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What is Validation

An XML document

<?xml version="1.0"?>

<note>

<to>Thomas</to>

<from>Jieying</from>

<heading>Reminder</heading>

<body>Don’t forget to publish mandatory 6!</body>

</note>

IN3060/4060 :: Spring 2021 Lecture 13 :: 16th April 4 / 43



What is Validation

A “wrong” XML document

<?xml version="1.0"?>

<note>

<from><theboss/></from>

<subject>Reminder</subject>

<body>Don’t forget to do what I told you!</body>

</note>

No <to> element

Not text in <from> element

No <header> element

unknown <subject> element

Software reading such an XML document will have di�culties!
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What is Validation

An XML Schema for notes

<?xml version="1.0"?>

<xs:schema xmlns:xs=...>

<xs:element name="note">

<xs:complexType>

<xs:sequence>

<xs:element name="to" type="xs:string"/>

<xs:element name="from" type="xs:string"/>

<xs:element name="heading" type="xs:string"/>

<xs:element name="body" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>
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What is Validation

XML Schema Validation

XML Schema Validation takes

An XML Schema (.XSD) document S

An XML ‘instance document’ X

and checks that X conforms to the rules given by S
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What is Validation

Another example: Regular expressions

Some floating point literals: -12.3, +.7E-3, 12e12

not floating point literals: 7.5.2020, 1E2E3

A regexp describing all admissible floating point literals:

[-+]?[0-9]*\.?[0-9]+([eE][-+]?[0-9]+)?

Regular Expression matching: finding out whether a string conforms to a regexp
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What is Validation

Another example: Database Constraints

CREATE TABLE employees (

id int NOT NULL,

department int NOT NULL,

CONSTRAINT emp_pk PRIMARY KEY (id),

CONSTRAINT emp_dept_fk

FOREIGN KEY department

REFERENCES departments

);

Check that all employees have an id and department

Check that any two employees have di↵erent IDs

Check that the department of any employee occurs in the departments table

Note: only does something if, and when, data is added. OK to have no emps and depts
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Validation for RDF

RDF Schema?

RDF “Schema”:
:worksInDepartment rdfs:range :Department

RDF “Database”:
:martin :worksInDepartment :ifi

:maths a :Department

:physics a :Department

What about RDF Schema Validation? :ifi not listed as department!

Rule rdfs3 allows us to infer that :ifi a Department

RDF Schema cannot be used for validation!

In this sense, it is not a schema language like XML schema.
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Validation for RDF

What about OWL?

Ontology:
Person v 9hasFather.Person

ABox:
Person(haakon)
Person(harald)
hasFather(haakon, harald)

Does this “validate”? No information about Harald’s father!

We can infer that 9hasFather.Person(harald), i.e. he has a father

OWL cannot be used for validation!

OWL and RDFS are good for adding missing fats, not detecting that they are missing
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Validation for RDF

What is needed?

In applications, often need info about available information

E.g. queries become a lot easier to write if we know the data!

Ontology: Every person has a name

Needed: For every person in the dataset, we know the name

Ontology: Every employee works in some department

Needed: For every employee, we know which department he/she works in, and it is a
department we know about.

Need a Constraint language to describe RDF graphs

Ontology — describes persons, employees, cars,. . .

Constraints — describe data about persons, employees, cars,. . .
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Validation for RDF

Ontology vs. Constraints

Ontology

Knowledge about domain

Can do: infer new knowledge

Reuse across applications

Constraints

Knowledge about our knowledge of the
domain

Can do: check completness of existing
information: Validation

Specific to use (one system or exchange)
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Di↵erent Approaches to Validation

OWL as Constraint Language (Stardog ICV)

https://docs.stardog.com/data-quality-constraints/

Idea: Allow some OWL Axioms to be interpreted as constraints

E.g.: Supervisor v 9supervises.Employee. . .

