
IN3060/4060 – Semantic Technologies – Spring 2021
Lecture 13: RDF Validation

Jieying Chen

16th April 2021

Department of
Informatics

University of
Oslo

Today’s Plan

1 What is Validation

2 Validation for RDF

3 Different Approaches to Validation

4 SHACL – the Shapes Constraint Language

5 SHACL systematically

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 2 / 43

What is Validation

Outline

1 What is Validation

2 Validation for RDF

3 Different Approaches to Validation

4 SHACL – the Shapes Constraint Language

5 SHACL systematically

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 3 / 43

What is Validation

An XML document

<?xml version="1.0"?>

<note>

<to>Thomas</to>

<from>Jieying</from>

<heading>Reminder</heading>

<body>Don’t forget to publish mandatory 6!</body>

</note>

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 4 / 43

What is Validation

A “wrong” XML document

<?xml version="1.0"?>

<note>

<from><theboss/></from>

<subject>Reminder</subject>

<body>Don’t forget to do what I told you!</body>

</note>

No <to> element

Not text in <from> element

No <header> element

unknown <subject> element

Software reading such an XML document will have difficulties!

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 5 / 43

What is Validation

An XML Schema for notes

<?xml version="1.0"?>

<xs:schema xmlns:xs=...>

<xs:element name="note">

<xs:complexType>

<xs:sequence>

<xs:element name="to" type="xs:string"/>

<xs:element name="from" type="xs:string"/>

<xs:element name="heading" type="xs:string"/>

<xs:element name="body" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 6 / 43

What is Validation

XML Schema Validation

XML Schema Validation takes

An XML Schema (.XSD) document S

An XML ‘instance document’ X

and checks that X conforms to the rules given by S

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 7 / 43

What is Validation

Another example: Regular expressions

Some floating point literals: -12.3, +.7E-3, 12e12

not floating point literals: 7.5.2020, 1E2E3

A regexp describing all admissible floating point literals:

[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?

Regular Expression matching: finding out whether a string conforms to a regexp

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 8 / 43

What is Validation

Another example: Database Constraints

CREATE TABLE employees (

id int NOT NULL,

department int NOT NULL,

CONSTRAINT emp_pk PRIMARY KEY (id),

CONSTRAINT emp_dept_fk

FOREIGN KEY department

REFERENCES departments

);

Check that all employees have an id and department

Check that any two employees have different IDs

Check that the department of any employee occurs in the departments table

Note: only does something if, and when, data is added. OK to have no emps and depts

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 9 / 43

Validation for RDF

Outline

1 What is Validation

2 Validation for RDF

3 Different Approaches to Validation

4 SHACL – the Shapes Constraint Language

5 SHACL systematically

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 10 / 43

Validation for RDF

RDF Schema?

RDF “Schema”:
:worksInDepartment rdfs:range :Department

RDF “Database”:
:martin :worksInDepartment :ifi

:maths a :Department

:physics a :Department

What about RDF Schema Validation? :ifi not listed as department!

Rule rdfs3 allows us to infer that :ifi a Department

RDF Schema cannot be used for validation!

In this sense, it is not a schema language like XML schema.

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 11 / 43

Validation for RDF

What about OWL?

Ontology:
Person v ∃hasFather.Person

ABox:
Person(haakon)
Person(harald)
hasFather(haakon, harald)

Does this “validate”? No information about Harald’s father!

We can infer that ∃hasFather.Person(harald), i.e. he has a father

OWL cannot be used for validation!

OWL and RDFS are good for adding missing fats, not detecting that they are missing

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 12 / 43

Validation for RDF

What is needed?

In applications, often need info about available information

E.g. queries become a lot easier to write if we know the data!

Ontology: Every person has a name

Needed: For every person in the dataset, we know the name

Ontology: Every employee works in some department

Needed: For every employee, we know which department he/she works in, and it is a
department we know about.

Need a Constraint language to describe RDF graphs

Ontology — describes persons, employees, cars,. . .

Constraints — describe data about persons, employees, cars,. . .

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 13 / 43

Validation for RDF

Ontology vs. Constraints

Ontology

Knowledge about domain

Can do: infer new knowledge

Reuse across applications

Constraints

Knowledge about our knowledge of the
domain

Can do: check completness of existing
information: Validation

Specific to use (one system or exchange)

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 14 / 43

Different Approaches to Validation

Outline

1 What is Validation

2 Validation for RDF

3 Different Approaches to Validation

4 SHACL – the Shapes Constraint Language

5 SHACL systematically

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 15 / 43

Different Approaches to Validation

OWL as Constraint Language (Stardog ICV)

https://docs.stardog.com/data-quality-constraints/

Idea: Allow some OWL Axioms to be interpreted as constraints

E.g.: Supervisor v ∃supervises.Employee. . .

