
IN3060/4060 – Semantic Technologies – Spring 2021
Lecture 12: SPARQL 1.1

Jieying Chen

6th April 2021

Department of
Informatics

University of
Oslo

Today’s Plan

1 SPARQL 1.1 QUERY language
Assignment and Expressions
Aggregates
Subqueries
Negation
Property paths

2 SPARQL 1.1 Federated Query

3 SPARQL 1.1 UPDATE Language

4 SPARQL 1.1 Entailment Regimes

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 2 / 45

SPARQL

SPARQL Protocol And RDF Query Language

Standard language to query graph data represented as RDF triples

W3C Recommendations

SPARQL 1.0: W3C Recommendation 15 January 2008
SPARQL 1.1: W3C Recommendation 21 March 2013

This lecture is about SPARQL 1.1.

Documentation:

SPARQL 1.1 Query Language.
https://www.w3.org/TR/sparql11-query/

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 3 / 45

https://www.w3.org/TR/sparql11-query/

SPARQL

SPARQL Protocol And RDF Query Language

Standard language to query graph data represented as RDF triples

W3C Recommendations

SPARQL 1.0: W3C Recommendation 15 January 2008
SPARQL 1.1: W3C Recommendation 21 March 2013

This lecture is about SPARQL 1.1.

Documentation:

SPARQL 1.1 Query Language.
https://www.w3.org/TR/sparql11-query/

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 3 / 45

https://www.w3.org/TR/sparql11-query/

Components of a SPARQL query

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT DISTINCT ?collab

FROM <http://dbpedia dataset>

WHERE {

?jd foaf:name "Johnny Depp"@en .

?pub dbo:starring ?jd .

?pub dbo:starring ?other .

?other foaf:name ?collab .

FILTER (STR(?collab)!="Johnny Depp"@en)

}

ORDER BY ?collab

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 4 / 45

Components of a SPARQL query

Prologue: prefix definitions

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT DISTINCT ?collab

FROM <http://dbpedia dataset>

WHERE {

?jd foaf:name "Johnny Depp"@en .

?pub dbo:starring ?jd .

?pub dbo:starring ?other .

?other foaf:name ?collab .

FILTER (STR(?collab)!="Johnny Depp"@en)

}

ORDER BY ?collab

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 4 / 45

Components of a SPARQL query

Results form specification: (1) variable list, (2) type of query (SELECT, ASK, CONSTRUCT,
DESCRIBE), (3) remove duplicates (DISTINCT, REDUCED)

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT DISTINCT ?collab

FROM <http://dbpedia dataset>

WHERE {

?jd foaf:name "Johnny Depp"@en .

?pub dbo:starring ?jd .

?pub dbo:starring ?other .

?other foaf:name ?collab .

FILTER (STR(?collab)!="Johnny Depp"@en)

}

ORDER BY ?collab

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 4 / 45

Components of a SPARQL query

Dataset specification

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT DISTINCT ?collab

FROM <http://dbpedia dataset>

WHERE {

?jd foaf:name "Johnny Depp"@en .

?pub dbo:starring ?jd .

?pub dbo:starring ?other .

?other foaf:name ?collab .

FILTER (STR(?collab)!="Johnny Depp"@en)

}

ORDER BY ?collab

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 4 / 45

Components of a SPARQL query

Query pattern: graph pattern to be matched

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT DISTINCT ?collab

FROM <http://dbpedia dataset>

WHERE {

?jd foaf:name "Johnny Depp"@en .

?pub dbo:starring ?jd .

?pub dbo:starring ?other .

?other foaf:name ?collab .

FILTER (STR(?collab)!="Johnny Depp"@en)

}

ORDER BY ?collab

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 4 / 45

Components of a SPARQL query

Solution modifiers: ORDER BY, LIMIT, OFFSET

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT DISTINCT ?collab

FROM <http://dbpedia dataset>

WHERE {

?jd foaf:name "Johnny Depp"@en .

?pub dbo:starring ?jd .

?pub dbo:starring ?other .

?other foaf:name ?collab .

FILTER (STR(?collab)!="Johnny Depp"@en)

}

ORDER BY ?collab

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 4 / 45

SPARQL 1.1 QUERY language

Outline

1 SPARQL 1.1 QUERY language
Assignment and Expressions
Aggregates
Subqueries
Negation
Property paths

2 SPARQL 1.1 Federated Query

3 SPARQL 1.1 UPDATE Language

4 SPARQL 1.1 Entailment Regimes

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 5 / 45

SPARQL 1.1 QUERY language

SPARQL 1.1: new features

The new features in SPARQL 1.1 QUERY language:
1 Assignments and expressions
2 Aggregates
3 Subqueries
4 Negation
5 Property paths
6 A short form for CONSTRUCT
7 An expanded set of functions and operators

SPARQL 1.1 UPDATE Language

SPARQL 1.1 Federated Queries

SPARQL 1.1 Entailment Regimes

Rationale for the extensions of SPARQL 1.0
https://www.w3.org/TR/sparql-features/

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 6 / 45

https://www.w3.org/TR/sparql-features/

SPARQL 1.1 QUERY language

SPARQL 1.1: new features

The new features in SPARQL 1.1 QUERY language:
1 Assignments and expressions
2 Aggregates
3 Subqueries
4 Negation
5 Property paths
6 A short form for CONSTRUCT
7 An expanded set of functions and operators