. . . interpreted as constraint means:
For every triple x a :Supervisor

There must be at least one triple x :supervises y

and a triple y a :Employee for some resource y

Advantages:

easy to define mathematically (Take RDF graph as DL interpretation)
parsers, APIs, etc. already there
“constraints” can be translated to SPARQL queries that check them

Disadvantages:

not everything in OWL has a sensible constraint interpretation
not every useful constraint can be expressed in OWL
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Di↵erent Approaches to Validation

Epistemic Description Logics

E.g. https://dl.acm.org/citation.cfm?id=505373

“epistemic” logics add a knowledge operator K

KC contains things known to belong to C ; KR relates things known to be related by R

Every known supervisor is known to supervise someone known to be an Employee
KSupervisor v 9Ksupervises.KEmployee

Every employee is employee in the database:
Employee v KEmployee

Advantages:

Expressive
Describes knowledge not triples

Disadvantages:

Mathematical details are hairy. . . require di↵erent knowledge operators. . .
Without restrictions, high computational complexity
For applications, describing data may be more important than describing knowledge
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Di↵erent Approaches to Validation

Why not simply SPARQL?

https://www.topquadrant.com/technology/sparql-rules-spin/spin-constraints/

Idea: write SPARQL queries that detect constraint violations

E.g. Every superviser must supervise some employee:
SELECT ?p WHERE {

?p a :Supervisor.

FILTER NOT EXISTS {?p :supervises ?q. ?q a :Employee.}

}

Every query answer is a constraint violation!
Advantages:

Low tech, all required tool support already there
Full expressivity of SPARQL

Disadvantages:

Hard to write and read for complex constraints
Like OWL, SPARQL is not a language made for the purpose
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Di↵erent Approaches to Validation

W3C RDF Data Shapes Working Group

Goal: “produce a language for defining structural constraints on RDF graphs”

Originally people with many di↵erent ideas.

Eventuallt two main directions:

Shapes
Describe what must be in the graph
Similar to XML Schema, regular expressions, grammars
Outcome: Shape Expressions (ShEx)

Constraints
Describe which violations to check for
Similar to DB constraints
Outcome: Shape Constraint Language (SHACL)

SHACL became W3C recommendation June 2017

ShEx and SHACL now incorporate many of each others ideas.
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Di↵erent Approaches to Validation

Book

“Validating RDF Data” by Jose Emilio Labra Gayo,
Eric Prud’hommeaux, Iovka Boneva, Dimitris Kontokostas

Complete text of book online:
https://book.validatingrdf.com/

By the group behind ShEx

Covers both ShEx and SHACL

(source of many of the examples here)
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SHACL – the Shapes Constraint Language

Outline

1 What is Validation

2 Validation for RDF

3 Di↵erent Approaches to Validation

4 SHACL – the Shapes Constraint Language

5 SHACL systematically
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SHACL – the Shapes Constraint Language

SHACL Example

SHACL constraints are RDF graphs using the SHACL vocabulary.

@prefix sh: <http://www.w3.org/ns/shacl#> .

:UserShape a sh:NodeShape; # declare a shape :UserShape

sh:targetClass :User ; # apply to all resources of type :User

sh:property [ # the property...

sh:path schema:name ; # ... schema:name ...

sh:minCount 1; # ... must be given at least once ...

sh:maxCount 1; # ... and at most once ...

sh:datatype xsd:string ; # ... and the object must be a string

] .

Applies to all resources x of type :User
These must have exactly one triple x schema:name y for each x

y must have datatype xsd:string (so it must be a literal)
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SHACL – the Shapes Constraint Language

SHACL Example, continued

:UserShape a sh:NodeShape;

sh:targetClass :User ;

sh:property [

sh:path schema:knows ;

sh:nodeKind sh:IRI ;

sh:class :User ;

] .

There can be 0, 1, or several schema:knows triples for a User

But for each, the object has to be a resource y (not a literal)

And there must be a triple typing y as a :User
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SHACL – the Shapes Constraint Language

SHACL Example, continued

:UserShape a sh:NodeShape;

sh:targetClass :User ;

sh:property [

sh:path schema:gender ;

sh:minCount 1;

sh:maxCount 1;

sh:or (

[ sh:in (schema:Male schema:Female) ]

[ sh:datatype xsd:string]

)

] .

There must be exaclty one schema:gender triple for a User

The object can be schema:Male or schema:Female or a string.
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SHACL – the Shapes Constraint Language

Putting it together

:UserShape a sh:NodeShape;

sh:targetClass :User ;

sh:property [ sh:path schema:name ; ...] ;

sh:property [ sh:path schema:gender ; ...] ;

sh:property [ sh:path schema:birthDate ; ...] ;

sh:property [ sh:path schema:knows ; ...] .

