
74 Foundations of Semantic Web Technologies

What exactly the propositions are depends on the specific logic under consid-
eration. In our case, for instance, the propositions are RDF triples. In the
appendix you can find another example of logic propositions in the context
of first-order predicate logic. Given a specific logic, let us denote the set of
all propositions by P. Furthermore, we need a notation to state that, e.g.,
propositions p3 and p4 are logical consequences of the propositions p1, and p2.
Most commonly, this is expressed by {p1, p2} |= {p3, p4}, where |= is called
entailment relation and relates sets of propositions with sets of propositions
(hence: |= ✓ 2P⇥2P). A logic L is therefore composed of a set of propositions
together with an entailment relation and can be described by L = (P, |=) on
an abstract level.

There are numerous ways to define the entailment relation of a specific logic.
In the following, we will attend to a rather frequently employed method that
is also used in the case of RDF(S).

3.2 Model-Theoretic Semantics for RDF(S)

We start by giving a high-level perspective of the notion of model-theoretic
semantics. Thereby, one central notion is that of an interpretation. Interpre-
tations might be conceived as potential “realities” or “worlds.” In particular,
interpretations need in no way comply with the actual reality. In formal logic,
one usually chooses certain mathematical structures as interpretations in or-
der to work in a formally correct way. Which structures to choose in particular
depends on the considered logic.

After stipulating what the interpretations of a logic are, one proceeds by
defining how to decide whether a specific interpretation I satisfies a specific
proposition p 2 P (in which case we call I model of p and write I |= p, using
the same symbol as for the entailment relation). Moreover, for a set P ✓ P of
propositions, one says that I is a model of P (written I |= P), if it is a model
for every p 2 P .

Based on this “model relation” the actual entailment relation is defined in
the following (also intuitively plausible) way: a proposition set P 0 ✓ P is
entailed by a set of propositions P ✓ P (written: P |= P 0) if and only if
every interpretation I satisfying all sentences p from P (formally: I |= P) is
also a model of every sentence p0 from P 0 (i.e., I |= P 0). Figure 3.1 depicts
this correspondence graphically. To further illustrate the basic concept of this
definition, consider the following (only halfway formal) analogy: “light green”
entails “green,” because all light green things are also just green. Using the
terminology just introduced and thinking of interpretations as single real world
objects, this can be expressed as follows: {light_green} |=green, because every
thing (every interpretation) I that satisfies light_green (i.e., I |=light_green)

RDF Formal Semantics 75

snoitaterpretni

p1

p3p2

caligol
entailment

propositions

sledom
p fo 1

sledom
p fo 2

sledom
p fo 3

FIGURE 3.1: Definition of the entailment relation via models

-

-

FIGURE 3.2: Correspondence of interpretations

is automatically also a model of the proposition green (i.e., I |=green).
We define the model-theoretic semantics for RDF(S) in several steps: we

start by the comparably easy definition of simple interpretations of graphs.
After that, we provide additional criteria which qualify these interpretations as
RDF-interpretations. Finally we give further constraints to be fulfilled by an
RDF-interpretation in order to be acknowledged as an RDFS-interpretation.
As a natural consequence of this approach, every RDFS-interpretation is a
valid RDF-interpretation and every RDF-interpretation constitutes a simple
interpretation. This correspondency is depicted in Fig. 3.2.

3.2.1 Simple Interpretations

So, let us first have a look at the so-called simple interpretations. We shall
use the Turtle syntax introduced in Section 2.2 in order to represent RDF
graphs, presuming the two conventionally used prefix definitions

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

76 Foundations of Semantic Web Technologies

Our starting point for the definition of interpretations is the notion of vo-
cabulary, introduced in Section 2.2.6 and further elaborated in Section 2.4.
Formally, a vocabulary is just an arbitrary set containing URIs and literals.

Of course, the aim of the introduced semantics is to correctly reflect the
intuition behind RDF graphs; hence the interpretations to be defined in the
sequel should – although more abstract – in a certain sense be similar to the
“possible worlds” resp. “realities” described by the graphs.