SPARQL 1.1 UPDATE Language

SPARQL 1.1 Federated Queries

SPARQL 1.1 Entailment Regimes

Rationale for the extensions of SPARQL 1.0
https://www.w3.org/TR/sparql-features/

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 6 / 45

https://www.w3.org/TR/sparql-features/

SPARQL 1.1 QUERY language

SPARQL 1.1: new features

The new features in SPARQL 1.1 QUERY language:
1 Assignments and expressions
2 Aggregates
3 Subqueries
4 Negation
5 Property paths
6 A short form for CONSTRUCT
7 An expanded set of functions and operators

SPARQL 1.1 UPDATE Language

SPARQL 1.1 Federated Queries

SPARQL 1.1 Entailment Regimes

Rationale for the extensions of SPARQL 1.0
https://www.w3.org/TR/sparql-features/

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 6 / 45

https://www.w3.org/TR/sparql-features/

SPARQL 1.1 QUERY language Assignment and Expressions

1. Assignment and Expressions

The value of an expression can be assigned/bound to a new variable

Can be used in SELECT, BIND or GROUP BY clauses: (expression AS ?var)

Books with price < 20 taking into account discount

SELECT ?title ?price WHERE

{

?x ns:price ?p .

?x ns:discount ?discount

BIND (?p*(1-?discount) AS ?price)

?x dc:title ?title .

FILTER(?price < 20)

}

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 7 / 45

SPARQL 1.1 QUERY language Assignment and Expressions

1. Assignment and Expressions

The value of an expression can be assigned/bound to a new variable

Can be used in SELECT, BIND or GROUP BY clauses: (expression AS ?var)

Books with price < 20 taking into account discount

SELECT ?title ?price WHERE

{

?x ns:price ?p .

?x ns:discount ?discount

BIND (?p*(1-?discount) AS ?price)

?x dc:title ?title .

FILTER(?price < 20)

}

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 7 / 45

SPARQL 1.1 QUERY language Assignment and Expressions

1. Assignment and Expressions

The value of an expression can be assigned/bound to a new variable

Can be used in SELECT, BIND or GORUP BY clauses: (expression AS ?var)

Expressions in SELECT clause

SELECT ?title (?p AS ?fullPrice)

(?fullPrice*(1-?discount) AS ?customerPrice) WHERE

{

?x ns:price ?p .

?x dc:title ?title .

?x ns:discount ?discount

}

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 8 / 45

SPARQL 1.1 QUERY language Aggregates

2. Aggregates: Grouping and Filtering

Aggregation (sum, count, etc.) works very much like in SQL

Solutions can optionally be grouped according to one or more expressions.

Aggregates (count, sum, etc.) are applied per group.

To specify the group, use GROUP BY.

If GROUP BY is not used, then only one (implicit) group

To filter solutions resulting from grouping, use HAVING.

HAVING operates over grouped solution sets, in the same way that FILTER operates over
un-grouped ones.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 9 / 45

SPARQL 1.1 QUERY language Aggregates

2. Aggregates: Grouping and Filtering

Aggregation (sum, count, etc.) works very much like in SQL

Solutions can optionally be grouped according to one or more expressions.

Aggregates (count, sum, etc.) are applied per group.

To specify the group, use GROUP BY.

If GROUP BY is not used, then only one (implicit) group

To filter solutions resulting from grouping, use HAVING.

HAVING operates over grouped solution sets, in the same way that FILTER operates over
un-grouped ones.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 9 / 45

SPARQL 1.1 QUERY language Aggregates

2. Aggregates: Grouping and Filtering

Aggregation (sum, count, etc.) works very much like in SQL

Solutions can optionally be grouped according to one or more expressions.

Aggregates (count, sum, etc.) are applied per group.

To specify the group, use GROUP BY.

If GROUP BY is not used, then only one (implicit) group

To filter solutions resulting from grouping, use HAVING.

HAVING operates over grouped solution sets, in the same way that FILTER operates over
un-grouped ones.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 9 / 45

SPARQL 1.1 QUERY language Aggregates

2. Aggregates: Example

Counties of Norway with less than 15 municipalities

SELECT ?name (count(?kommune) AS ?kcount)

WHERE {

?county a gd:Fylke ;

gn:officialName ?name ;

gn:hasmunicipality ?kommune .

?kommune a gd:Kommune .

}

GROUP BY ?name

HAVING (?kcount < 15)

Note: Only expressions consisting of aggregates and constants may be projected, together with
variables in GROUP BY.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 10 / 45

SPARQL 1.1 QUERY language Aggregates

2. Aggregates: Example

Counties of Norway with less than 15 municipalities

SELECT ?name (count(?kommune) AS ?kcount)

WHERE {

?county a gd:Fylke ;

gn:officialName ?name ;

gn:hasmunicipality ?kommune .

?kommune a gd:Kommune .

}

GROUP BY ?name

HAVING (?kcount < 15)

Note: Only expressions consisting of aggregates and constants may be projected, together with
variables in GROUP BY.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 10 / 45

SPARQL 1.1 QUERY language Aggregates

2. Aggregates: functions

Count counts the number of times a variable has been bound.

