects
Property as relation between data objects

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 4 / 46

Reminder: OWL

OWL 2 TBox and ABox

The TBox
is for terminological knowledge
is independent of any actual instance data
is a set of axioms:

Class inclusion v, equivalence ⌘
roles symmetric, asymmetric, reflexive, irreflexive, transitive,. . .
roles functional, inverse functional
inverse roles: hasParent ⌘ hasChild�1

role inclusion hasBrother v hasSibling
role chains hasParent � hasBrother v hasUncle

Only certain combinations allowed

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 5 / 46

Reminder: OWL

OWL 2 TBox and ABox

The ABox
is for assertional knowledge
contains facts about concrete instances a, b, c , . . .
A set of (negative) concept assertions C (a), ¬D(b) . . .
and (negative) role assertions R(b, c), ¬S(a, b)
also owl:sameAs: a = b and owl:differentFrom: a 6= b.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 6 / 46

Reminder: OWL

A Strange Catalogue

We have seen many nice things that can be said in OWL

Why the strange restrictions, e.g. on role axioms?

Why not use 1st-order logic, could say much more?

Because of the reasoning
Class satisfiability (C 6⌘ ?)
Classification (C v D)
Instance Check (C (a))
. . .

All decidable

Algorithm gives a correct answer after finite time

Add a little more to OWL, and this is lost

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 7 / 46

Reminder: OWL

A Strange Catalogue

We have seen many nice things that can be said in OWL

Why the strange restrictions, e.g. on role axioms?

Why not use 1st-order logic, could say much more?

Because of the reasoning
Class satisfiability (C 6⌘ ?)
Classification (C v D)
Instance Check (C (a))
. . .

All decidable

Algorithm gives a correct answer after finite time

Add a little more to OWL, and this is lost

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 7 / 46

Reminder: OWL

A Strange Catalogue

We have seen many nice things that can be said in OWL

Why the strange restrictions, e.g. on role axioms?

Why not use 1st-order logic, could say much more?

Because of the reasoning
Class satisfiability (C 6⌘ ?)
Classification (C v D)
Instance Check (C (a))
. . .

All decidable

Algorithm gives a correct answer after finite time

Add a little more to OWL, and this is lost

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 7 / 46

Disjointness and Covering Axioms

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 8 / 46

Disjointness and Covering Axioms

Single and Married

Try to model the relationship between the concepts Person, Married and Single:

First try:
Single v Person

Married v Person

General shape of a model:

x is both Single and Married , y is neither but a Person.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 9 / 46

Disjointness and Covering Axioms

Single and Married

Try to model the relationship between the concepts Person, Married and Single:

First try:
Single v Person

Married v Person

General shape of a model:

aMarried

Ernesto
Emilie

Single

x is both Single and Married , y is neither but a Person.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 9 / 46

Disjointness and Covering Axioms

Disjointness Axioms

Nothing should be both a Single and a Married
Add a disjointness axiom for Single and Married
Equivalent possibilities:

Single uMarried ⌘ ?
Single v ¬Married
Married v ¬Single

General shape of a model:

Specific support in OWL (owl:disjointWith) and Protégé

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 10 / 46

Disjointness and Covering Axioms

Disjointness Axioms

Nothing should be both a Single and a Married
Add a disjointness axiom for Single and Married
Equivalent possibilities:

Single uMarried ⌘ ?
Single v ¬Married
Married v ¬Single

General shape of a model:

Married Single

EmilieErnesto

Specific support in OWL (owl:disjointWith) and Protégé
IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 10 / 46

Disjointness and Covering Axioms

Covering Axioms

Any Person should be either Single or Married .

Add a covering axiom Person v Married t Single

General shape of a model (with disjointness):

Specific support in Protégé (Edit Menu: “Add Covering Axiom”)

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 11 / 46

Disjointness and Covering Axioms

Covering Axioms

Any Person should be either Single or Married .

Add a covering axiom Person v Married t Single

General shape of a model (with disjointness):

Married Single

Emilie
Ernesto

Specific support in Protégé (Edit Menu: “Add Covering Axiom”)

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 11 / 46

Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both

No disjointness axiom for MeatEatingMammal and VeggieEatingMammal

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 12 / 46

Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both

No disjointness axiom for MeatEatingMammal and VeggieEatingMammal

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 12 / 46

Disjointness and Covering Axioms

Meat and Veggies

Careful: not all subclasses are disjoint and covering

Subclasses can be covering but not disjoint.

E.g.
MeatEatingMammal v Mammal

VeggieEatingMammal v Mammal

All mammals eat either meat or vegetables. . .

Mammal v MeatEatingMammal t VeggieEatingMammal

But there are mammals eating both

No disjointness axiom for MeatEatingMammal and VeggieEatingMammal

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 12 / 46

Disjointness and Covering Axioms

Cats and Dogs

Subclasses can be disjoint but not covering.

E.g.
Cat v Mammal
Dog v Mammal

Nothing is both a cat and a dog: Cat v ¬Dog
But there are mammals which are neither

No covering axiom with subclasses Cat and Dog for Mammal

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 13 / 46

Disjointness and Covering Axioms

Cats and Dogs

Subclasses can be disjoint but not covering.