As pointed out in Chapter 2, triples are employed to describe how resources
are interrelated via properties. Consequently, an interpretation contains two
sets IR and IP , the elements of which can be understood as abstract resources
resp. properties, as well as a function IEXT that tells which resources are in-
terconnected by which properties. So, “resource” and “property” are notions
which are purely semantic and to be used on the interpretation side only,
whence – in the strict sense – it would be wrong to say that URIs (or liter-
als) are resources. More precisely, one should state that (syntactic) URIs or
literals stand for or represent (semantic) resources. And exactly this kind of
representation is encoded by further functions that assign a semantic counter-
part to every URI and literal. In the case of simple interpretations, all URIs
are treated equally as there is no “semantic special treatment” for the RDF
and the RDFS vocabulary.

So we define: a simple interpretation I of a given vocabulary V consists of

• IR, a non-empty set of resources, alternatively called domain or universe
of discourse of I,

• IP , the set of properties of I (which may overlap with IR),

• IEXT, a function assigning to each property a set of pairs from IR,
i.e. IEXT : IP ! 2IR⇥IR, where IEXT(p) is called the extension of the
property p,

• IS, a function, mapping URIs from V into the union of the sets IR and
IP , i.e. IS : V ! IR [IP ,

• IL, a function from the typed literals from V into the set IR of resources
and

• LV , a particular subset of IR, called the set of literal values, containing
(at least) all untyped literals from V .

Based on the sets IR, IP , and LV as well as the functions IEXT, IS, and IL,
we now define an interpretation function ·I that in the first place maps all
literals and URIs contained in the vocabulary V to resources and properties:

• every untyped literal "a " is mapped to a , formally: ("a ")I = a ,

• every untyped literal carrying language information "a "@t is mapped
to the pair ha , t i, i.e. ("a "@t)I = ha , t i,

RDF Formal Semantics 77

• every typed literal l is mapped to IL(l), formally: l I = IL(l), and

• every URI u is mapped to IS(u), i.e. uI = IS(u).

Note that, as mentioned in Section 2.1.3, untyped literals without language
information are essentially mapped to themselves, while untyped literals with
language information are assigned to pairs consisting of the pure literal and
the language identifier. Figure 3.3 graphically illustrates this part of the
definition of a simple interpretation.

FIGURE 3.3: Schematic representation of a simple interpretation

Now, starting from the definition of the interpretation function with respect
to single basic RDF elements, we further extend this function in a way that
it assigns a truth value (true or false) to every grounded triple (i.e. every
triple not containing blank nodes): the truth value s p o.I of a grounded
triple s p o. will be true exactly if all of its constituents s, p, and o are
contained in the vocabulary V and additionally hsI , oIi 2 IEXT(pI) holds.
Verbally, the latter condition demands that the pair constructed from the
resources assigned to s and o is within the extension of the property denoted
by p. Figure 3.4 graphically displays this condition. If one of these mentioned
conditions is violated, the truth value will be false.

Finally, the interpretation function ·I also assigns a truth value to every
grounded graph G: GI is true if and only if every triple contained in the
graph G is true, i.e. GI = true exactly if T I = true for all T 2 G.

Mark that the notion of interpretation which we have introduced so far
only covers grounded graphs, i.e. those not containing blank nodes. In order
to enable an interpretation to deal with blank nodes, we have to further
generalize our technical notion of interpretation. For this, the essential idea

78 Foundations of Semantic Web Technologies

s p o .

IP IR

.I .I .I

triple

pI
sI oI

IEXT(pI)

IEXT

FIGURE 3.4: Criterion for the validity of a triple with respect to an
interpretation

is to let a graph that contains blank nodes be valid, if everyone of these blank
nodes can be replaced by a resource, such that the resulting bnode-free graph
is valid. Hence, let A be a function assigning a resource from IR to every blank
node occurring in G. Moreover, we define for such a mapping A and a given
interpretation I a sort of combined interpretation I+A that behaves exactly
like I on the URIs and literals but additionally uses A to assign resources to
all blank nodes: (b)I+A = A(b). Accordingly I+A can be extended to triples
and further to graphs.