Sum sums numerical values of bound variables.

Avg finds the average of numerical values of bound variables.

Min finds the minimum of the numerical values of bound variables.

Max finds the maximum of the numerical values of bound variables.

Group Concat creates a string with the values concatenated, separated by some optional
character.

Sample just returns a sample of the values.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 11 / 45

SPARQL 1.1 QUERY language Subqueries

3. Subqueries

Subqueries are a way to embed SPARQL queries within other queries

To achieve results which cannot otherwise be achieved, e.g. computing intermediate
values in a subquery

Return the largest city in each country

SELECT ?ctry ?city WHERE {

{SELECT ?ctry (MAX(?cityPop) AS ?maxCityPop) WHERE {

?city :cityInCountry ?ctry; :hasPop ?cityPop} GROUP BY ?ctry}

?city :cityInCountry ?ctry; :hasPop ?maxCityPop.

}

Subqueries are evaluated logically first, and the results bind variables in the outer query.

Only variables selected in the subquery will be visible, or in scope, to the outer query.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 12 / 45

SPARQL 1.1 QUERY language Subqueries

3. Subqueries

Subqueries are a way to embed SPARQL queries within other queries

To achieve results which cannot otherwise be achieved, e.g. computing intermediate
values in a subquery

Return the largest city in each country

SELECT ?ctry ?city WHERE {

{SELECT ?ctry (MAX(?cityPop) AS ?maxCityPop) WHERE {

?city :cityInCountry ?ctry; :hasPop ?cityPop} GROUP BY ?ctry}

?city :cityInCountry ?ctry; :hasPop ?maxCityPop.

}

Subqueries are evaluated logically first, and the results bind variables in the outer query.

Only variables selected in the subquery will be visible, or in scope, to the outer query.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 12 / 45

SPARQL 1.1 QUERY language Subqueries

3. Subqueries

Subqueries are a way to embed SPARQL queries within other queries

To achieve results which cannot otherwise be achieved, e.g. computing intermediate
values in a subquery

Return the largest city in each country

SELECT ?ctry ?city WHERE {

{SELECT ?ctry (MAX(?cityPop) AS ?maxCityPop) WHERE {

?city :cityInCountry ?ctry; :hasPop ?cityPop} GROUP BY ?ctry}

?city :cityInCountry ?ctry; :hasPop ?maxCityPop.

}

Subqueries are evaluated logically first, and the results bind variables in the outer query.

Only variables selected in the subquery will be visible, or in scope, to the outer query.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 12 / 45

SPARQL 1.1 QUERY language Subqueries

3. Subqueries

Subqueries are a way to embed SPARQL queries within other queries

To achieve results which cannot otherwise be achieved, e.g. computing intermediate
values in a subquery

Return the largest city in each country

SELECT ?ctry ?city WHERE {

{SELECT ?ctry (MAX(?cityPop) AS ?maxCityPop) WHERE {

?city :cityInCountry ?ctry; :hasPop ?cityPop} GROUP BY ?ctry}

?city :cityInCountry ?ctry; :hasPop ?maxCityPop.

}

Subqueries are evaluated logically first, and the results bind variables in the outer query.

Only variables selected in the subquery will be visible, or in scope, to the outer query.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 12 / 45

SPARQL 1.1 QUERY language Subqueries

3. Subqueries

Subqueries are a way to embed SPARQL queries within other queries

To achieve results which cannot otherwise be achieved, e.g. computing intermediate
values in a subquery

Return the largest city in each country

SELECT ?ctry ?city WHERE {

{SELECT ?ctry (MAX(?cityPop) AS ?maxCityPop) WHERE {

?city :cityInCountry ?ctry; :hasPop ?cityPop} GROUP BY ?ctry}

?city :cityInCountry ?ctry; :hasPop ?maxCityPop.

}

Subqueries are evaluated logically first, and the results bind variables in the outer query.

Only variables selected in the subquery will be visible, or in scope, to the outer query.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 12 / 45

SPARQL 1.1 QUERY language Negation

4. Negation in SPARQL 1.0

Remember: No negation in SPARQL 1.0 because of Monotonicity

Well actually. . .

People without names

SELECT DISTINCT * WHERE {

?person a foaf:Person .

OPTIONAL {

?person foaf:name ?name .

FILTER (!bound(?name))

}

}

The BOUND function provides a loophole.
However, this is not very easy to write.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 13 / 45

SPARQL 1.1 QUERY language Negation

4. Negation in SPARQL 1.0

Remember: No negation in SPARQL 1.0 because of Monotonicity
Well actually. . .

People without names

SELECT DISTINCT * WHERE {

?person a foaf:Person .

OPTIONAL {

?person foaf:name ?name .

FILTER (!bound(?name))

}

}

The BOUND function provides a loophole.
However, this is not very easy to write.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 13 / 45

SPARQL 1.1 QUERY language Negation

4. Negation in SPARQL 1.0

Remember: No negation in SPARQL 1.0 because of Monotonicity
Well actually. . .

People without names

SELECT DISTINCT * WHERE {

?person a foaf:Person .

OPTIONAL {

?person foaf:name ?name .

FILTER (!bound(?name))

}

}

The BOUND function provides a loophole.