E.g.
Cat v Mammal
Dog v Mammal

Nothing is both a cat and a dog: Cat v ¬Dog

But there are mammals which are neither

No covering axiom with subclasses Cat and Dog for Mammal

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 13 / 46

Disjointness and Covering Axioms

Cats and Dogs

Subclasses can be disjoint but not covering.

E.g.
Cat v Mammal
Dog v Mammal

Nothing is both a cat and a dog: Cat v ¬Dog
But there are mammals which are neither

No covering axiom with subclasses Cat and Dog for Mammal

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 13 / 46

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither a student nor a teacher

though not in this lecture hall

No covering axiom for these subclasses of Person

There are people who are both a student and a teacher

E.g. most PhD students

No disjointness axiom for Student and Teacher

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 14 / 46

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither a student nor a teacher

though not in this lecture hall

No covering axiom for these subclasses of Person

There are people who are both a student and a teacher

E.g. most PhD students

No disjointness axiom for Student and Teacher

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 14 / 46

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither a student nor a teacher

though not in this lecture hall

No covering axiom for these subclasses of Person

There are people who are both a student and a teacher

E.g. most PhD students

No disjointness axiom for Student and Teacher

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 14 / 46

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither a student nor a teacher

though not in this lecture hall

No covering axiom for these subclasses of Person

There are people who are both a student and a teacher

E.g. most PhD students

No disjointness axiom for Student and Teacher

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 14 / 46

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither a student nor a teacher

though not in this lecture hall

No covering axiom for these subclasses of Person

There are people who are both a student and a teacher

E.g. most PhD students

No disjointness axiom for Student and Teacher

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 14 / 46

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither a student nor a teacher

though not in this lecture hall

No covering axiom for these subclasses of Person

There are people who are both a student and a teacher

E.g. most PhD students

No disjointness axiom for Student and Teacher

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 14 / 46

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither a student nor a teacher

though not in this lecture hall

No covering axiom for these subclasses of Person

There are people who are both a student and a teacher

E.g. most PhD students

No disjointness axiom for Student and Teacher

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 14 / 46

Keys

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 15 / 46

Keys

Keys

A Norwegian is uniquely identified by his/her “fødselsnummer”
Di↵erent Norwegians have di↵erent numbers

Each customer in the DB is uniquely identified by the customer ID
No two customers with the same customer ID
Referred to as a key for a database table.

A course is uniquely determined by code, semester, year.
E.g. hIN3060/4060, Spring, 2021i

hasKey: if two named instances of the class coincide on values for each of key properties,
then these two individuals are the same.

So R is a key if it is “inverse functional”david
There is a function giving exactly one object for every key value

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 16 / 46

Keys

Keys

A Norwegian is uniquely identified by his/her “fødselsnummer”
Di↵erent Norwegians have di↵erent numbers

Each customer in the DB is uniquely identified by the customer ID
No two customers with the same customer ID
Referred to as a key for a database table.

A course is uniquely determined by code, semester, year.
E.g. hIN3060/4060, Spring, 2021i

hasKey: if two named instances of the class coincide on values for each of key properties,
then these two individuals are the same.

So R is a key if it is “inverse functional”david
There is a function giving exactly one object for every key value

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 16 / 46

Keys

Keys

A Norwegian is uniquely identified by his/her “fødselsnummer”
Di↵erent Norwegians have di↵erent numbers

Each customer in the DB is uniquely identified by the customer ID
No two customers with the same customer ID
Referred to as a key for a database table.

A course is uniquely determined by code, semester, year.
E.g. hIN3060/4060, Spring, 2021i

hasKey: if two named instances of the class coincide on values for each of key properties,
then these two individuals are the same.

So R is a key if it is “inverse functional”david
There is a function giving exactly one object for every key value

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 16 / 46

Keys

Keys

A Norwegian is uniquely identified by his/her “fødselsnummer”
Di↵erent Norwegians have di↵erent numbers

Each customer in the DB is uniquely identified by the customer ID
No two customers with the same customer ID
Referred to as a key for a database table.

A course is uniquely determined by code, semester, year.
E.g. hIN3060/4060, Spring, 2021i

hasKey: if two named instances of the class coincide on values for each of key properties,
then these two individuals are the same.

So R is a key if it is “inverse functional”david
There is a function giving exactly one object for every key value

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 16 / 46

Disjointness and Covering Axioms

Teachers and Students

Subclasses can be neither disjoint nor covering.

E.g.
Teacher v Person
Student v Person

There are people who are neither a student nor a teacher

though not in this lecture hall

No covering axiom for these subclasses of Person

There are people who are both a student and a teacher

E.g. most PhD students

No disjointness axiom for Student and Teacher

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 14 / 46

Keys

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 15 / 46

Keys

OWL 2 Keys

OWL 2 includes special “hasKey” axioms

Example: Course hasKey {hasCode, hasSemester, hasYear}

Works for object properties and datatype properties.