Eventually, we have to abstract from the concrete blank node assignments
by stipulating that a (non-combined) interpretation I be a model of a graph
G if there exists a function A0, such that GI+A0

= true. By this trick, we have
extended our original notion of an interpretation to non-grounded graphs. An
example of such a simple interpretation is given in Fig. 3.5.

In full compliance with the idea of model-theoretic semantics, we now say
that a graph G1 (simply) entails a graph G2, if every simple interpretation
that is a model of G1 is also a model of G2.

3.2.2 RDF-Interpretations

As mentioned earlier, simple interpretations essentially treat all URIs oc-
curring in the vocabulary in the same way, irrespective of their namespace and
their intended special meaning. For example, a simple interpretation does not
semantically distinguish between the URIs ex:publishedBy and rdf:type.
In order to restore the fixed vocabulary to its intended meaning, the set of ad-
missible interpretations has to be further restricted by additional constraints.

The RDF vocabulary VRDF consists of the URIs

RDF Formal Semantics 79

Let us consider as an example the graph from Fig. 2.7. The corresponding
vocabulary V consists of all names of nodes and edges of the graph.
A simple interpretation I for this vocabulary would now be given by:

IR = {�, �, ⌧, ⌫, ✏, ◆, 1lb}
IP = {⌧, ⌫, ◆}
LV = {1lb}
IEXT = ⌧ 7! {h�, ✏i}

⌫ 7! {h✏, �i}
◆ 7! {h✏, 1lbi}

IS = ex:chutney 7! �
ex:greenMango 7! �
ex:hasIngredient 7! ⌧
ex:ingredient 7! ⌫
ex:amount 7! ◆

IL is the “empty function,” since
there are no typed literals.

Letting A : _:id1 7! ✏, we note that the interpretation I+A valuates all
three triples of our considered graph with true:

hex:chutneyI+A, _:id1I+Ai=h�, ✏i 2 IEXT(⌧)=IEXT(ex:hasIngredientI+A)
h_:id1I+A, ex:greenMangoI+Ai=h✏, �i 2 IEXT(⌫)=IEXT(ex:ingredientI+A)
h_:id1I+A, "1lb"I+Ai=h✏, 1lbi2 IEXT(◆)=IEXT(ex:amountI+A)

Therefore, the described graph as a whole is also valued with true. Hence,
the simple interpretation I is a model of the graph.

FIGURE 3.5: Example of an interpretation

80 Foundations of Semantic Web Technologies

rdf:type rdf:Property rdf:XMLLiteral rdf:nil rdf:List rdf:Statement
rdf:subject rdf:predicate rdf:object rdf:first rdf:rest rdf:Seq
rdf:Bag rdf:Alt rdf:value

plus an infinite number of URIs rdf_i for every positive integer i.

Recall the intuitive semantics for this vocabulary: rdf:type is used to
assign a type to a URI; in other words, it declares that the resource associated
to this URI belongs to a certain class. The name rdf:Property denotes such
a class and characterizes all those URIs that may serve as a triple’s predicate,
i.e. those URIs whose assigned resources have an extension (i.e. which are
in IP in terms of simple interpretations). Consequently, only interpretations
satisfying those conditions will be admitted.

As we learned in Section 2.3.1, there is exactly one predefined datatype
in RDF, namely, rdf:XMLLiteral. As opposed to other (externally defined)
datatypes, the special characteristics of this one are explicitly taken care of in
the RDF semantics definition. In order to do this, it is necessary to distinguish
between well-typed and ill-typed XML literals. An XML literal is categorized
as well-typed if it satisfies the syntactic conditions for being contained in the
lexical space of rdf:XMLLiteral; otherwise it is ill-typed.

This distinction is relevant for the subsequent definition, because well-typed
literals are mapped to literal values (i.e. elements of LV), whereas ill-typed
ones are mapped to resources that are not literal values.

An RDF-interpretation of a vocabulary V is a simple interpretation of the
vocabulary V [VRDF that additionally satisfies the following conditions:

• x 2 IP exactly if hx, rdf:PropertyIi 2 IEXT(rdf:typeI).

x is a property exactly if it is connected to the resource denoted
by rdf:Property via the rdf:type-property (this automatically
causes IP ✓ IR for any RDF-interpretation).