However, this is not very easy to write.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 13 / 45

SPARQL 1.1 QUERY language Negation

4. Negation in SPARQL 1.0

Remember: No negation in SPARQL 1.0 because of Monotonicity
Well actually. . .

People without names

SELECT DISTINCT * WHERE {

?person a foaf:Person .

OPTIONAL {

?person foaf:name ?name .

FILTER (!bound(?name))

}

}

The BOUND function provides a loophole.
However, this is not very easy to write.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 13 / 45

SPARQL 1.1 QUERY language Negation

4. Negation in SPARQL 1.1

Two ways to do negation: MINUS and FILTER NOT EXISTS

People without names, using MINUS

SELECT DISTINCT * WHERE {

?person a foaf:Person .

MINUS { ?person foaf:name ?name }

}

A MINUS B evaluates both A and B giving solutions sol(A) and sol(B)

The solutions of A MINUS B are all sa ∈ sol(A) except the ones where there is a
sb ∈ sol(B) with

sA and sB compatible, and
sA and sB have some bound variables in common

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 14 / 45

SPARQL 1.1 QUERY language Negation

4. Negation in SPARQL 1.1

Two ways to do negation: MINUS and FILTER NOT EXISTS

People without names, using MINUS

SELECT DISTINCT * WHERE {

?person a foaf:Person .

MINUS { ?person foaf:name ?name }

}

A MINUS B evaluates both A and B giving solutions sol(A) and sol(B)

The solutions of A MINUS B are all sa ∈ sol(A) except the ones where there is a
sb ∈ sol(B) with

sA and sB compatible, and
sA and sB have some bound variables in common

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 14 / 45

SPARQL 1.1 QUERY language Negation

4. Negation in SPARQL 1.1 (cont.)

People without names, using FILTER NOT EXISTS

SELECT DISTINCT * WHERE {

?person a foaf:Person .

FILTER NOT EXISTS { ?person foaf:name ?name }

}

A FILTER NOT EXISTS B evaluates A and for each solution sA ∈ sol(A) it checks. . .

. . . given the bindings from sA. . .

. . . if there is a match for B. . .

. . . and discards sA if there is.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 15 / 45

SPARQL 1.1 QUERY language Negation

4. Negation in SPARQL 1.1 (cont.)

People without names, using FILTER NOT EXISTS

SELECT DISTINCT * WHERE {

?person a foaf:Person .

FILTER NOT EXISTS { ?person foaf:name ?name }

}

A FILTER NOT EXISTS B evaluates A and for each solution sA ∈ sol(A) it checks. . .

. . . given the bindings from sA. . .

. . . if there is a match for B. . .

. . . and discards sA if there is.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 15 / 45

SPARQL 1.1 QUERY language Negation

4. Negation in SPARQL 1.1 (cont.)

They may produce different results. Data with ex:Ernesto a foaf:Person

SELECT DISTINCT * WHERE {

?s ?p ?o .

MINUS { ?x ?y ?z }

}

Does not remove solutions (no shared variables!) and returns ex:Ernesto a foaf:Person

SELECT DISTINCT * WHERE {

?s ?p ?o .

FILTER NOT EXISTS { ?x ?y ?z }

}

Returns no solutions. Since there are not shared variables, it removes all solutions.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 16 / 45

SPARQL 1.1 QUERY language Negation

4. Negation in SPARQL 1.1 (cont.)

They may produce different results. Data with ex:Ernesto a foaf:Person

SELECT DISTINCT * WHERE {

?s ?p ?o .

MINUS { ?x ?y ?z }

}

Does not remove solutions (no shared variables!) and returns ex:Ernesto a foaf:Person

SELECT DISTINCT * WHERE {

?s ?p ?o .

FILTER NOT EXISTS { ?x ?y ?z }

}

Returns no solutions. Since there are not shared variables, it removes all solutions.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 16 / 45

SPARQL 1.1 QUERY language Negation

Open and Closed World Assumptions

Aggregates and negation assume Closed World and Unique names!
The answers are only true with respect to the current dataset.

“As far as we know, there are 13 municipalities in Vestfold.”

Can’t say: “they don’t have names”, can say: “we don’t know their names”.

“As far as we know, no-one has climbed that mountain.”

“Based on the available data, the average fuel price is currently 13.37 NOK/l.”

This will have implications when combined with reasoning.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 17 / 45

SPARQL 1.1 QUERY language Property paths

5. Property paths: basic motivation

Some queries get needlessly complex.

“property paths” can take the place of the predicate in graph patterns

E.g. write ?x foaf:maker|dct:creator ?p instead of using UNION.

To get friend’s name, go { _:me foaf:knows/foaf:name ?friendsname }.

Sum several items:
SELECT (sum(?cost) AS ?total) { :order :hasItem/:price ?cost }

etc.

Adds a small property-oriented query language inside the language.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 18 / 45

SPARQL 1.1 QUERY language Property paths

5. Property paths: syntax

Syntax Form Matches

iri An (property) IRI. A path of length one.
^elt Inverse path (object to subject).
elt1 / elt2 A sequence path of elt1 followed by elt2.
elt1 | elt2 A alternative path of elt1 or elt2 (all possibilities are tried).
elt* Seq. of zero or more matches of elt.
elt+ Seq. of one or more matches of elt.
elt? Zero or one matches of elt.
!iri or !(iri1| ...|irin) Negated property set.
!^iri or !(^irii| ...|^irin) Negation of inverse path.
!(iri1|...|irij|^irij+1|...|^irin) Negated combination of forward and inverese properties.
(elt) A group path elt, brackets control precedence.