UserShape is a “node shape”

This node shape includes four “property shapes”

Each property shape adds constraints that are checked individually

All are checked, conjunction of constraints.
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SHACL – the Shapes Constraint Language

Validation

Results of validation are given as a “Validation Report” in RDF.
Everything OK:

:report a sh:ValidationReport ; sh:conforms true .

Problems:

:report a sh:ValidationReport ;
sh:conforms false ;
sh:result [ a sh:ValidationResult ;

sh:resultSeverity sh:Violation ;
sh:sourceConstraintComponent sh:DatatypeConstraintComponent ;
sh:sourceShape ... ;
sh:focusNode :dave ;
sh:value 1980 ;
sh:resultPath schema:birthDate ;
sh:resultMessage "Value does not have datatype xsd:date" ],...
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SHACL systematically

Outline

1 What is Validation
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SHACL systematically

Node Shapes and Targets

SHACL constraints apply to “focus nodes”

A node shape specifies which are the focus nodes it applies to
Known as the targets of the node shape

And the constraints that should apply

Target declarations:

Property Description
sh:targetNode Directly point to a node
sh:targetClass All nodes that are instances of some class
sh:targetSubjectsOf All nodes that are subjects of some predicate
sh:targetObjectsOf All nodes that are objects of some predicate

All selected targets become focus nodes after each other, and are checked for
comformance
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SHACL systematically

SHACL Instances

A node x is a SHACL instance of a SHACL class C if x rdf:type/rdfs:subClassOf* C .

I.e. if there are triples
x rdf:type C0 .
C0 rdfs:subClassOf C1 .
· · ·
Ck rdfs:subClassOf C .

sh:targetClass uses SHACL instances

Built-in RDFS-style subclass reasoning

But nothing else, no range/domain/subproperty reasoning
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SHACL systematically

Implicit Class Target

:User a sh:NodeShape, rdfs:Class ;

sh:property [

sh:path schema:name ;

sh:minCount 1;

sh:maxCount 1;

sh:datatype xsd:string ;

] .

:User is an rdfs:Class

but also a sh:NodeShape

with the implicit sh:targetClass :User

Confusing, but sometimes convenient
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SHACL systematically

Constraint Components for Node Shapes

:UserShape a sh:NodeShape ;

sh:nodeKind sh:IRI — node must be resource (not literal or blank node)

Other node kinds: sh:BlankNode, sh:Literal, sh:BlankNodeOrIRI,
sh:BlankNodeOrLiteral, sh:IRIOrLiteral

sh:class :Person — has to be SHACL instance of some type

sh:datatype xsd:int — has to be literal with given datatype

sh:hasValue :Norway — has to be a specific value (IRI or literal)

sh:in ( :Cat :Dog ) — has to be one of the given values (IRIs or literals)

sh:minInclusive 1 ; sh:maxInclusive 5 — range of admitted values

sh:minLength 4; sh:maxLength 20 — range of admitted string lengths

sh:pattern ”a(bc) ⇤ d” — string must match regexp

. . . and a few more. . .
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SHACL systematically

Logical Constraint Components

Constraints can be combined:
:aShape a sh:NodeShape;

sh:and (S1 . . . Sk) — must conform to all shapes

sh:or (S1 . . . Sk) — must conform to at least one of the shapes

sh:not S — must not conform to S

sh:xone (S1 . . . Sk) — must conform to exactly one of the shapes
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SHACL systematically

Property Shapes

Given a focus node. . .

. . . a property shape constrains nodes that can be reached via some path.

Paths can be just properties, or something similar to SPARQL property paths
SHACL path SPARQL path
schema:name schema:name

[sh:inversePath schema:knows] ^schema:knows

(schema:knows schema:name) schema:knows/schema:name

[sh:alternativePath (schema:knows schema:follows)] schema:knows|schema:follows

[sh:zeroOrOnePath schema:knows] schema:knows?

[sh:oneOrMorePath schema:knows] schema:knows+

([sh:zeroOrMorePath schema:knows] schema:name) schema:knows*/schema:name
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SHACL systematically

Cardinality Constraint Components

Given a property shape
. . . sh:property [ sh:path p ; . . . ]

And a focus node x

Gather the set of all value nodes v 2 V , that can be reached from x by p.

. . . sh:property [ sh:path p ; sh:minCount 3 . . . ] — check that |V | � 3

. . . sh:property [ sh:path p ; sh:maxCount 5 . . . ] — check that |V |  5

What about: [ sh:path p ; sh:maxCount 5; sh:datatype xsd:int . . . ] ?