• if "s "ˆˆrdf:XMLLiteral is contained in V and s is a well-typed XML-
Literal, then

- IL("s "ˆˆrdf:XMLLiteral) is the XML value1 of s ;

- IL("s "ˆˆrdf:XMLLiteral) 2 LV ;

- hIL("s "ˆˆrdf:XMLLiteral), rdf:XMLLiteralIi
2 IEXT(rdf:typeI)

1The value space of the datatype assigned to rdf:XMLLiteral contains, for every well-
typed XML string (from the lexical space), exactly one so-called XML value. The RDF
specification does not give further information about the nature of XML values; it only
requires that an XML value is not an XML string, nor a data value, nor a Unicode string.
For our purposes and the intuitive usage, however, it does no harm to suppose that XML
values are just XML strings.

Vidar

Vidar

RDF Formal Semantics 81

• if "s "ˆˆrdf:XMLLiteral is contained in V and s is an ill-typed XML
literal, then

- IL("s "ˆˆrdf:XMLLiteral) 62 LV and
- hIL("s "ˆˆrdf:XMLLiteral), rdf:XMLLiteralIi

62 IEXT(rdf:typeI).

In addition to those semantic restrictions, RDF-interpretations have to sat-
isfy the condition that all of the subsequent triples (called axiomatic triples)
must be valued as true:

rdf : type rdf : type rdf : Property.
rdf : subject rdf : type rdf : Property.
rdf : predicate rdf : type rdf : Property.
rdf : object rdf : type rdf : Property.
rdf : first rdf : type rdf : Property.
rdf : rest rdf : type rdf : Property.
rdf : value rdf : type rdf : Property.
rdf : _i rdf : type rdf : Property.
rdf : nil rdf : type rdf : List.

Again, the i in rdf:_i is to be replaced by all positive integers; therefore
we actually have infinitely many axiomatic triples.

Except for the last one, all those triples serve the purpose of marking re-
sources that are assigned to particular RDF URIs as properties. This is done
in the usual way by typing them with rdf:type rdf:Property which due to
the above definition of RDF-interpretations has exactly the desired effect.

Together, the listed restrictions ensure that an RDF-interpretation complies
with the intended meaning.

In exact analogy to the definition of the simple entailment, we now say
that a graph G1 RDF-entails a graph G2 if every RDF-interpretation that is
a model of G1 is also a model of G2.

3.2.3 RDFS Interpretations

As pointed out in Section 2.4, RDFS enriches the RDF vocabulary by fur-
ther constructs which have to be interpreted in a special way. For example,
new class names are introduced that allow us to mark a URI as referring to
a resource, to an untyped literal, or to a class via rdf:type. New URIs for
properties allow for characterizing domain and range of a property by typing
them with classes. Moreover class names as well as property names can be put
into hierarchical relations. This set of modeling options enables us to express
schematic or terminological knowledge in the form of triples.

The RDFS vocabulary VRDFS to be specifically interpreted consists of the
following names:

Vidar

Vidar

82 Foundations of Semantic Web Technologies

rdfs:domain rdfs:range rdfs:Resource rdfs:Literal rdfs:Datatype
rdfs:Class rdfs:subClassOf rdfs:subPropertyOf rdfs:member
rdfs:Container rdfs:ContainerMembershipProperty rdfs:comment
rdfs:seeAlso rdfs:isDefinedBy rdfs:label

For the sake of a simpler presentation, we introduce a new function ICEXT

which, given a fixed RDF-interpretation, maps resources to sets of resources
(formally: ICEXT : IR ! 2IR). We define ICEXT(y) to contain exactly those
elements x for which hx, yi is contained in IEXT(rdf:typeI). The set ICEXT(y)
is then also called the (class) extension of y.

Moreover we let IC denote the class extension of the URI rdfs:Class,
formally: IC = ICEXT(rdfs:ClassI). Note that both ICEXT as well as IC are
uniquely determined by ·I and IEXT.