* elt is a path element, which may itself be composed of path constructs (see Syntax form).

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 19 / 45

SPARQL 1.1 QUERY language Property paths

5. Property paths: example

The names of all friends of Ernesto’s friends

SELECT ?name WHERE {

uio:Ernesto foaf:knows+ ?friend

?friend foaf:name|foaf:givenName ?name .

}

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 20 / 45

SPARQL 1.1 Federated Query

Outline

1 SPARQL 1.1 QUERY language
Assignment and Expressions
Aggregates
Subqueries
Negation
Property paths

2 SPARQL 1.1 Federated Query

3 SPARQL 1.1 UPDATE Language

4 SPARQL 1.1 Entailment Regimes

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 21 / 45

SPARQL 1.1 Federated Query

Federated query support

The SERVICE keyword instructs a federated query processor to invoke a portion of a
SPARQL query against a remote SPARQL service/endpoint.

SPARQL service: any implementation conforming to the SPARQL 1.1 Protocol for RDF

Combining local file with remote SPARQL service

SELECT ?name

FROM <http://example.org/mylocalfoaf.rdf>

WHERE {

<http://example.org/mylocalfoaf/I> foaf:knows ?person .

SERVICE <http://people.example.org/sparql> {

?person foaf:name ?name . }

}

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 22 / 45

SPARQL 1.1 Federated Query

Federated query support

The SERVICE keyword instructs a federated query processor to invoke a portion of a
SPARQL query against a remote SPARQL service/endpoint.

SPARQL service: any implementation conforming to the SPARQL 1.1 Protocol for RDF

Combining local file with remote SPARQL service

SELECT ?name

FROM <http://example.org/mylocalfoaf.rdf>

WHERE {

<http://example.org/mylocalfoaf/I> foaf:knows ?person .

SERVICE <http://people.example.org/sparql> {

?person foaf:name ?name . }

}

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 22 / 45

SPARQL 1.1 UPDATE Language

Outline

1 SPARQL 1.1 QUERY language
Assignment and Expressions
Aggregates
Subqueries
Negation
Property paths

2 SPARQL 1.1 Federated Query

3 SPARQL 1.1 UPDATE Language

4 SPARQL 1.1 Entailment Regimes

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 23 / 45

SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE

Do not confuse with CONSTRUCT

CONSTRUCT is an alternative for SELECT

Instead of returning a table of result values, CONSTRUCT returns an RDF graph
according to the template

SPARQL 1.1 UPDATE is a language to modify the given GRAPH

https://www.w3.org/TR/2013/REC-sparql11-update-20130321/

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 24 / 45

https://www.w3.org/TR/2013/REC-sparql11-update-20130321/

SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE

Do not confuse with CONSTRUCT

CONSTRUCT is an alternative for SELECT

Instead of returning a table of result values, CONSTRUCT returns an RDF graph
according to the template

SPARQL 1.1 UPDATE is a language to modify the given GRAPH

https://www.w3.org/TR/2013/REC-sparql11-update-20130321/

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 24 / 45

https://www.w3.org/TR/2013/REC-sparql11-update-20130321/

SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Inserting and deleting triples

Inserting triples in a graph

INSERT DATA {

GRAPH </graph/courses/> {

<course/in3060> ex:taughtBy <staff/jieyingc> .

<staff/jieyingc> foaf:name "Jieying Chen" ;

} }

Deleting triples from a graph

DELETE DATA {

GRAPH </graph/courses/> {

<course/in3060> ex:oblig <exercise/oblig6> .

<exercise/oblig6> rdfs:label "Mandatory Exercise 6" .

} }

If no GRAPH is given, default graph is used.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 25 / 45

SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Inserting and deleting triples

Inserting triples in a graph

INSERT DATA {

GRAPH </graph/courses/> {

<course/in3060> ex:taughtBy <staff/jieyingc> .

<staff/jieyingc> foaf:name "Jieying Chen" ;

} }

Deleting triples from a graph

DELETE DATA {

GRAPH </graph/courses/> {

<course/in3060> ex:oblig <exercise/oblig6> .

<exercise/oblig6> rdfs:label "Mandatory Exercise 6" .

} }

If no GRAPH is given, default graph is used.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 25 / 45

SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Inserting and deleting triples

Inserting triples in a graph

INSERT DATA {

GRAPH </graph/courses/> {

<course/in3060> ex:taughtBy <staff/jieyingc> .

<staff/jieyingc> foaf:name "Jieying Chen" ;

} }

Deleting triples from a graph

DELETE DATA {

GRAPH </graph/courses/> {

<course/in3060> ex:oblig <exercise/oblig6> .

<exercise/oblig6> rdfs:label "Mandatory Exercise 6" .

} }

If no GRAPH is given, default graph is used.
IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 25 / 45

SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Inserting conditionally

Most useful when inserting statements that you already have, but hold true for something else.