There must be at most 5 value nodes
All of them must have type xsd:int

“Max 5 of xsd:int but possibly others” ! Qualified Value Constraints
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SHACL systematically

Diverse Constraints

sh:name — human readable label

sh:description — human readable description

sh:message — human readable message for validation report

sh:severity — sh:Info, sh:Warning, or sh:Violation
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SHACL systematically

Property Shape Example

Users have to know someone who has an email address, which matches a regexp

ex:UsersKnowSomeoneWithMailShape

a sh:NodeShape ;

sh:targetClass :User ;

sh:property [

sh:path (ex:knows ex:email) ;

sh:name "Friend’s e-mail" ;

sh:description "We need at least one email for everyone you know" ;

sh:minCount 1 ;

sh:pattern "^[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}$" ;

] .
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SHACL systematically

Property Pair Constraints – sh:equals

The set of Bob’s foaf:givenName values is the same as that of foaf:firstName

ex:EqualExampleShap a sh:NodeShape ;

sh:targetNode ex:Bob ;

sh:property [

sh:path ex:firstName ;

sh:equals ex:givenName ;

] .
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Property Pair Constraints – sh:equals

The set of Bob’s foaf:givenName values is the same as that of foaf:firstName

ex:EqualExampleShap a sh:NodeShape ;

sh:targetNode ex:Bob ;

sh:property [

sh:path ex:firstName ;

sh:equals ex:givenName ;

] .

The country a city lies in is the same as the country of the district it lies in

:CityShape a sh:NodeShape;

sh:targetClass :City;

sh:property [

sh:path (:isCityInDistrict :isDistrictInCountry) ;

sh:eqauls :isCityInCountry ;

] .
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SHACL systematically

Property Pair Constraints – sh:disjoint

None of of Bob’s ancestors is also one of his children

ex:DisjointExampleShape

a sh:NodeShape ;

sh:targetNode ex:Bob ;

sh:property [

sh:path [ sh:zeroOrMorePath ex:hasParent ] ;

sh:disjoint ex:hasChild ;

] .

Note how transitive closure using sh:zeroOrMorePath reaches all ancestors.
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SHACL systematically

Property Pair Constraints – Value Comparison

Every screening in the dataset starts before it ends.

ex:DisjointExampleShape

a sh:ScreeningShape ;

sh:property [

sh:path movie:screeningStart ] ;

sh:lessThan ex:screeningEnd ;

] .

Can also use sh:lessThanOrEquals
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SHACL systematically

References

Require that the address of a person has the address shape

ex:PersonShape

a sh:NodeShape ;

sh:targetClass ex:Person ;

sh:property [

sh:path ex:address ;

sh:minCount 1 ;

sh:node ex:AddressShape ;

] .

Note: cyclic references are not supported by the standard.

E.g. AddressShape can’t refer back to PersonShape, has to go via sh:class

Often stated as advantage of ShEx
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ex:AddressShape
a sh:NodeShape ;
sh:property [

sh:path ex:postalCode ;
sh:datatype xsd:string ;
sh:maxCount 1 ;

] .



SHACL systematically

SHACL-SPARQL

SHACL-SPARQL: express restrictions based on a SPARQL SELECT query.

ex:LanguageExampleShape
a sh:NodeShape ;
sh:targetClass ex:Country ;
sh:sparql [
sh:message "Values are literals with German language tag." ;
sh:prefixes ex: ;
sh:select """
SELECT $this (ex:germanLabel AS ?path) ?value
WHERE {
$this ex:germanLabel ?value .
FILTER (!isLiteral(?value) || !langMatches(lang(?value), "de"))

}
""" ;

] .
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SHACL systematically

Takeaways

Ontologies are no good for validation
Ontologies express facts about the domain
Constraints, data models, etc., express facts about the data

Several di↵erent approaches have been explored

One of them, SHACL, has become a W3C recommendation

Built around constraints that must be checked
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SHACL systematically

Outlook

Lecture 14: Guest Lecture

Christian M. Hansen, Ontology Specialist at Aibel
Dirk Walther, Principal Consultant at DNV

Lecture 15: OTTR Templates: Basics

Lecture 16: OTTR Templates: Template libraries and practical applications (Oblig 6)

Lecture 17: Open Data

Lecture 18: Repetition
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