OWL Keys apply only to explicitly named instances
Makes reasoning tractable.
It may not be supported by all OWL 2 reasoners

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 17 / 46

Keys

Reasoning with OWL Keys

Given:
:Norwegian hasKey {:personnr}

:david a :Norwegian

:david :personnr "12345698765"

:davidC a :Norwegian

:davidC :personnr "12345698765"

Can infer:
:david owl:sameAs :davidC

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:y a :Singleton

Can infer:
:x owl:sameAs :y

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 18 / 46

Keys

Reasoning with OWL Keys

Given:
:Norwegian hasKey {:personnr}

:david a :Norwegian

:david :personnr "12345698765"

:davidC a :Norwegian

:davidC :personnr "12345698765"

Can infer:
:david owl:sameAs :davidC

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:y a :Singleton

Can infer:
:x owl:sameAs :y

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 18 / 46

Keys

Reasoning with OWL Keys

Given:
:Norwegian hasKey {:personnr}

:david a :Norwegian

:david :personnr "12345698765"

:davidC a :Norwegian

:davidC :personnr "12345698765"

Can infer:
:david owl:sameAs :davidC

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:y a :Singleton

Can infer:
:x owl:sameAs :y

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 18 / 46

Keys

Reasoning with OWL Keys

Given:
:Norwegian hasKey {:personnr}

:david a :Norwegian

:david :personnr "12345698765"

:davidC a :Norwegian

:davidC :personnr "12345698765"

Can infer:
:david owl:sameAs :davidC

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:y a :Singleton

Can infer:
:x owl:sameAs :y

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 18 / 46

Keys

What’s with the “named instances”?

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:Singleton v :other some :Singleton

:Singleton

:x :b

1

a a

:id :id

:other

Since :b is a blank node, and therefore not an explicitly named instance,

the reasoner does not infer :x owl:sameAs :b.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 19 / 46

Keys

What’s with the “named instances”?

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:Singleton v :other some :Singleton

:Singleton

:x :b

1

a a

:id :id

:other

Since :b is a blank node, and therefore not an explicitly named instance,

the reasoner does not infer :x owl:sameAs :b.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 19 / 46

Keys

What’s with the “named instances”?

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:Singleton v :other some :Singleton

:Singleton

:x :b

1

a a

:id :id

:other

Since :b is a blank node, and therefore not an explicitly named instance,

the reasoner does not infer :x owl:sameAs :b.
IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 19 / 46

Keys

What’s with the “named instances”?

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:Singleton v :other some (:Singleton and not {:x})

:Singleton

:x :b

1

a a

:id :id

:other

This is not inconsistent.

Distinct keys only required for explicitly named individuals.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 20 / 46

Keys

What’s with the “named instances”?

Given:
:Singleton hasKey {:id}

:Singleton v :id value 1

:x a :Singleton

:Singleton v :other some (:Singleton and not {:x})

:Singleton

:x :b

1

a a

:id :id

:other

This is not inconsistent.

Distinct keys only required for explicitly named individuals.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 20 / 46

Punning

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 22 / 46

Punning

Punning

Motivation Example:
(1):Service rdf:type owl:Class .

(2):Person rdf:type owl:Class .

(3) s1 rdf:type :Service .

(4) s1 :input :Person .

Remember: In OWL strict separation of classes, properties and individuals. However, not entirely
correct...

OWL 2 introduces punning, allowing one URI to be used for, e.g., both a class and an individual,
both an individual and property
Restriction: not both a class and a datatype property, or for di↵erent property types.
Example:
(1):Joe rdf:type :Eagle .

(2):Eagle rdf:type :Species .

:Eagle is both a class and an individual.
However, semantically, “punned” URI are treated as di↵erent terms. (under the hood)

Meaning, the class :Eagle is di↵erent from the individual :Eagle.
Axioms about the class is not transferred to the individual, or vice versa.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 23 / 46

Punning

Punning

Motivation Example:
(1):Service rdf:type owl:Class .

(2):Person rdf:type owl:Class .

(3) s1 rdf:type :Service .

(4) s1 :input :Person .

Remember: In OWL strict separation of classes, properties and individuals. However, not entirely
correct...

OWL 2 introduces punning, allowing one URI to be used for, e.g., both a class and an individual,
both an individual and property
Restriction: not both a class and a datatype property, or for di↵erent property types.
Example:
(1):Joe rdf:type :Eagle .

(2):Eagle rdf:type :Species .

:Eagle is both a class and an individual.
However, semantically, “punned” URI are treated as di↵erent terms. (under the hood)

Meaning, the class :Eagle is di↵erent from the individual :Eagle.
Axioms about the class is not transferred to the individual, or vice versa.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 23 / 46

Punning

Punning

Motivation Example:
(1):Service rdf:type owl:Class .

(2):Person rdf:type owl:Class .

(3) s1 rdf:type :Service .

(4) s1 :input :Person .

Remember: In OWL strict separation of classes, properties and individuals. However, not entirely
correct...
OWL 2 introduces punning, allowing one URI to be used for, e.g., both a class and an individual,
both an individual and property
Restriction: not both a class and a datatype property, or for di↵erent property types.
Example:
(1):Joe rdf:type :Eagle .

(2):Eagle rdf:type :Species .

:Eagle is both a class and an individual.

However, semantically, “punned” URI are treated as di↵erent terms. (under the hood)
Meaning, the class :Eagle is di↵erent from the individual :Eagle.
Axioms about the class is not transferred to the individual, or vice versa.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 23 / 46

Punning

Punning

Motivation Example:
(1):Service rdf:type owl:Class .