. . . interpreted as constraint means:
For every triple x a :Supervisor

There must be at least one triple x :supervises y
and a triple y a :Employee for some resource y

Advantages:
easy to define mathematically (Take RDF graph as DL interpretation)
parsers, APIs, etc. already there
“constraints” can be translated to SPARQL queries that check them

Disadvantages:
not everything in OWL has a sensible constraint interpretation
not every useful constraint can be expressed in OWL

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 16 / 43

https://docs.stardog.com/data-quality-constraints/

Different Approaches to Validation

Epistemic Description Logics

E.g. https://dl.acm.org/citation.cfm?id=505373

“epistemic” logics add a knowledge operator K
KC contains things known to belong to C ; KR relates things known to be related by R

Every known supervisor is known to supervise someone known to be an Employee
KSupervisor v ∃Ksupervises.KEmployee

Every employee is employee in the database:
Employee v KEmployee

Advantages:
Expressive
Describes knowledge not triples

Disadvantages:
Mathematical details are hairy. . . require different knowledge operators. . .
Without restrictions, high computational complexity
For applications, describing data may be more important than describing knowledge

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 17 / 43

https://dl.acm.org/citation.cfm?id=505373

Different Approaches to Validation

Why not simply SPARQL?

https://www.topquadrant.com/technology/sparql-rules-spin/spin-constraints/

Idea: write SPARQL queries that detect constraint violations

E.g. Every superviser must supervise some employee:
SELECT ?p WHERE {

?p a :Supervisor.

FILTER NOT EXISTS {?p :supervises ?q. ?q a :Employee.}

}

Every query answer is a constraint violation!
Advantages:

Low tech, all required tool support already there
Full expressivity of SPARQL

Disadvantages:
Hard to write and read for complex constraints
Like OWL, SPARQL is not a language made for the purpose

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 18 / 43

https://www.topquadrant.com/technology/sparql-rules-spin/spin-constraints/

Different Approaches to Validation

W3C RDF Data Shapes Working Group

Goal: “produce a language for defining structural constraints on RDF graphs”

Originally people with many different ideas.

Eventuallt two main directions:

Shapes

Describe what must be in the graph
Similar to XML Schema, regular expressions, grammars
Outcome: Shape Expressions (ShEx)

Constraints

Describe which violations to check for
Similar to DB constraints
Outcome: Shape Constraint Language (SHACL)

SHACL became W3C recommendation June 2017

ShEx and SHACL now incorporate many of each others ideas.

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 19 / 43

Different Approaches to Validation

Book

“Validating RDF Data” by Jose Emilio Labra Gayo,
Eric Prud’hommeaux, Iovka Boneva, Dimitris Kontokostas

Complete text of book online:
https://book.validatingrdf.com/

By the group behind ShEx

Covers both ShEx and SHACL

(source of many of the examples here)

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 20 / 43

https://book.validatingrdf.com/

SHACL – the Shapes Constraint Language

Outline

1 What is Validation

2 Validation for RDF

3 Different Approaches to Validation

4 SHACL – the Shapes Constraint Language

5 SHACL systematically

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 21 / 43

SHACL – the Shapes Constraint Language

SHACL Example

SHACL constraints are RDF graphs using the SHACL vocabulary.

@prefix sh: <http://www.w3.org/ns/shacl#> .

:UserShape a sh:NodeShape; # declare a shape :UserShape

sh:targetClass :User ; # apply to all resources of type :User

sh:property [# the property...

sh:path schema:name ; # ... schema:name ...

sh:minCount 1; # ... must be given at least once ...

sh:maxCount 1; # ... and at most once ...

sh:datatype xsd:string ; # ... and the object must be a string

] .

Applies to all resources x of type :User

These must have exactly one triple x schema:name y for each x
y must have datatype xsd:string (so it must be a literal)

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 22 / 43

SHACL – the Shapes Constraint Language

SHACL Example, continued

:UserShape a sh:NodeShape;

sh:targetClass :User ;

sh:property [

sh:path schema:knows ;

sh:nodeKind sh:IRI ;

sh:class :User ;

] .

There can be 0, 1, or several schema:knows triples for a User

But for each, the object has to be a resource y (not a literal)

And there must be a triple typing y as a :User

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 23 / 43

SHACL – the Shapes Constraint Language

SHACL Example, continued

:UserShape a sh:NodeShape;

sh:targetClass :User ;

sh:property [

sh:path schema:gender ;

sh:minCount 1;

sh:maxCount 1;

sh:or (

[sh:in (schema:Male schema:Female)]

[sh:datatype xsd:string]

)

] .