Inserting triples for another subject

INSERT {

<http:// .../geo/inndeling/03> a gd:Fylke ;

gn:name "Oslo" ;

?p ?o .

}

WHERE {

<http:// .../geo/inndeling/03/0301> a gd:Kommune ;

?p ?o .

}

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 26 / 45

SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Deleting conditionally

From specification:

Deleting old books

DELETE {

?book ?p ?v .

}

WHERE {

?book dc:date ?date .

FILTER (?date < "2000-01-01T00:00:00"^^xsd:dateTime)

?book ?p ?v .

}

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 27 / 45

SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Deleting conditionally, common shortform

Deleting exactly what’s matched by the WHERE clause.

Deleting information about the course inf3580

DELETE WHERE {

?s ?p <http://ifi.uio.no/courses/inf3580> .

}

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 28 / 45

SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Delete/Insert full syntax

In most cases, you would delete some triples first, then add new, possibly in the same or other
graphs.
From specification:

All the possibilities offered by DELETE/INSERT

(WITH IRIref)?

(((DELETE QuadPattern) (INSERT QuadPattern)?) | (INSERT

QuadPattern))

(USING (NAMED)? IRIref)*

WHERE GroupGraphPattern

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 29 / 45

SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Delete/Insert simple example

Update user information

DELETE {

<http:// .../user/larshvermannsen> ?p ?o .

}

INSERT {

<http:// .../user/larshvermannsen> a sioc:User ;

rdfs:label """Lars Hvermannsen"""@no ;

sioc:email <mailto:lars@hvermannsen.no> ;

sioc:has function <http:// .../role/Administrator> ;

wdr:describedBy status:inaktiv .

}

WHERE {

<http:// .../user/larshvermannsen> ?p ?o .

}

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 30 / 45

SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Delete/Insert example with named graphs

Update user information

DELETE {

GRAPH </graphs/users/> {

<http:// .../user/larshvermannsen> ?p ?o .

}

}

INSERT {

GRAPH </graphs/users/> {

<http:// .../user/larshvermannsen> a sioc:User ;

rdfs:label """Lars Hvermannsen"""@no .

}

}

USING </graphs/users/> WHERE {

<http:// .../user/larshvermannsenno> ?p ?o .

}
IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 31 / 45

SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Delete/Insert example explained

USING plays the same role as FROM.

GRAPH says where to insert or delete.

This makes it possible to delete, insert and match against different graphs.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 32 / 45

SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Delete/Insert example with single named graphs

Update user information

WITH </graphs/users/>

DELETE {

<http:// .../user/larshvermannsen> ?p ?o .

}

INSERT {

<http:// .../user/larshvermannsen> a sioc:User ;

rdfs:label """Lars Hvermannsen"""@no .

}

WHERE {

<http:// .../user/larshvermannsenno> ?p ?o .

}

Equivalent to the previous query!

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 33 / 45

SPARQL 1.1 UPDATE Language

SPARQL 1.1 UPDATE: Whole graph operations

From the specification:

LOAD (SILENT)? IRIref from (INTO GRAPH IRIref to)?

Loads the graph at IRIref from into the specified graph, or the default graph if
not given.

CLEAR (SILENT)? (GRAPH IRIref | DEFAULT | NAMED | ALL)

Removes the triples from the specified graph, the default graph, all named graphs
or all graphs respectively. Some implementations may remove the whole graph.

CREATE (SILENT)? GRAPH IRIref

Creates a new graph in stores that record empty graphs.

DROP (SILENT)? (GRAPH IRIref | DEFAULT | NAMED | ALL)

Removes the specified graph, the default graph, all named graps or all graphs
respectively. It also removes all triples of those graphs.

Also provides shortcuts, COPY, MOVE and ADD.
Usually, LOAD and DROP are what you want.

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 34 / 45

SPARQL 1.1 Entailment Regimes

Outline

1 SPARQL 1.1 QUERY language
Assignment and Expressions
Aggregates
Subqueries
Negation
Property paths

2 SPARQL 1.1 Federated Query

3 SPARQL 1.1 UPDATE Language

4 SPARQL 1.1 Entailment Regimes

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 35 / 45

SPARQL 1.1 Entailment Regimes

Entailment regimes: overview

Gives guidance for SPARQL query engines

Basic graph pattern by means of subgraph matching: simple entailment

Solutions that implicitly follow from the queried graph: entailment regimes

RDF entailment, RDF Schema entailment, D-Entailment, OWL 2 RDF-Based
Semantics entailment, OWL 2 Direct Semantics entailment, and RIF-Simple
entailment

https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 36 / 45

https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/

SPARQL 1.1 Entailment Regimes

Entailment regimes: example (1)

ex:book1 rdf:type ex:Publication .

ex:book2 rdf:type ex:Article .

ex:Article rdfs:subClassOf ex:Publication .

ex:publishes rdfs:range ex:Publication .

ex:MITPress ex:publishes ex:book3 .

QUERY 1: SELECT ?prop WHERE ?prop rdf:type rdf:Property

QUERY 2: SELECT ?pub WHERE ?pub rdf:type ex:Publication

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 37 / 45

SPARQL 1.1 Entailment Regimes

Entailment regimes: example (1)

ex:book1 rdf:type ex:Publication .

ex:book2 rdf:type ex:Article .

ex:Article rdfs:subClassOf ex:Publication .

ex:publishes rdfs:range ex:Publication .

ex:MITPress ex:publishes ex:book3 .