(2):Person rdf:type owl:Class .

(3) s1 rdf:type :Service .

(4) s1 :input :Person .

Remember: In OWL strict separation of classes, properties and individuals. However, not entirely
correct...
OWL 2 introduces punning, allowing one URI to be used for, e.g., both a class and an individual,
both an individual and property
Restriction: not both a class and a datatype property, or for di↵erent property types.
Example:
(1):Joe rdf:type :Eagle .

(2):Eagle rdf:type :Species .

:Eagle is both a class and an individual.
However, semantically, “punned” URI are treated as di↵erent terms. (under the hood)

Meaning, the class :Eagle is di↵erent from the individual :Eagle.
Axioms about the class is not transferred to the individual, or vice versa.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 23 / 46

More about Datatypes

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 24 / 46

More about Datatypes

A tempting mistake

Cardinality restrictions are not suitable to express
durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:
Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch v Whisky u �3 age.int

Why?
This says that Scotch has at least 3 di↵erent ages
For instance -1, 0, 15

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 25 / 46

More about Datatypes

A tempting mistake

Cardinality restrictions are not suitable to express
durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:
Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch v Whisky u �3 age.int

Why?
This says that Scotch has at least 3 di↵erent ages
For instance -1, 0, 15

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 25 / 46

More about Datatypes

A tempting mistake

Cardinality restrictions are not suitable to express
durations
intervals
or any kind of sequence
and they cannot be used for arithmetic

Anti-pattern:
Scotch whisky is aged at least 3 years:
Use a datatype property age with range int.
Scotch v Whisky u �3 age.int

Why?
This says that Scotch has at least 3 di↵erent ages
For instance -1, 0, 15

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 25 / 46

More about Datatypes

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch v Whisky u �3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked for 10 years.

Reasoning about �n often works by generating n sample instances
Town ⌘ �10000 inhabitant.Person
Metropolis ⌘ �1000000 inhabitant.Person
Will kill almost any reasoner

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 26 / 46

More about Datatypes

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch v Whisky u �3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked for 10 years.

Reasoning about �n often works by generating n sample instances
Town ⌘ �10000 inhabitant.Person
Metropolis ⌘ �1000000 inhabitant.Person
Will kill almost any reasoner

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 26 / 46

More about Datatypes

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch v Whisky u �3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked for 10 years.

Reasoning about �n often works by generating n sample instances
Town ⌘ �10000 inhabitant.Person
Metropolis ⌘ �1000000 inhabitant.Person
Will kill almost any reasoner

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 26 / 46

More about Datatypes

A possible solution

Idea: don’t use age.

Use a property casked
domain Whisky
range int
relates the whisky to each year it is in the cask.

e.g. :young :casked "2000"^^int, "2001"^^int, "2002"^^int

Scotch v Whisky u �3 casked .int

Works, but. . .

Can’t express e.g. that the years are consecutive
Knowing a whisky is casked in 2000 and 2009 doesn’t imply it is casked for 10 years.

Reasoning about �n often works by generating n sample instances
Town ⌘ �10000 inhabitant.Person
Metropolis ⌘ �1000000 inhabitant.Person
Will kill almost any reasoner

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 26 / 46

More about Datatypes

Reminder: Datatype properties

OWL distinguishes between
object properties: go from resources to resources
datatype properties: go from resources to literals

OWL (2) prescribes a list of available built-in datatypes for literals
Numbers: real, rational, integer, positive integer, double, long,. . .
Strings
Booleans
Binary data
IRIs
Time Instants
XML Literals

Varying tool support (e.g., depending on editor and reasoner)

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 27 / 46

More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)
xsd:integer or xsd:string

xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets
xsd:integer[� 9] – integers � 9.
xsd:integer[� 9, 11] – integers between 9 and 11.
xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length 5.
xsd:string[minLength 5] – strings of length � 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 28 / 46

More about Datatypes

Data Ranges

Like concept descriptions, only for data types

Boolean combinations allowed (Manchester syntax)
xsd:integer or xsd:string

xsd:integer and not xsd:byte

Each basic datatype can be restricted by a number of facets
xsd:integer[� 9] – integers � 9.
xsd:integer[� 9, 11] – integers between 9 and 11.
xsd:string[length 5] – strings of length 5.
xsd:string[maxLength 5] – strings of length 5.
xsd:string[minLength 5] – strings of length � 5.
xsd:string[pattern "[01]*"] – strings consisting of 0 and 1.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 28 / 46

More about Datatypes

Range Examples

A whisky that is at least 12 years old:
Whisky and age some integer[>= 12]

A teenager:
Person and age some integer[>= 13, <= 19]

A metropolis:
Place and numberInhabitants some integer[>= 1000000]

Note: often makes best sense with functional properties
Why?

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 29 / 46

More about Datatypes

Range Examples

A whisky that is at least 12 years old:
Whisky and age some integer[>= 12]

A teenager:
Person and age some integer[>= 13, <= 19]

A metropolis:
Place and numberInhabitants some integer[>= 1000000]

Note: often makes best sense with functional properties
Why?