We now employ the newly introduced function in order to specify the se-
mantic requirements on an RDFS-interpretation:

An RDFS-interpretation of a vocabulary V is an RDF-interpretation of the
vocabulary V [VRDFS that in addition satisfies the following criteria:

• IR = ICEXT(rdfs:ResourceI)
Every resource has the type rdfs:Resource.

• LV = ICEXT(rdfs:LiteralI)
Every untyped or well-typed literal has the type rdfs:Literal.

• If hx, yi 2 IEXT(rdfs:domainI) and hu, vi 2 IEXT(x),
then u 2 ICEXT(y).

If x and y are interconnected by the property rdfs:domain and
the property x connects the resources u and v, then u has the type
y.

• If hx, yi 2 IEXT(rdfs:rangeI) and hu, vi 2 IEXT(x),
then v 2 ICEXT(y).

If x and y are interconnected by the property rdfs:range and the
property x connects the resources u and v, then v has the type y.

• IEXT(rdfs:subPropertyOfI) is reflexive and transitive on IP .
The rdfs:subPropertyOf property connects every property with
itself.
Moreover: if rdfs:subPropertyOf links property x with property
y and also y with the property z, then rdfs:subPropertyOf also
links x directly with z.

• If hx, yi 2 IEXT(rdfs:subPropertyOfI),
then x, y 2 IP and IEXT(x) ✓ IEXT(y).

Whenever x and y are interlinked by rdfs:subPropertyOf, then
both x and y are properties and every pair of resources contained
in x’s extension is also contained in the extension of y.

RDF Formal Semantics 83

• If x 2 IC ,
then hx, rdfs:ResourceIi 2 IEXT(rdfs:subClassOfI).

Every class x is a subclass of the class of all resources, i.e. the
pair constructed from x and rdfs:Resource is in the extension of
rdfs:subClassOf.

• If hx, yi 2 IEXT(rdfs:subClassOfI),
then x, y 2 IC and ICEXT(x) ✓ ICEXT(y).

If x and y are in the rdfs:subClassOf relation, then both x and y
are classes and the (class) extension of x is a subset of the (class)
extension of y.

• IEXT(rdfs:subClassOfI) is reflexive and transitive on IC .
The rdfs:subClassOf property connects each class with itself.
Moreover if the rdfs:subClassOf property connects a class x with
a class y and y with some class z, it also connects x with z directly.

• If x 2 ICEXT(rdfs:ContainerMembershipPropertyI),
then hx, rdfs:memberIi 2 IEXT(rdfs:subPropertyOfI).

Any property typed with rdfs:ContainerMembershipProperty is
in the rdfs:subPropertyOf relation to the rdfs:member property.

• If x 2 ICEXT(rdfs:DatatypeI),
then hx, rdfs:LiteralIi 2 IEXT(rdfs:subClassOfI)

Any x typed as rdfs:Datatype must be a subclass of the class of
all literal values (denoted by rdfs:Literal).

In analogy to the definition of RDF-interpretations, we name a list of ax-
iomatic triples which (in addition to the aforementioned constraints) have
to be satisfied by an RDF-interpretation in order to render it an RDFS-
interpretation:

rdf:type rdfs:domain rdfs:Resource .
rdfs:domain rdfs:domain rdf:Property .
rdfs:range rdfs:domain rdf:Property .
rdfs:subPropertyOf rdfs:domain rdf:Property .
rdfs:subClassOf rdfs:domain rdfs:Class .
rdf:subject rdfs:domain rdf:Statement .
rdf:predicate rdfs:domain rdf:Statement .
rdf:object rdfs:domain rdf:Statement .
rdfs:member rdfs:domain rdfs:Resource .
rdf:first rdfs:domain rdf:List .
rdf:rest rdfs:domain rdf:List .
rdfs:seeAlso rdfs:domain rdfs:Resource .
rdfs:isDefinedBy rdfs:domain rdfs:Resource .