QUERY 1: SELECT ?prop WHERE ?prop rdf:type rdf:Property

QUERY 2: SELECT ?pub WHERE ?pub rdf:type ex:Publication

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 37 / 45

SPARQL 1.1 Entailment Regimes

Entailment regimes: example (1)

ex:book1 rdf:type ex:Publication .

ex:book2 rdf:type ex:Article .

ex:Article rdfs:subClassOf ex:Publication .

ex:publishes rdfs:range ex:Publication .

ex:MITPress ex:publishes ex:book3 .

QUERY 1: SELECT ?prop WHERE ?prop rdf:type rdf:Property

QUERY 2: SELECT ?pub WHERE ?pub rdf:type ex:Publication

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 37 / 45

SPARQL 1.1 Entailment Regimes

Entailment regimes: example (2)

Dashed lines: inferred triples

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 38 / 45

SPARQL 1.1 Entailment Regimes

Entailment regimes: example (3)

ex:book1 rdf:type ex:Publication .

ex:book2 rdf:type ex:Article .

ex:Article rdfs:subClassOf ex:Publication .

ex:publishes rdfs:range ex:Publication .

ex:MITPress ex:publishes ex:book3 .

Query 1: Using RDF entailment regime (new entailed triples):

ex:publishes rdf:type rdf:Property .

Query 2: Using RDFS entailment regime (new entailed triples):

ex:book2 rdf:type ex:Publication .

ex:book3 rdf:type ex:Publication .

(Graph matching is performed over the extended RDF graph)

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 39 / 45

SPARQL 1.1 Entailment Regimes

The OWL Entailment Regimes

OWL 2 RDF-based Semantics Entailment Regime

OWL 2 Direct Semantics Entailment Regime

https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/

Birte Glimm. Using SPARQL with RDFS and OWL entailment. International
Conference on Reasoning Web, 2011

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 40 / 45

https://www.w3.org/TR/2013/REC-sparql11-entailment-20130321/

SPARQL 1.1 Entailment Regimes

OWL 2 Direct Semantics Entailment Regime

OWL 2 Direct Semantics is our DL-semantics

Separates classes, properties, individuals, etc.
Classes interpreted as sets, Properties as relations

Direct Semantics Entailment Regime works on restricted RDF graphs and Queries

Technical solution: Variable Typing

Require a type on every variable in a query

SELECT . . . FROM { . . . ?x rdf:type TYPE }
Where TYPE can a class or one of: owl:Class, owl:ObjectProperty, owl:DatatypeProperty,
owl:Datatype, or owl:NamedIndividual

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 41 / 45

SPARQL 1.1 Entailment Regimes

OWL 2 Direct Semantics Entailment Regime

OWL 2 Direct Semantics is our DL-semantics

Separates classes, properties, individuals, etc.
Classes interpreted as sets, Properties as relations

Direct Semantics Entailment Regime works on restricted RDF graphs and Queries

Technical solution: Variable Typing

Require a type on every variable in a query

SELECT . . . FROM { . . . ?x rdf:type TYPE }
Where TYPE can a class or one of: owl:Class, owl:ObjectProperty, owl:DatatypeProperty,
owl:Datatype, or owl:NamedIndividual

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 41 / 45

SPARQL 1.1 Entailment Regimes

OWL 2 RDF-based Semantics Entailment Regime

RDF-based semantics is the one with two steps in Oblig 5

IS interprets class and relation URIs as domain elements,
IEXT maps these to relations the domain
Not every relation on domain is IEXT of something

No need for mapping an RDF graph into OWL objects

This may lead to less consequences than expected (Incompleteness)

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 42 / 45

SPARQL 1.1 Entailment Regimes

OWL 2 Entailment Regimes: example

Graph: ex:a rdf:type ex:C

BGP in query:
?x rdf:type

[

rdf:type owl:Class ;

owl:unionOf(ex:C ex:D)

]

OWL/RDF for: (C t D)(x)

ex:a not returned in the solution for ?x using OWL 2 RDF-Based Semantics

G does not include that this union is the class extension of any domain element
Solution: add statement ex:E owl:unionOf (ex:C ex:D)

This type of statement may lead to undecidability

ex:a would be a solution for ?x using OWL 2 Direct Semantics

classes denote sets and not domain elements

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 43 / 45

SPARQL 1.1 Entailment Regimes

OWL 2 Entailment Regimes: example

Graph: ex:a rdf:type ex:C

BGP in query:
?x rdf:type

[

rdf:type owl:Class ;

owl:unionOf(ex:C ex:D)

]

OWL/RDF for: (C t D)(x)

ex:a not returned in the solution for ?x using OWL 2 RDF-Based Semantics

G does not include that this union is the class extension of any domain element
Solution: add statement ex:E owl:unionOf (ex:C ex:D)

This type of statement may lead to undecidability

ex:a would be a solution for ?x using OWL 2 Direct Semantics

classes denote sets and not domain elements

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 43 / 45

SPARQL 1.1 Entailment Regimes

OWL 2 Entailment Regimes: example

Graph: ex:a rdf:type ex:C

BGP in query:
?x rdf:type

[

rdf:type owl:Class ;

owl:unionOf(ex:C ex:D)