There must be exaclty one schema:gender triple for a User

The object can be schema:Male or schema:Female or a string.

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 24 / 43

SHACL – the Shapes Constraint Language

Putting it together

:UserShape a sh:NodeShape;

sh:targetClass :User ;

sh:property [sh:path schema:name ; ...] ;

sh:property [sh:path schema:gender ; ...] ;

sh:property [sh:path schema:birthDate ; ...] ;

sh:property [sh:path schema:knows ; ...] .

UserShape is a “node shape”

This node shape includes four “property shapes”

Each property shape adds constraints that are checked individually

All are checked, conjunction of constraints.

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 25 / 43

SHACL – the Shapes Constraint Language

Validation

Results of validation are given as a “Validation Report” in RDF.

Everything OK:

:report a sh:ValidationReport ; sh:conforms true .

Problems:

:report a sh:ValidationReport ;

sh:conforms false ;

sh:result [a sh:ValidationResult ;

sh:resultSeverity sh:Violation ;

sh:sourceConstraintComponent sh:DatatypeConstraintComponent ;

sh:sourceShape ... ;

sh:focusNode :dave ;

sh:value 1980 ;

sh:resultPath schema:birthDate ;

sh:resultMessage "Value does not have datatype xsd:date"],...

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 26 / 43

SHACL systematically

Outline

1 What is Validation

2 Validation for RDF

3 Different Approaches to Validation

4 SHACL – the Shapes Constraint Language

5 SHACL systematically

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 27 / 43

SHACL systematically

Node Shapes and Targets

SHACL constraints apply to “focus nodes”

A node shape specifies which are the focus nodes it applies to

Known as the targets of the node shape

And the constraints that should apply

Target declarations:

Property Description
sh:targetNode Directly point to a node
sh:targetClass All nodes that are instances of some class
sh:targetSubjectsOf All nodes that are subjects of some predicate
sh:targetObjectsOf All nodes that are objects of some predicate

All selected targets become focus nodes after each other, and are checked for
comformance

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 28 / 43

SHACL systematically

SHACL Instances

A node x is a SHACL instance of a SHACL class C if x rdf:type/rdfs:subClassOf* C .

I.e. if there are triples
x rdf:type C0 .
C0 rdfs:subClassOf C1 .
· · ·
Ck rdfs:subClassOf C .

sh:targetClass uses SHACL instances

Built-in RDFS-style subclass reasoning

But nothing else, no range/domain/subproperty reasoning

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 29 / 43

SHACL systematically

Implicit Class Target

:User a sh:NodeShape, rdfs:Class ;

sh:property [

sh:path schema:name ;

sh:minCount 1;

sh:maxCount 1;

sh:datatype xsd:string ;

] .

:User is an rdfs:Class

but also a sh:NodeShape

with the implicit sh:targetClass :User

Confusing, but sometimes convenient

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 30 / 43

SHACL systematically

Constraint Components for Node Shapes

:UserShape a sh:NodeShape ;

sh:nodeKind sh:IRI — node must be resource (not literal or blank node)

Other node kinds: sh:BlankNode, sh:Literal, sh:BlankNodeOrIRI,
sh:BlankNodeOrLiteral, sh:IRIOrLiteral

sh:class :Person — has to be SHACL instance of some type

sh:datatype xsd:int — has to be literal with given datatype

sh:hasValue :Norway — has to be a specific value (IRI or literal)

sh:in (:Cat :Dog) — has to be one of the given values (IRIs or literals)

sh:minInclusive 1 ; sh:maxInclusive 5 — range of admitted values

sh:minLength 4; sh:maxLength 20 — range of admitted string lengths

sh:pattern ”ˆa(bc)*d” — string must match regexp

. . . and a few more. . .

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 31 / 43

SHACL systematically

Logical Constraint Components

Constraints can be combined:
:aShape a sh:NodeShape;

sh:and (S1 . . . Sk) — must conform to all shapes

sh:or (S1 . . . Sk) — must conform to at least one of the shapes

sh:not S — must not conform to S

sh:xone (S1 . . . Sk) — must conform to exactly one of the shapes

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 32 / 43

SHACL systematically

Property Shapes

Given a focus node. . .

. . . a property shape constrains nodes that can be reached via some path.

Paths can be just properties, or something similar to SPARQL property paths

SHACL path SPARQL path
schema:name schema:name

[sh:inversePath schema:knows] ^schema:knows

(schema:knows schema:name) schema:knows/schema:name

[sh:alternativePath (schema:knows schema:follows)] schema:knows|schema:follows

[sh:zeroOrOnePath schema:knows] schema:knows?