Vidar

Vidar

84 Foundations of Semantic Web Technologies

rdfs:comment rdfs:domain rdfs:Resource .
rdfs:label rdfs:domain rdfs:Resource .
rdf:value rdfs:domain rdfs:Resource .

rdf:type rdfs:range rdfs:Class .
rdfs:domain rdfs:range rdfs:Class .
rdfs:range rdfs:range rdfs:Class .
rdfs:subPropertyOf rdfs:range rdf:Property .
rdfs:subClassOf rdfs:range rdfs:Class .
rdf:subject rdfs:range rdfs:Resource .
rdf:predicate rdfs:range rdfs:Resource .
rdf:object rdfs:range rdfs:Resource .
rdfs:member rdfs:range rdfs:Resource .
rdf:first rdfs:range rdfs:Resource .
rdf:rest rdfs:range rdf:List .
rdfs:seeAlso rdfs:range rdfs:Resource .
rdfs:isDefinedBy rdfs:range rdfs:Resource .
rdfs:comment rdfs:range rdfs:Literal .
rdfs:label rdfs:range rdfs:Literal .
rdf:value rdfs:range rdfs:Resource .

rdfs:ContainerMembershipProperty
rdfs:subClassOf rdf:Property .

rdf:Alt rdfs:subClassOf rdfs:Container .
rdf:Bag rdfs:subClassOf rdfs:Container .
rdf:Seq rdfs:subClassOf rdfs:Container .

rdfs:isDefinedBy rdfs:subPropertyOf rdfs:seeAlso .

rdf:XMLLiteral rdf:type rdfs:Datatype .
rdf:XMLLiteral rdfs:subClassOf rdfs:Literal .
rdfs:Datatype rdfs:subClassOf rdfs:Class .

rdf:_i rdf:type
rdfs:ContainerMembershipProperty .

rdf:_i rdfs:domain rdfs:Resource .
rdf:_i rdfs:range rdfs:Resource .

Again, i can be replaced by any positive integer. Obviously this set of triples
can be divided into several groups. The first group contains triples with pred-
icate rdfs:domain. The declarative purpose of such a triple p rdfs:domain
c is to associate the URI p with a class name c. Basically, this enforces a
class membership (realized via rdf:type) for every URI s occurring as a sub-
ject together with the predicate p in a triple s p o . For example, the fifth
triple in this list just states that whenever a triple c rdfs:subclassOf d is

Vidar

Vidar

RDF Formal Semantics 85

encountered, an immediate consequence is that c denotes a class, expressed
by the triple c rdf:type rdfs:Class.

Similarly, the triples gathered in the second group and having the predicate
rdfs:range cause class memberships of triple objects.

As to containers, the axiomatic triples specify the class of all containedness
properties as subclass of the class of all properties. Additionally, the class
denoted by rdfs:Container is declared as the superclass of all kinds of open
lists.

Moreover, the rdfs:isDefinedBy property is classified as a special case of
the rdfs:seeAlso property. The class of XML values is marked as a datatype
and subclass of all literal values, and the class of all datatypes is identified as
a class of classes.

Finally the predefined containedness properties for lists are characterized
as such.

Based on the introduced notion of an RDFS-interpretation and in analogy
to the previous two cases, we now define that a graph G1 RDFS entails a
graph G2 if every RDFS-interpretation that is a model of G1 is also a model
of G2.

3.2.4 Interpretation of Datatypes

We already know that there is just one predefined datatype in RDFS,
namely, rdf:XMLLiteral, the semantic characteristics of which are fully cov-
ered by the definition of RDFS-interpretation in the previous section. Never-
theless, other externally defined datatypes can be used in RDF(S).

In Section 2.3.1 we learned that a datatype d is composed of a value space
Vald, a lexical space Lexd and a function Lex2Vald, assigning a value to ev-
ery element of the lexical space, formally: d = hVald, Lexd,Lex2Valdi with
Lex2Vald : Lexd ! Vald.

In the same section we also mentioned that when employing external data-
types, one can have URIs referring to those datatypes within the vocabulary.
This allows for making statements about datatypes within an RDF(S) spec-
ification. For example, it might be reasonable to specify that the natural
numbers are a subset of the integers.

In order to capture the entirety of all datatypes used in an RDF(S) de-
scription, we introduce the notion of a datatype map D, a function assigning
the datatypes to their URIs: D : u 7! d. Of course, the predefined datatype
has to be treated accordingly; hence we require every datatype map to satisfy
D(rdf:XMLLiteral) = dXMLLiteral.