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 29 / 46

More about Datatypes

Range Examples

A whisky that is at least 12 years old:
Whisky and age some integer[>= 12]

A teenager:
Person and age some integer[>= 13, <= 19]

A metropolis:
Place and numberInhabitants some integer[>= 1000000]

Note: often makes best sense with functional properties
Why?

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 29 / 46

More about Datatypes

Range Examples

A whisky that is at least 12 years old:
Whisky and age some integer[>= 12]

A teenager:
Person and age some integer[>= 13, <= 19]

A metropolis:
Place and numberInhabitants some integer[>= 1000000]

Note: often makes best sense with functional properties
Why?

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 29 / 46

More about Datatypes

Pattern Examples

An integer or a string of digits
xsd:integer or xsd:string[pattern "[0-9]+"]

ISBN numbers: 13 digits in 5 “-”-separated groups, first 978 or 979, last a single digit.
Book v ISBN some string[length 17 ,

pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

Reasoning about patterns:
R a functional datatype property
A ⌘ R some string[pattern "(ab)*"]

B ⌘ R some string[pattern "a(ba)*b"]

Reasoner can find out that B v A.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 30 / 46

More about Datatypes

Pattern Examples

An integer or a string of digits
xsd:integer or xsd:string[pattern "[0-9]+"]

ISBN numbers: 13 digits in 5 “-”-separated groups, first 978 or 979, last a single digit.
Book v ISBN some string[length 17 ,

pattern "97[89]-[0-9]+-[0-9]+-[0-9]+-[0-9]"]

Reasoning about patterns:
R a functional datatype property
A ⌘ R some string[pattern "(ab)*"]

B ⌘ R some string[pattern "a(ba)*b"]

Reasoner can find out that B v A.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 30 / 46

What can’t be expressed in OWL 2

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 31 / 46

What can’t be expressed in OWL 2

Expressivity

Certain relationships between concepts and properties can’t be expressed in OWL

E.g.
Given that property hasSibling and class Male are defined. . .
. . . cannot say that hasBrother(x , y) i↵ hasSibling(x , y) and Male(y).

Usually, adding such missing relationships would lead to undecidability

Not easy to show that something is not expressible
We look at some examples, not proofs

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 32 / 46

What can’t be expressed in OWL 2

Brothers

Given terms
hasSibling Male

. . . a brother is defined to be a sibling who is male

Male

Cain Abel

hasSibling

a

hasBrother

Best try:
hasBrother v hasSibling
> v 8hasBrother .Male or: rg(hasBrother ,Male)
9hasSibling .Male v 9hasBrother .>

Not enough to infer that one’s male sibling is one’s brother.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 33 / 46

What can’t be expressed in OWL 2

Brothers

Given terms
hasSibling Male

. . . a brother is defined to be a sibling who is male

Male

Cain Abel

hasSibling

a

hasBrother

Best try:
hasBrother v hasSibling
> v 8hasBrother .Male or: rg(hasBrother ,Male)
9hasSibling .Male v 9hasBrother .>

Not enough to infer that one’s male sibling is one’s brother.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 33 / 46

What can’t be expressed in OWL 2

Brothers

Given terms
hasSibling Male

. . . a brother is defined to be a sibling who is male

Male

Cain Abel

hasSibling

a

hasBrother

Best try:
hasBrother v hasSibling
> v 8hasBrother .Male or: rg(hasBrother ,Male)
9hasSibling .Male v 9hasBrother .>

Not enough to infer that one’s male sibling is one’s brother.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 33 / 46

What can’t be expressed in OWL 2

Brothers

Given terms
hasSibling Male

. . . a brother is defined to be a sibling who is male

Male

Cain Abel

hasSibling

a

hasBrother

Best try:
hasBrother v hasSibling
> v 8hasBrother .Male or: rg(hasBrother ,Male)
9hasSibling .Male v 9hasBrother .>

Not enough to infer that one’s male sibling is one’s brother.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 33 / 46

What can’t be expressed in OWL 2

Brothers

Given terms
hasSibling Male

. . . a brother is defined to be a sibling who is male

Male

Cain Abel

hasSibling

a

hasBrother

Best try:
hasBrother v hasSibling
> v 8hasBrother .Male or: rg(hasBrother ,Male)
9hasSibling .Male v 9hasBrother .>

Not enough to infer that one’s male sibling is one’s brother.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 33 / 46

LE
⇐hB.TT

⇐ hs .MT
I

7.¥ Male
"

What can’t be expressed in OWL 2

Uncles

Given terms
hasParent hasBrother

. . . an uncle is defined to be a brother of a parent.

Enoch Cain Abel
hasParent hasBrother

hasUncle

Best try:
hasParent � hasBrother v hasUncle

hasUncle v hasParent � hasBrother

properties cannot be declared sub-properties of property chains in OWL 2.

problematic for reasoning

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 34 / 46

What can’t be expressed in OWL 2

Uncles

Given terms
hasParent hasBrother

. . . an uncle is defined to be a brother of a parent.

Enoch Cain Abel
hasParent hasBrother

hasUncle

Best try:
hasParent � hasBrother v hasUncle

hasUncle v hasParent � hasBrother

properties cannot be declared sub-properties of property chains in OWL 2.

problematic for reasoning

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 34 / 46

What can’t be expressed in OWL 2

Uncles

Given terms
hasParent hasBrother

. . . an uncle is defined to be a brother of a parent.