[sh:oneOrMorePath schema:knows] schema:knows+

([sh:zeroOrMorePath schema:knows] schema:name) schema:knows*/schema:name

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 33 / 43

SHACL systematically

Cardinality Constraint Components

Given a property shape
. . . sh:property [sh:path p ; . . .]

And a focus node x

Gather the set of all value nodes v ∈ V , that can be reached from x by p.

. . . sh:property [sh:path p ; sh:minCount 3 . . .] — check that |V | ≥ 3

. . . sh:property [sh:path p ; sh:maxCount 5 . . .] — check that |V | ≤ 5

What about: [sh:path p ; sh:maxCount 5; sh:datatype xsd:int . . .] ?

There must be at most 5 value nodes
All of them must have type xsd:int

“Max 5 of xsd:int but possibly others” → Qualified Value Constraints

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 34 / 43

SHACL systematically

Diverse Constraints

sh:name — human readable label

sh:description — human readable description

sh:message — human readable message for validation report

sh:severity — sh:Info, sh:Warning, or sh:Violation

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 35 / 43

SHACL systematically

Property Shape Example

Users have to know someone who has an email address, which matches a regexp

ex:UsersKnowSomeoneWithMailShape

a sh:NodeShape ;

sh:targetClass :User ;

sh:property [

sh:path (ex:knows ex:email) ;

sh:name "Friend’s e-mail" ;

sh:description "We need at least one email for everyone you know" ;

sh:minCount 1 ;

sh:pattern "^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}$" ;

] .

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 36 / 43

SHACL systematically

Property Pair Constraints – sh:equals

The set of Bob’s foaf:givenName values is the same as that of foaf:firstName

ex:EqualExampleShap a sh:NodeShape ;

sh:targetNode ex:Bob ;

sh:property [

sh:path ex:firstName ;

sh:equals ex:givenName ;

] .

The country a city lies in is the same as the country of the district it lies in

:CityShape a sh:NodeShape;

sh:targetClass :City;

sh:property [

sh:path (:isCityInDistrict :isDistrictInCountry) ;

sh:equals :isCityInCountry ;

] .
IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 37 / 43

SHACL systematically

Property Pair Constraints – sh:disjoint

None of of Bob’s ancestors is also one of his children

ex:DisjointExampleShape

a sh:NodeShape ;

sh:targetNode ex:Bob ;

sh:property [

sh:path [sh:zeroOrMorePath ex:hasParent] ;

sh:disjoint ex:hasChild ;

] .

Note how transitive closure using sh:zeroOrMorePath reaches all ancestors.

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 38 / 43

SHACL systematically

Property Pair Constraints – Value Comparison

Every screening in the dataset starts before it ends.

ex:DisjointExampleShape

a sh:ScreeningShape ;

sh:property [

sh:path movie:screeningStart] ;

sh:lessThan ex:screeningEnd ;

] .

Can also use sh:lessThanOrEquals

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 39 / 43

SHACL systematically

References

Require that the address of a person has the address shape

ex:PersonShape

a sh:NodeShape ;

sh:targetClass ex:Person ;

sh:property [

sh:path ex:address ;

sh:minCount 1 ;

sh:node ex:AddressShape ;

] .

Note: cyclic references are not supported by the standard.

E.g. AddressShape can’t refer back to PersonShape, has to go via sh:class

Often stated as advantage of ShEx

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 40 / 43

SHACL systematically

SHACL-SPARQL

SHACL-SPARQL: express restrictions based on a SPARQL SELECT query.

ex:LanguageExampleShape

a sh:NodeShape ;

sh:targetClass ex:Country ;

sh:sparql [

sh:message "Values are literals with German language tag." ;

sh:prefixes ex: ;

sh:select """

SELECT $this (ex:germanLabel AS ?path) ?value

WHERE {

$this ex:germanLabel ?value .

FILTER (!isLiteral(?value) || !langMatches(lang(?value), "de"))

}

""" ;

] .

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 41 / 43

SHACL systematically

Takeaways

Ontologies are no good for validation

Ontologies express facts about the domain
Constraints, data models, etc., express facts about the data

Several different approaches have been explored

One of them, SHACL, has become a W3C recommendation

Built around constraints that must be checked

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 42 / 43

SHACL systematically

Outlook

Lecture 14: Guest Lecture

Christian M. Hansen, Ontology Specialist at Aibel
Dirk Walther, Principal Consultant at DNV

Lecture 15: OTTR Templates: Basics

Lecture 16: OTTR Templates: Template libraries and practical applications (Oblig 7)

Lecture 17: Open Data

Lecture 18: Repetition

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 43 / 43

	What is Validation
	Validation for RDF
	Different Approaches to Validation
	SHACL – the Shapes Constraint Language
	SHACL systematically