]

OWL/RDF for: (C t D)(x)

ex:a not returned in the solution for ?x using OWL 2 RDF-Based Semantics

G does not include that this union is the class extension of any domain element
Solution: add statement ex:E owl:unionOf (ex:C ex:D)

This type of statement may lead to undecidability

ex:a would be a solution for ?x using OWL 2 Direct Semantics

classes denote sets and not domain elements

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 43 / 45

SPARQL 1.1 Entailment Regimes

OWL 2 Entailment Regimes: example

Graph: ex:a rdf:type ex:C

BGP in query:
?x rdf:type

[

rdf:type owl:Class ;

owl:unionOf(ex:C ex:D)

]

OWL/RDF for: (C t D)(x)

ex:a not returned in the solution for ?x using OWL 2 RDF-Based Semantics

G does not include that this union is the class extension of any domain element
Solution: add statement ex:E owl:unionOf (ex:C ex:D)

This type of statement may lead to undecidability

ex:a would be a solution for ?x using OWL 2 Direct Semantics

classes denote sets and not domain elements

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 43 / 45

SPARQL 1.1 Entailment Regimes

OWL 2 Entailment Regimes: example

Graph: ex:a rdf:type ex:C

BGP in query:
?x rdf:type

[

rdf:type owl:Class ;

owl:unionOf(ex:C ex:D)

]

OWL/RDF for: (C t D)(x)

ex:a not returned in the solution for ?x using OWL 2 RDF-Based Semantics

G does not include that this union is the class extension of any domain element
Solution: add statement ex:E owl:unionOf (ex:C ex:D)

This type of statement may lead to undecidability

ex:a would be a solution for ?x using OWL 2 Direct Semantics

classes denote sets and not domain elements

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 43 / 45

SPARQL 1.1 Entailment Regimes

OWL 2 Entailment Regimes: Complexity and Profiles

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 44 / 45

SPARQL 1.1 Entailment Regimes

OWL 2 Entailment Regimes: Systems

OWL-BGP: SPARQL implementation where basic graph patterns are evaluated with
OWL 2 Direct Semantics.

https://github.com/iliannakollia/owl-bgp

RDFox: highly scalable in-memory RDF triple store that supports parallel datalog
reasoning.

OWL 2 RL axioms can be directly transformed to datalog rules
https://www.cs.ox.ac.uk/isg/tools/RDFox/

ontop: answering SPARQL queries over databases under OWL 2 QL Entailment regime

Ontop is a platform to query relational databases as Virtual RDF Graphs using SPARQL
An Ontology in OWL 2 QL and R2RML mappings
R2RML: RDB to RDF Mapping Language
http://ontop.inf.unibz.it/

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 45 / 45

https://github.com/iliannakollia/owl-bgp
https://www.cs.ox.ac.uk/isg/tools/RDFox/
http://ontop.inf.unibz.it/

SPARQL 1.1 Entailment Regimes

OWL 2 Entailment Regimes: Systems

OWL-BGP: SPARQL implementation where basic graph patterns are evaluated with
OWL 2 Direct Semantics.

https://github.com/iliannakollia/owl-bgp

RDFox: highly scalable in-memory RDF triple store that supports parallel datalog
reasoning.

OWL 2 RL axioms can be directly transformed to datalog rules
https://www.cs.ox.ac.uk/isg/tools/RDFox/

ontop: answering SPARQL queries over databases under OWL 2 QL Entailment regime

Ontop is a platform to query relational databases as Virtual RDF Graphs using SPARQL
An Ontology in OWL 2 QL and R2RML mappings
R2RML: RDB to RDF Mapping Language
http://ontop.inf.unibz.it/

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 45 / 45

https://github.com/iliannakollia/owl-bgp
https://www.cs.ox.ac.uk/isg/tools/RDFox/
http://ontop.inf.unibz.it/

SPARQL 1.1 Entailment Regimes

OWL 2 Entailment Regimes: Systems

OWL-BGP: SPARQL implementation where basic graph patterns are evaluated with
OWL 2 Direct Semantics.

https://github.com/iliannakollia/owl-bgp

RDFox: highly scalable in-memory RDF triple store that supports parallel datalog
reasoning.

OWL 2 RL axioms can be directly transformed to datalog rules
https://www.cs.ox.ac.uk/isg/tools/RDFox/

ontop: answering SPARQL queries over databases under OWL 2 QL Entailment regime

Ontop is a platform to query relational databases as Virtual RDF Graphs using SPARQL
An Ontology in OWL 2 QL and R2RML mappings
R2RML: RDB to RDF Mapping Language
http://ontop.inf.unibz.it/

IN3060/4060 :: Spring 2021 Lecture 12 :: 6th April 45 / 45

https://github.com/iliannakollia/owl-bgp
https://www.cs.ox.ac.uk/isg/tools/RDFox/
http://ontop.inf.unibz.it/

	SPARQL 1.1 QUERY language
	Assignment and Expressions
	Aggregates
	Subqueries
	Negation
	Property paths

	SPARQL 1.1 Federated Query
	SPARQL 1.1 UPDATE Language
	SPARQL 1.1 Entailment Regimes