Enoch Cain Abel
hasParent hasBrother

hasUncle

Best try:
hasParent � hasBrother v hasUncle

hasUncle v hasParent � hasBrother

properties cannot be declared sub-properties of property chains in OWL 2.

problematic for reasoning

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 34 / 46

What can’t be expressed in OWL 2

Uncles

Given terms
hasParent hasBrother

. . . an uncle is defined to be a brother of a parent.

Enoch Cain Abel
hasParent hasBrother

hasUncle

Best try:
hasParent � hasBrother v hasUncle

hasUncle v hasParent � hasBrother

properties cannot be declared sub-properties of property chains in OWL 2.

problematic for reasoning

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 34 / 46

What can’t be expressed in OWL 2

Uncles

Given terms
hasParent hasBrother

. . . an uncle is defined to be a brother of a parent.

Enoch Cain Abel
hasParent hasBrother

hasUncle

Best try:
hasParent � hasBrother v hasUncle

hasUncle v hasParent � hasBrother

properties cannot be declared sub-properties of property chains in OWL 2.
problematic for reasoning

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 34 / 46

What can’t be expressed in OWL 2

Diamond Properties

A semi-detached house has a left and a right unit
Each unit has a separating wall
The separating walls of the left and
right units are the same

“diamond property”

lUnit

house wall

rUnit

hasLeft
Unit

hasRightUnit

hasSeparatingWall

hasSepa
ratingW

all

Try. . .
SemiDetached v 9hasLeftUnit.Unit u 9hasRightUnit.Unit
Unit v 9hasSeparatingWall .Wall

But this does not guarantee to use the same wall

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 35 / 46

What can’t be expressed in OWL 2

Diamond Properties

A semi-detached house has a left and a right unit
Each unit has a separating wall
The separating walls of the left and
right units are the same
“diamond property”

lUnit

house wall

rUnit

hasLeft
Unit

hasRightUnit

hasSeparatingWall

hasSepa
ratingW

all

Try. . .
SemiDetached v 9hasLeftUnit.Unit u 9hasRightUnit.Unit
Unit v 9hasSeparatingWall .Wall

But this does not guarantee to use the same wall

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 35 / 46

What can’t be expressed in OWL 2

Diamond Properties

A semi-detached house has a left and a right unit
Each unit has a separating wall
The separating walls of the left and
right units are the same
“diamond property”

lUnit

house wall

rUnit

hasLeft
Unit

hasRightUnit

hasSeparatingWall

hasSepa
ratingW

all

Try. . .
SemiDetached v 9hasLeftUnit.Unit u 9hasRightUnit.Unit
Unit v 9hasSeparatingWall .Wall

But this does not guarantee to use the same wall
IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 35 / 46

What can’t be expressed in OWL 2

Diamond Properties

A semi-detached house has a left and a right unit
Each unit has a separating wall
The separating walls of the left and
right units are the same
“diamond property”

lUnit

house wall

rUnit

hasLeft
Unit

hasRightUnit

hasSeparatingWall

hasSepa
ratingW

all

Try. . .
SemiDetached v 9hasLeftUnit.Unit u 9hasRightUnit.Unit
Unit v 9hasSeparatingWall .Wall

But this does not guarantee to use the same wall
IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 35 / 46

Ty

q
µ

kkkehas

t.efeuwexitktfrigha.ie

What can’t be expressed in OWL 2

Connecting Datatype Properties

Given terms
Person hasChild hasBirthday

A twin parent is defined to be a person who has two children with the same birthday.

Try. . .
TwinParent ⌘ Person u 9hasChild .9hasBirthday [. . .]

u 9hasChild .9hasBirthday [. . .]

No way to connect the two birthdays to say that they’re the same.
(and no way to say that the children are not the same)

Try. . .
TwinParent ⌘ Person u �2hasChild .9hasBirthday [. . .]

Still no way of connecting the birthdays

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 36 / 46

What can’t be expressed in OWL 2

Connecting Datatype Properties

Given terms
Person hasChild hasBirthday

A twin parent is defined to be a person who has two children with the same birthday.

Try. . .
TwinParent ⌘ Person u 9hasChild .9hasBirthday [. . .]

u 9hasChild .9hasBirthday [. . .]

No way to connect the two birthdays to say that they’re the same.
(and no way to say that the children are not the same)

Try. . .
TwinParent ⌘ Person u �2hasChild .9hasBirthday [. . .]

Still no way of connecting the birthdays

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 36 / 46

What can’t be expressed in OWL 2

Connecting Datatype Properties

Given terms
Person hasChild hasBirthday

A twin parent is defined to be a person who has two children with the same birthday.

Try. . .
TwinParent ⌘ Person u 9hasChild .9hasBirthday [. . .]

u 9hasChild .9hasBirthday [. . .]

No way to connect the two birthdays to say that they’re the same.
(and no way to say that the children are not the same)

Try. . .
TwinParent ⌘ Person u �2hasChild .9hasBirthday [. . .]

Still no way of connecting the birthdays

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 36 / 46

What can’t be expressed in OWL 2

Connecting Datatype Properties

Given terms
Person hasChild hasBirthday

A twin parent is defined to be a person who has two children with the same birthday.