Given a datatype map D, we now define a D-interpretation of the vocabu-
lary V as an RDFS-interpretation I of V [{a | there is a d with D(a) = d}
(that means the vocabulary V extended by the domain of D) that for every
a and d with D(a) = d additionally satisfies the following properties:

• a I = D(a).

Vidar

Vidar

86 Foundations of Semantic Web Technologies

For URIs denoting datatypes, the interpretation function ·I coin-
cides with the datatype map D.

• ICEXT(d) = Vald ✓ LV .

The class extension of a datatype d is the value space of d and is a
subset of the literal values.

• For every typed literal "s "ˆˆd 2 V with d I = d the following hold:

- if s 2 Lexd, then IL("s "ˆˆd) = Lex2Vald(s),

- if s 62 Lexd, then IL("s "ˆˆd) 62 LV .

Every well-typed literal (i.e. one contained in the lexical space of its
associated datatype) is mapped into the literal values in accordance
with this datatype’s lexical-to-value mapping, whereas every ill-
typed literal is mapped to a resource outside the literal values.

• a I 2 ICEXT(rdfs:DatatypeI).

Every datatype (i.e. every resource assigned to a datatype URI) is
a member of the rdfs:Datatype class.

3.2.5 Worked Example

Let us have a closer look at the definitions of models for RDF and RDFS
documents by working through them for the example ontology from Sec-
tion 2.6. This is going to be a bit tedious, but it helps to understand the
definitions. Usually, you would not do this manually, but rather use systems
based on algorithms like that from Section 3.3.

Let us start by defining a simple interpretation, as given in Fig. 3.6. These
assignments define a simple interpretation which is a model of the example
ontology. You can check this easily yourself.

Next, we define an RDF-interpretation starting from the simple interpreta-
tion just given. To do this, we need to augment the simple interpretation by
adding mappings for all elements of VRDF and by redefining IEXT(y).

It does not really matter how we set IS(x) for those x 2 VRDF which the
IS from the simple interpretation does not map, so pick anything that is not
yet in IR [IP and extend IS accordingly. Note that we could also reuse the
elements from IR [IP because the unique name assumption is not imposed,
but we want to construct a model which is intuitively feasible, and so we avoid
reuse. Let’s do the settings as given in Fig. 3.7.

Now redefine IEXT(y) from the simple interpretation to the following:
IEXT(y) = {hs, ai, hh, ii, hd, ⇡i, he,⇡i, hh, ⇡i, hb, ⇡i, hm,⇡i, ho,⇡i, hr, ⇡i, hy, ⇡i,

h⇢1, ⇢2i, h⇢4,⇡i, h⇢5,⇡i, h⇢6,⇡i, h⇢7,⇡i, h⇢8,⇡i, h⇢12,⇡i, h�k,⇡i | k 2 N}.
This way, we satisfy the first condition on page 80. The other conditions are
not important for us since we have no such elements in V .

Vidar

Vidar

RDF Formal Semantics 87

IR = {a, c, i, n, p, s, t, v, y, d, h}
IP = {d, e, h, b,m, o, r, y}
LV = ;
IS = ex:AllergicToNuts 7! a

ex:coconutMilk 7! c
ex:Nutty 7! n
ex:Pitiable 7! p
ex:sebastian 7! s
ex:Thai 7! t
ex:vegetableThaiCurry 7! v
ex:thaiDishBasedOn 7! d
ex:eats 7! e
ex:hasIngredient 7! h
rdfs:subPropertyOf 7! b
rdfs:ContainerMembershipProperty 7! i
rdfs:domain 7! m
rdfs:subClassOf 7! o
rdfs:range 7! r
rdf:type 7! y

IEXT = d 7! {hv, ci}
e 7! {hs, vi}
h 7! ;
b 7! {hd, hi}
m 7! {hd, ti}
o 7! {ha, pi}
r 7! {hd, ni}
y 7! {hs, ai, hh, ii}

IL = ;

FIGURE 3.6: Example of a simple interpretation