Try. . .
TwinParent ⌘ Person u 9hasChild .9hasBirthday [. . .]

u 9hasChild .9hasBirthday [. . .]

No way to connect the two birthdays to say that they’re the same.
(and no way to say that the children are not the same)

Try. . .
TwinParent ⌘ Person u �2hasChild .9hasBirthday [. . .]

Still no way of connecting the birthdays

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 36 / 46

What can’t be expressed in OWL 2

Reasoning about Numbers

Reasoning about natural numbers is undecidable in general.

DL Reasoning is decidable

Therefore, general reasoning about numbers can’t be “encoded” in DL

Cannot encode addition, multiplication, etc.

Note: a lot can be done with other logics, but not with DLs
Outside the intended scope of Description Logics

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 37 / 46

What can’t be expressed in OWL 2

Combining OWL 2 and Rules

Some limitation may be addressed

SWRL: Semantic Web Rule Language

Uses XML syntax based on RuleML

OWL 2 + unrestricted SWRL leads to undecidability

Restricted SWRL + OWL is decidable and very powerful

A bit more in the next SPARQL lesson

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 38 / 46

OWL 2 profiles

Outline

1 Reminder: OWL

2 Disjointness and Covering Axioms

3 Keys

4 Punning

5 More about Datatypes

6 What can’t be expressed in OWL 2

7 OWL 2 profiles

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 39 / 46

OWL 2 profiles

OWL 2 profiles

OWL 2 has various profiles that correspond to di↵erent DLs.

OWL 2 DL is the “normal” OWL 2 (sublanguage): “maximum” expressiveness while
keeping reasoning problems decidable—but still very expensive.

(Other) profiles are tailored for specific ends, e.g.,
OWL 2 QL:

Specifically designed for e�cient database integration.

OWL 2 EL:
A lightweight language with polynomial time reasoning.

OWL 2 RL:
Designed for compatibility with rule-based inference tools.

OWL Full: Anything goes: classes, relations, individuals, ... like in RDFS, are not kept apart. Highly expressive, not decidable. But we want OWL’s

reasoning capabilities, so stay away if you can—and you almost always can.

OWL 2 Validator: http://mowl-power.cs.man.ac.uk:8080/validator/

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 40 / 46

http://mowl-power.cs.man.ac.uk:8080/validator/

OWL 2 profiles

OWL 2 profiles

OWL 2 has various profiles that correspond to di↵erent DLs.

OWL 2 DL is the “normal” OWL 2 (sublanguage): “maximum” expressiveness while
keeping reasoning problems decidable—but still very expensive.

(Other) profiles are tailored for specific ends, e.g.,
OWL 2 QL:

Specifically designed for e�cient database integration.

OWL 2 EL:
A lightweight language with polynomial time reasoning.

OWL 2 RL:
Designed for compatibility with rule-based inference tools.

OWL Full: Anything goes: classes, relations, individuals, ... like in RDFS, are not kept apart. Highly expressive, not decidable. But we want OWL’s

reasoning capabilities, so stay away if you can—and you almost always can.

OWL 2 Validator: http://mowl-power.cs.man.ac.uk:8080/validator/

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 40 / 46

http://mowl-power.cs.man.ac.uk:8080/validator/

OWL 2 profiles

OWL 2 profiles

OWL 2 has various profiles that correspond to di↵erent DLs.

OWL 2 DL is the “normal” OWL 2 (sublanguage): “maximum” expressiveness while
keeping reasoning problems decidable—but still very expensive.

(Other) profiles are tailored for specific ends, e.g.,
OWL 2 QL:

Specifically designed for e�cient database integration.

OWL 2 EL:
A lightweight language with polynomial time reasoning.

OWL 2 RL:
Designed for compatibility with rule-based inference tools.

OWL Full: Anything goes: classes, relations, individuals, ... like in RDFS, are not kept apart. Highly expressive, not decidable. But we want OWL’s

reasoning capabilities, so stay away if you can—and you almost always can.

OWL 2 Validator: http://mowl-power.cs.man.ac.uk:8080/validator/

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 40 / 46

http://mowl-power.cs.man.ac.uk:8080/validator/

OWL 2 profiles

OWL EL

Based on DL EL++.

EL++ concept descriptions, simplified

C ,D ! A | (atomic concept)
> | (universal concept)
? | (bottom concept)
{a} | (singular enumeration)
C u D | (intersection)
9R .C | (existential restriction)

Axioms

C v D and C ⌘ D for concept descriptions D and C .

R v S , R ⌘ S , R � S v R , dom(R) v C and ran(R) v D for concept descriptions D,C and roles
R , S .

C (a) and R(a, b) for concept C , role R and individuals a, b.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 41 / 46

OWL 2 profiles

OWL EL contd.

Not supported, simplified:

negation, (NB, disjointness of classes: C u D v ? possible),

disjunction,

universal quantification,

cardinalities,

inverse roles,

plus some role characteristics.

reduced list of datatypes (e.g., not supported “boolean” nor “double”)

Complete list: http://www.w3.org/TR/owl2-profiles/#Feature_Overview.

Checking ontology consistency, class expression subsumption, and instance checking is in
P.

“Good for large ontologies.”

Used in many biomedical ontologies (e.g. SNOMED CT).

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 42 / 46

http://www.w3.org/TR/owl2-profiles/#Feature_Overview

OWL 2 profiles

OWL EL contd.

Not supported, simplified:

negation, (NB, disjointness of classes: C u D v ? possible),

disjunction,

universal quantification,

cardinalities,

inverse roles,

plus some role characteristics.

reduced list of datatypes (e.g., not supported “boolean” nor “double”)

Complete list: http://www.w3.org/TR/owl2-profiles/#Feature_Overview.

Checking ontology consistency, class expression subsumption, and instance checking is in
P.

“Good for large ontologies.”

Used in many biomedical ontologies (e.g. SNOMED CT).

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 42 / 46

http://www.w3.org/TR/owl2-profiles/#Feature_Overview

OWL 2 profiles

OWL QL

Based on DL-LiteR .

DL-LiteR concept descriptions

B := A | 9R .>
C := B | ¬B

DL-LiteR role descriptions

Q := R | R�

S := Q | ¬Q

DL-LiteR Axioms

Concept inclusions B v C for concept descriptions B and C .

Role inclusions Q v S for roles Q, S .

A(a) and R(a, b) for atomic concept A, role R and individuals a, b.
IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 43 / 46

OWL 2 profiles

OWL QL contd.

Not supported, simplified:

disjunction,

universal quantification,

cardinalities,

functional roles, keys,

= (SameIndividual)

enumerations (closed classes),

subproperties of chains, transitivity

reduced list of datatypes (e.g., not supported “boolean” nor “double”)

Complete list: http://www.w3.org/TR/owl2-profiles/#Feature_Overview_2.

Captures language for which queries can be translated to SQL.

“Good for large datasets.”

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 44 / 46

http://www.w3.org/TR/owl2-profiles/#Feature_Overview_2

OWL 2 profiles

OWL QL contd.

Not supported, simplified:

disjunction,

universal quantification,

cardinalities,

functional roles, keys,

= (SameIndividual)

enumerations (closed classes),

subproperties of chains, transitivity

reduced list of datatypes (e.g., not supported “boolean” nor “double”)

Complete list: http://www.w3.org/TR/owl2-profiles/#Feature_Overview_2.

Captures language for which queries can be translated to SQL.

“Good for large datasets.”

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 44 / 46

http://www.w3.org/TR/owl2-profiles/#Feature_Overview_2

OWL 2 profiles

OWL RL

Puts constraints in the way in which constructs are used (i.e., syntactic subset of OWL 2).

So that OWL 2 RL axioms can be directly translated into datalog rules.

Enables desirable computational properties using rule-based reasoning engines.

It is closely related to Description Logic Programs (DLP).

Syntactic restriction on Class Expressions in OWL 2 RL can be found:
http://www.w3.org/TR/owl2-profiles/#Feature_Overview_3.

Supports all axioms of OWL 2 apart from disjoint unions of classes (DisjointUnion) and
reflexive object property axioms (ReflexiveObjectProperty).

Reasoning in RL is possible in polynomial time, but in other cases results may be
incomplete.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 45 / 46

http://www.w3.org/TR/owl2-profiles/#Feature_Overview_3

OWL 2 profiles

OWL RL

Puts constraints in the way in which constructs are used (i.e., syntactic subset of OWL 2).

So that OWL 2 RL axioms can be directly translated into datalog rules.

Enables desirable computational properties using rule-based reasoning engines.

It is closely related to Description Logic Programs (DLP).

Syntactic restriction on Class Expressions in OWL 2 RL can be found:
http://www.w3.org/TR/owl2-profiles/#Feature_Overview_3.

Supports all axioms of OWL 2 apart from disjoint unions of classes (DisjointUnion) and
reflexive object property axioms (ReflexiveObjectProperty).

Reasoning in RL is possible in polynomial time, but in other cases results may be
incomplete.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 45 / 46

http://www.w3.org/TR/owl2-profiles/#Feature_Overview_3

OWL 2 profiles

OWL RL

Puts constraints in the way in which constructs are used (i.e., syntactic subset of OWL 2).

So that OWL 2 RL axioms can be directly translated into datalog rules.

Enables desirable computational properties using rule-based reasoning engines.

It is closely related to Description Logic Programs (DLP).

Syntactic restriction on Class Expressions in OWL 2 RL can be found:
http://www.w3.org/TR/owl2-profiles/#Feature_Overview_3.

Supports all axioms of OWL 2 apart from disjoint unions of classes (DisjointUnion) and
reflexive object property axioms (ReflexiveObjectProperty).

Reasoning in RL is possible in polynomial time, but in other cases results may be
incomplete.

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 45 / 46

http://www.w3.org/TR/owl2-profiles/#Feature_Overview_3

Next

Next

9 April: SPARQL 1.1

16 April: RDF Validation

23 April: Application in Norway (Aibel, DNV)

30 April, 7 May: OTTR Templates (T.B.A.)

14 May: Open RDF Data

IN3060/4060 :: Spring 2021 Lecture 11 :: 26th March 46 / 46

	Reminder: OWL
	Disjointness and Covering Axioms
	Keys
	Punning
	More about Datatypes
	What can't be expressed in OWL 2
	OWL 2 profiles
	Next

